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5.1
Introduction

Two recent developments in data management are the emergence of
database systems with extended functionality [Atkinson et al., 1989; Stone-
braker et al., 1990a], and the integration of multiple, heterogeneous database
systems [Litwin, 1988; Gupta, 1989; Sheth and Larson, 1990]. An even more
ambitious goal is the integration of autonomous, heterogeneous database and
non-database systems into a distributed computing environment. The DOM
(Distributed Object Management) project at GTE Laboratories addresses pre-
cisely these issues. The DOM project has as its goal the development of a
distributed, object-oriented environment in which new (non-traditional) ap-
plications can be developed, and in which autonomous, heterogeneous systems
can be integrated [Manola, 1988 and 1989; Manola and Buchmann, 1990].

A DOM system (Figure 5.1) consists both of native objects that are fully
implemented by Distributed Object Management components of the system,
and of objects that are wholly or partially implemented in heterogeneous at-
tached systems. These attached systems are not limited to database systems,
but may be conventional file systems, hypermedia systems, application pro-
grams, etc. Interaction with an attached system is through objects defined in a
DOM’s Local Application Interface (LAT). Objects from the attached systems
have placeholders defined within the DOM object space. These placeholders
are used for materialization of external data within DOM, data transfer, the
invocation of an application’s functionality on external data, and for global
concurrency control. The LAI objects, when used for concurrency control
purposes, can be treated like any other DOM object. The LATI objects act
as guards for accesses that cross a DOM/attached system boundary. If they
are defined as active objects, they can enforce cross-boundary consistency
concepts.

The same data or functionality may be available at more than one node,
either in exact duplication or in a form that could be considered equivalent
for some purposes. For example, a set of employee records in an employee
database might be equivalent to a corresponding set of employee cards in
a Hypercard stack, if the relevant information can be derived from both).
Similarly, the ability to make a reservation via the attached airline reservation
systems of two airlines might be considered equivalent functionality (if the
flights involved were equally acceptable).

A DOM system creates an environment in which complete applications
can be developed in what appears to be a homogeneous, distributed object
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Schematic representation of a DOM system.
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system, in which all objects are expressed in a common object model, even
though some of the objects actually represent data and functionality of at-
tached heterogeneous systems. In its role of integrator, DOM ensures that
the attached systms retain a high degree of autonomy by maintaining their
behavior, and their local control.

To support non-traditional applications in such an environment, the
DOM system needs a transaction model that is richer than the transaction
models provided by conventional database systems. For the DOM transaction
mechanism we have identified a number of requirements. Some of these re-
quirements have been addressed by various advanced transaction models that
have recently been proposed. The main contribution of the DOM transaction
model that is described here is the integration of solutions to individual re-
quirements within a single uniform transaction model. The requirements we
address are the following:

1. Active capabilities are required for timely response to events and
changes in the environment. This new database paradigm requires
the monitoring of events and the execution of system-triggered ac-
tivities within running transactions.

2. The support of long-running activities spanning hours, days or even
weeks is part of the DOM objectives. Therefore, the transaction
mechanism must support the sharing of partial results. Further, to
avoid the failure of a partial task jeopardizing a long activity, it is
necessary to distinguish between those activities that are essential
for the completion of a transaction and those that are not, and to
provide for alternative actions in case the primary activity fails.

3. DOM activities will require interaction with heterogeneous and au-
tonomous external systems over which DOM may not exert any
control. This requires that the transaction mechanism be able to
deal with activities whose results may become visible and perma-
nent (i.e., committed) before the DOM transaction that spawns
them commits. It also means that the transaction mechanism must
support the execution of compensating actions to undo the effects
of committed subtasks.

4. Since DOM is an object-oriented system, the transaction mecha-
nism must be able to deal with abstract operations. It may even
be possible to improve concurrency by utilizing semantic knowledge
about the objects and their abstract operations.
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We review briefly a few typical applications which illustrate the need for
the capabilities discussed above.

Computer Aided Design (CAD) is an application domain that requires
many of the features envisioned by a DOM system. Existing CAD tools
have evolved as stand-alone systems. DOM acts as the integrator among the
systems, and must provide the necessary mapping mechanisms between the
various representations of an application object. DOM also ensures that the
consistency among multiple representations is kept. This is best done through
the execution of rules [Buchmann and Dayal, 1988; Kotz et al., 1988]. Since
CAD databases are slowly populated as parts of the design become avail-
able, 1t is often necessary to delay consistency checks. Further, two or more
designers often cooperate in producing a design. Therefore, the system has
to allow certain users to see preliminary design data [Bancilhon et al.; 1985;
Buchmann and Perez de Celis, 1985; Katz, 1985]. An integrated CAD system
usually provides for the production of bills of materials and project control
information. The generation of bills of materials and stock control is a typical
database application that requires access to complex objects that consist of
many smaller objects, resulting in the implicit nesting of data accesses [Rosen-
thal and Heiler, 1987]. The project control system, on the other hand, can
benefit from triggers or alerters that signal conditions that arise and auto-
matically produce appropriate actions or alerts.

Another example 1s a bank’s stock brokerage system that receives trad-
ing information over a wire and updates the database. The same system
receives buy and sell orders, which are pegged to stock prices and have expi-
ration dates. One of the critical aspects of such a system is the timeliness with
which i1t can respond to fluctuations in the market. Active databases provide
for monitoring of changes in the database and activation of the appropriate
buy and sell orders. What to monitor and how to respond can be expressed
as rules. The same brokerage system, however, may have to access the cus-
tomer’s bank account to check for availability of funds. In many cases, that
information is kept on a different system. This introduces heterogeneity with
transactions that may have to be split and executed on different systems.

Most transactions in a banking environment, however, are of short du-
ration. In many business applications in which an agent has to interact with
a client and perform operations on the user’s behalf this is not the case.
Consider a travel agency in which an agent is trying to book a trip for a
customer. The travel agent has to set up the trip in the agency’s machine
but has to access a variety of external systems, such as an airline’s or a hotel
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chain’s database. Setting up the trip is a long-running activity which may
span from minutes to several days. The external databases accessed by the
travel agent, however, do not allow the travel agent to block anything for long
time. Instead, they accept a request, process it, and make the effects visible
to everybody. If the long transaction at the travel agency must be aborted
because the customer decides not to travel, the only way to back out is to
execute a compensating transaction that undoes the effects of the completed
part of the transaction. In this case, a cancellation will undo the effects of a
reservation. In this setting, it is unacceptable to cancel the whole trip just
because a subtransaction failed. A travel agent typically deals with contin-
gency plans, 1.e., if a flight is not available, an alternate flight is booked. The
transaction mechanism has to reflect the typical way of doing business; in the
case of the travel agency, by providing for alternative transactions.

To facilitate the development of a transaction model that combines the
required features, we organize previous research on transactions according to a
working taxonomy presented in Section 5. In that section we also show where
a transaction model with the features we identified above fits. In Section 5, we
describe the DOM transaction model, illustrate it with an example, and relate
it to the taxonomy. To eliminate ambiguities and to allow reasoning about a
transaction model, it is necessary to express it in a formal and unambiguous
manner. Therefore, in Section 5 we provide a formal specification using a
transaction metamodel. Section 5 concludes and points out future work.

5.2
A Characterization of Transaction Schemes

The need for more general and powerful transaction models has been
recognized for some time and significant work has been done in extending
the original transaction concept (e.g., [Beeri et al.; 1989; Elmagarmid et al.,
1990; Herlihy, 1990; Garcia-Molina and Salem, 1987; Moss, 1985; Pu et al.,
1988; Weihl, 1989]). Many of the notions encompassed in these extensions are
useful in defining the DOM transaction model, but, at the same time, they
have resulted in a wealth of new concepts, some of which overlap, leave gaps,
or hide incompatibilities that arise from incomparable criteria. Hence, the
combination of existing results into a single transaction model is problematic,
making it difficult to determine whether different transaction mechanisms
used by attached systems (in a DOM setting) are compatible.
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In order to identify the various models that have been proposed, es-
tablish their relationships, and highlight which of the functionalities a DOM
Transaction Management System (TMS) has to provide, we have developed a
taxonomy of transaction mechanisms. This taxonomy characterizes a trans-
action mechanism according to its transaction model, and its correctness cri-
terion. A transaction model, in turn, is characterized by its transaction struc-
ture (the structure of the individual transactions allowed in the model) and
object structure (the structure of objects on which the transactions can oper-
ate).

Transaction models, in one sense, specify the user interface to the TMS.
The user is required to write the transactions according to the model restric-
tions. In another sense, the transaction model determines the capabilities of
the TMS.

The correctness criterion, on the other hand, indicates the notion of
correctness that is employed to achieve a certain degree of concurrency trans-
parency in the system. Full concurrency transparency means that each user
transaction seemingly executes alone in the system, without interference from
other transactions. The implication is that the result of concurrent execution
of transactions should not compromise database consistency. In this con-
text, the correctness criterion employed by a transaction management system
determines the “acceptable” concurrent transaction histories. It is the respon-
sibility of the scheduler to employ the necessary protocols to ensure that the
histories are acceptable with respect to the chosen correctness criterion.

The separation of the transaction model and the correctness criterion
allows us to identify a large number of alternative transaction management
schemes, many of which have not yet been studied. The remainder of this
section concentrates on these two aspects in more detail.

5.2.1 Correctness Criteria
The typical correctness criterion that is used in concurrency control is
serializability. However, there is a need for less restrictive non-serializable
correctness criteria for complex application domains. We briefly review both
types of correctness criteria in this section.

Serializability-Based Correctness Criteria
Serializability requires that any history of concurrent execution of a set
of transactions be equivalent (in some sense) to a serial execution represented
by a serial history. Since (by hypothesis) a serial history does not violate
database consistency, any concurrent execution history that is “equivalent”
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to a serial history (i.e., a serializable history) would also maintain database
consistency and enforce concurrency transparency.

A first differentiation among serializability-based correctness criteria is
introduced by variations in the definition of “equivalence” between histories.
Two types of history equivalence that have been proposed are view equiv-
alence, leading to wview serializability, and conflict equivalence, leading to
conflict serializability. Since determining whether a history is view serializ-
able has been shown to be NP-complete [Papadimitriou, 1986], for practical
reasons we are only concerned with conflict equivalence. Two histories are
conflict equivalent if the relative order of conflicting operations is the same in
the two histories. A history is said to be conflict serializable if 1t is conflict
equivalent to a serial history.

There are a number of serializability-based correctness criteria that ba-
sically differ in how they define a conflict. We concentrate on three criteria
discussed in the literature: commutativity [Weihl, 1988; Weihl, 1989; Fekete
et al., 1989], invalidation [Herlihy, 1990], and recoverability' [Badrinath and
Ramamritham, 1987].

Commutativity states that two operations conflict if the results of the
serial executions of these operations are not equivalent. Consider the simple
operations Read and Write. If nothing is known about the abstract seman-
tics of the read and write operations or the object x that they operate on, it
has to be accepted that a Read on « following a Write on x does not retrieve
the same value as it would prior to the Write. Therefore, a Write operation
always conflicts with other Read or Write operations. The conflict tables
for Read and Write operations are, in fact, derived from the commutativity
relationship between these two operations. Since this type of commutativity
relies only on syntactic information about operations (i.e., that they are Read
and Write), we call this syntactic commutativity.

If the semantics of the operations are taken into account, however, it may
be possible to provide a more relaxed definition of conflict. Specifically, some
concurrent executions of Write-Write and Read-Write may be considered
non-conflicting. Consider, for example, a set object and three operations de-
fined on it: Insert and Delete, which correspond to a Write, and Member,
which tests for membership and corresponds to a Read. Due to the semantics
of of these operations, two Insert operations would commute, allowing them
to be executed concurrently. The commutativity of Insert with Member

1Recoverability as used in [Badrinath and Ramamritham, 1987] is different from the notion
of recoverability found in [Bernstein et al., 1987] and [Hadzilacos, 1988].
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and the commutativity of Delete with Member depends upon whether or
not they reference the same argument and their results?. Semantic commuta-
tivity (e.g., [Weihl, 1988 and 1989]) makes use of the semantics of operations
and their termination conditions. It i1s also possible to define commutativ-
ity with reference to the database state. In this case, it is usually possible
to permit more operations to commute. For example, we indicated that an
Insert and a Member would commute if they do not refer to the same ar-
gument. However, if the set already contains the referred element, then these
two operations would commute even if their arguments are the same.

Invalidation [Herlihy, 1990] defines a conflict between two operations
not on the basis of whether they commute or not, but according to whether
the execution of one invalidates the other or not. An operation p invalidates
another operation ¢ if there are two histories Hy and Hs such that Hyepe H-
and Hie Hoeq are legal, but H,epe Hoeq is not. In this context, a legal history
represents a correct history for the set object and is determined according to
its semantics. Accordingly, an invalidated-by relation is defined consisting
of all operation pairs (p,q) such that p invalidates ¢. The invalidated-by
relation establishes the conflict relation that forms the basis of establishing
serializability. Considering the same example as above, an Insert cannot be
invalidated by any other operation, but a Delete can be invalidated by an
Insert if their arguments are the same.

Recoverability [Badrinath and Ramamritham, 1987] is another conflict
relation that has been defined to determine serializable histories. Intuitively,
an operation p is said to be recoverable with respect to operation ¢ if the
value returned by p is independent of whether ¢ executed before p or not.
The conflict relation established on the basis of recoverability seems to be
identical to that established by invalidation. However, this observation is
based on a few examples and there 1s no formal proof of this equivalence. As
we indicate in Section 5, the relationship of these criteria has to be established
more precisely.

Non-Serializable Correctness Criteria

Serializability requires that the execution of each transaction must ap-
pear to every other transaction as a single atomic step. This requirement
may be unnecessarily strong for many applications. The semantic informa-

?Depending upon the operation, the result may either be a flag that indicates whether the
operation was successful (for example, the result of Insert may be “OK") or the value that

the operation returns (as in the case of a Read).
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tion about transactions and the objects that they operate on can be used to
weaken serializability and achieve a higher level of concurrency.

There have been a number of proposals along these lines. All depend
upon establishing how transactions can interfere with each other between
steps, which may consist of a single operation or a collection of operations.
In [Garcia-Molina, 1983] transactions are grouped into disjoint classes such
that the transactions that belong to the same class are compatible and can
interleave arbitrarily, whereas transactions that belong to different classes
are incompatible and cannot interleave at all. Early use of the concept of
transaction classes can be found in SDD-1 [Bernstein et al., 1980].

The concept of compatibility is refined in [Lynch, 1983] and several levels
of compatibility among transactions are defined. These levels are structured
hierarchically so that interleavings at higher levels include those at lower lev-
els. Furthermore, [Lynch, 1983] introduces the concept of breakpoints within
transactions which represent points at which other transactions can interleave.
This is an alternative to the use of compatibility sets.

Another work along these lines is [Farrag and Ozsu, 1989] which uses
breakpoints to indicate the interleaving points, but does not require that
the interleavings be hierarchical. A transaction i1s modeled as consisting of
a number of steps. FEach step consists of a sequence of atomic operations
and a breakpoint at the end of these operations. For each breakpoint in a
transaction the set of transaction types that are allowed to interleave at that
breakpoint 1s specified. A correctness criterion called relative consistency is
defined based on the correct interleavings among transactions. Intuitively, a
relatively consistent history is equivalent to a history that is stepwise serial
(i.e., the operations and breakpoint of each step appear without interleaving),
and in which a step (T}) of transaction T interleaves two consecutive steps
(Tjm and T,y ) of transaction T only if transactions of T;’s type are allowed
to interleave T}, at its breakpoint. It can be shown that [Farrag and Ozsu,
1989] some of the relatively consistent histories are not serializable, but are
still “correct.”

Another class of non-serializable correctness criteria has been defined
in the context of multidatabase systems. In these systems there are two
classes of transactions: local transactions are accepted directly by the individ-
ual, autonomous component DBMSs, and global transactions access multiple
databases. This requires a two-level transaction mechanism. Each individual
DBMS manages its local transactions together with the subtransactions of
global transactions that are submitted to it, and the multidatabase software
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maintains the correctness of the global transactions. There has been some sug-
gestion that the serializability theory may be inappropriate for multidatabase
transactions since it does not differentiate between global and local transac-
tions, thereby restricting the set of acceptable histories. Consequently, quasi-
serializability [Du and Elmagarmid, 1989] and multidatabase serializabilily
[Barker and Ozsu, 1990] have been proposed as non-serializable correctness
criteria for multidatabase environments. Both of these are equivalent and,
in effect, require that all of the local histories be serializable and the global
history be conflict-equivalent to a serial one. It has been shown that the set
of quasi-serializable (or multidatabase serializable) histories is a superset of
conflict-serializable histories.

The notion of serializability and other correctness criteria have proven
useful to describe the behavior of transactions. However, they encapsulate a
variety of behaviors and only allow us to state whether a transaction system
does guarantee a certain behavior as a package, i.e., the schedules produced
by a system are either serializable or not. In many situations it is useful to
look “under the covers” and distinguish the various aspects that influence the

behavior of a transaction system?

. Such an attempt is the characterization
of transactions by the so-called ACID properties, which stand for atomicity,
consistency, isolation, and durability [Harder and Reuter, 1983]. A similar
categorization, using as the four basic dimensions wvisibility, failure atomic-
ity, permanence, and consistency is used in [Chrysanthis and Ramamritham,
1990] as the basis of the ACTA transaction metamodel. We use that meta-
model to describe our transaction model in Section b, where we also summarize
the metamodel.

Most of the correctness criteria that have been proposed as alternatives
to serializability relax the isolation or visibility restrictions. This results in
side-effects on failure atomicity. In heterogeneous and autonomous systems,
we submit, the notion of consistency will also have to be revised to con-
sider such issues as the locality of consistency (i.e., for which (sub)systems
consistency must be enforced), the level of consistency supported by the
(sub)systems, and the timeliness of enforcement. However, we do not address
those issues here.

3 An analogy between the relational calculus and the relational algebra may illustrate this.
Although the calculus is powerful as an abstract notation, it must be mapped into algebraic
expressions as the basis for actual operation. In the same way, an operational specification
of a transaction mechanism’s behaviorin terms of the properties that actually can be relaxed
is more practical than a closed correctness criterion when deriving new correctness notions

and when integrating existing systems.
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5.2.2 Transaction Models

As we discussed in Section 5, the requirements of new application do-
mains demand richer transaction models. These richer transaction mod-
els have to be connected to some correctness criterion to derive a concur-
rency control algorithm. Furthermore, transaction management design deci-
sions have to be made to develop full-fledged transaction management sys-
tems. These design decisions are related to systems issues such as distributed
versus centralized control, optimistic versus pessimistic concurrency control
schemes, update scheme (deferred/immediate, in-place/private copy), the re-
covery methods, etc. In this section we do not address all these issues, but
restrict our discussion to the model aspects.

There have been many advanced transaction model proposals in the lit-
erature, which we classify along two dimensions: the transaction structure
and the structure of objects that they operate on. A few representative alter-
natives are depicted in Figure 5.2. We discuss the basic ideas behind those
approaches and the classification in the remainder of this section. As noted
earlier, not all of the possible alternatives have been studied. Most of the
existing work has been concentrated on models located close to one of the
two axes. The requirements for DOM indicate a need for a transaction model
that resides at the upper right hand corner.

Object Structure

Along the object structure dimension, we identify simple objects (e.g.,
files, pages, records), objects as instances of abstract data types (ADTs), com-
plex objects, and active objects in increasing complexity.

Current transaction management systems operate on simple objects,
mostly on physical pages. There have been suggestions for providing con-
currency at the record level, but the overhead involved is high. The charac-
terizing feature of this class is that the operations on simple objects do not
take into account the semantics of the objects. For example, an update of
a page is considered a write on the page, without considering what logical
object is stored on the page.

Abstract data types are programming language constructs that encap-
sulate the representations of a set of objects and a set of operations on these
objects. The operations are the only means of accessing and manipulating
the objects. From the perspective of transaction processing, ADTs introduce
a need to deal with abstract operations. The operations of transactions that
execute on ADTs are not simple reads and writes, but are more abstract, such
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Representation of transaction model space and examples. The labels for the refer-
ences are given following each citation in the Bibliography.
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as Imsert, Delete, and Member for a set object. The execution of transac-
tions on ADTs require a multi-level mechanism [Beeri et al., 1988; Weikum,
1991]. In such systems, individual transactions represent the highest level
of abstraction. The abstract operations constitute a lower level of abstrac-
tion and are further decomposed into simple reads and writes at the lowest
level. The correctness criterion, whatever it is, has to be applied to each level
individually. In addition, abstract operations lend themselves nicely to the
incorporation of their semantics into the definition of the correctness criterion,
as we discussed above.

We make the distinction between objects as instances of abstract data
types and complex objects to note that the latter have a complex struc-
ture (i.e., contain other objects) and their types participate in an inheritance
lattice?. These are objects as found in object-oriented systems. They need to
be treated separately due to of a number of considerations:

1. Running a transaction against one object may actually spawn ad-
ditional transactions on component objects. This forces an implicit
nesting [Badrinath and Ramamritham, 1988] on the transaction it-
self (as opposed to explicit nesting that we discuss below). More
importantly, the operations in these nestings are themselves ab-
stract and need to be handled as multilevel transactions.

2. Inheritance involves sharing of state and/or behavior among ob-
jects. Therefore, the semantics of accessing an object at some level
in the lattice has to account for this.

We also distinguish between passive and active objects. Although the
concept of active objects is just emerging, all proposals have in common that
active objects are capable of responding to events by triggering the execution
of actions when certain conditions are satisfied. The events that are to be
monitored, the conditions that have to be fulfilled, and the actions that are
executed in response are typically defined in the form of event-condition-
action (ECA) rules [Dayal et al., 1988; Kotz et al., 1988]. Since events may
be detected while executing a transaction on that object, the execution of the
corresponding rule may be spawned as a nested transaction. Depending on
the manner in which rules are coupled to the original transaction, different

4Strictly speaking, abstract data types can have complex structures. However, the transac-
tion work on abstract data types has consistently assumed a “simple” ADT structure. Our
reference to “objects as instances of ADTs” should be understood within this context and

with this qualification.
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nestings may occur [Hsu et al., 1988]. The spawned transaction may execute
immediately, 1t may be deferred to the end of the transaction, or it may
execute in a separate transaction. Since additional rules may fire within a
rule execution, nestings of arbitrary depth are possible.

Transaction Structure
Along the transaction structure dimension, we distinguish flat transac-

tions, closed nested transactions as in [Moss, 1985], and open nested trans-
actions such as sagas [Garcia-Molina and Salem, 1987], and combinations of
these forms, in increasing order of complexity.

Flat transactions [Eswaran et al., 1976] are those that have a single start
point (Begin_transaction) and a single termination point (End_transaction).
Most of the transaction management work in databases has concentrated on
flat transactions that operate on simple objects and use serializability as their
correctness criterion. [Bernstein et al., 1987] is an excellent discussion of this
work. [Herlihy and Weihl, 1988; Herlihy, 1990; Weihl, 1988; Weihl, 1989] in-
volve flat transaction models operating on ADTs and [Badrinath and Ramam-
ritham, 1987; Badrinath and Ramamritham, 1988] deal with flat transactions
on complex objects. All of these use serializability-based correctness criteria,
but differ in the way they define the conflict relation. On the other hand,
[Garcia-Molina, 1983; Lynch, 1983; Farrag and Ozsu, 1989] discuss the appli-
cation of flat transactions to simple objects using non-serializable correctness
criteria. All represent studies that go along the vertical axis in Figure 5.2.

A nested transaction includes other transactions with their own begin-
ning and termination points. In this taxonomy, we differentiate between closed
and open nesting because of their termination characteristics. Closed nested
transactions [Moss, 1985] commit in a bottom-up fashion through the root.
The semantics of these transactions enforce atomicity at the top-most level.
Significant work has been done in establishing the concurrency control as-
pects of closed nested transactions which use a serializable correctness crite-
rion [Beeri et al., 1989]. Closed nesting for ADTs was reported in [Fekete et
al., 1989]. A variant of closed nesting with the possibility of making partial
results selectively available to other transactions that are tightly structured
into a transaction type hierarchy of transactions is discussed in [Bancilhon
et al., 1985]. Closed nesting derived from the firing of rules occurs in active
database systems. Representative approaches are [Hsu et al., 1988; Kotz et
al., 1988, Stonebraker et al.; 1990b]. They appear staggered in Figure 5.2,
because Postgres [Stonebraker et al., 1990b] provides only for immediate eval-
uation of a single rule. The triggering transaction is halted until the triggered
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transaction completes execution. This is a very primitive type of nesting that
has the behavior of a flat transaction. The most general approach is that
taken by HiPAC [Hsu et al., 1988], which allows for arbitrarily deep nesting
with immediate evaluation, evaluation at the end of the triggering transac-
tion, or as a separate transaction, thus providing a form of execution outside
the closed nesting. In all cases, serializability is the underlying correctness
criterion.

Open nesting relaxes the top-level atomicity restriction of closed nested
transactions. Therefore, an open nested transaction allows its partial results
to be observed outside the transaction. Sagas [Garcia-Molina and Salem,
1987; Garcia-Molina et al., 1990] and split transactions [Pu et al., 1988] are
examples of open nesting.

Finally, we identify those transaction models that incorporate both open
and closed nesting [Elmagarmid et al., 1990; Nodine and Zdonik, 1990]. The
model proposed in [Elmagarmid et al., 1990] allows for combination of com-
pensatable and non-compensatable transactions on simple objects in a multi-
database environment. It also includes the notion of alternative transactions,
and factors time into its correctness criterion. DOM’s transaction model
[Manola and Buchmann, 1990] is a model that combines closed and open
nesting with contingency transactions and executes on complex and active
objects. In the remainder we describe it in more detail.

5.3
The DOM Transaction Model

The DOM transaction model consists of building blocks from which more
complex transactions can be constructed. Depending on the requirements of
the applications, the transaction model can behave as a conventional flat
transaction model, it can behave like a transaction model that allows for
closed nesting and the execution of triggered processes, or it can be used in
its most powerful and flexible form by defining combinations of closed and
open nestings.

In this chapter we address the behavior of the DOM transaction model as
it applies to a homogeneous, distributed object space. The local application
interface (LAI) objects which act as gateways to the attached systems are
part of this homogeneous object space, and the transaction model with all
its features applies to them. However, we do not address in this chapter the
coordination with external systems, other than by issuing subtransactions in
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an open nested fashion. This is an aspect that requires further research.

In DOM, we call the closed nested transactions topiransactions. Flat
transactions are a degenerate case of toptransactions. A toptransaction is any
transaction that makes its results visible to the entire system when it com-
mits. Toptransactions can be combined into multitransactions that have some
global transaction semantics but permit partial results to be visible outside
the multitransaction. The component transactions of a multitransaction may
be either wital or non-vital [Garcia-Molina et al., 1990]. If a vital transaction
aborts, its parent must abort.

These basic building blocks can be used further to define specialized
subtransactions. As soon as the visibility rules are relaxed and partial results
become visible before the multitransaction commits, i1t becomes necessary to
define compensating transactions. Compensating transactions are the logical
equivalent of a rollback in a multitransaction and are defined to undo already
committed partial results. Contingency transactions are transactions that are
executed if the primary transaction fails. They provide alternatives that may
be equivalent but potentially of lesser quality or less desirable.

5.3.1 Example of a DOM Transaction

With the basic building blocks introduced, we examine an example be-
fore describing in more detail the components of the DOM transaction model
and their semantics. The example is presented using a graphical notation
meant for interactive construction and visualization of complex transactions.
We will be using a variation of the travel reservation example [Elmagarmid et
al., 1990], which is rapidly becoming the example of choice.

Figure 5.3 shows a DOM transaction designed to access an internal
database as well as various external databases. It shows a trip plan that
is set up as a multitransaction (denoted by a rectangle) and has as its first
action a component transaction for opening a new account and defining the
itinerary. This initial toptransaction (marked by a rounded rectangle) trig-
gers the rules for preferences the customer might have, as well as his credit
card information. The preferences are retrieved as triggered subtransactions
(marked as ovals) of the first toptransaction.

Next, two toptransactions are shown, to get a flight on United as the
first option, and to get an equivalent flight on American, as the second option.
Consider the transaction that makes a reservation on a United flight. It auto-
matically triggers the rule for the frequent flyer information as a nested sub-
transaction. Because a flight reservation becomes visible once the toptransac-
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tion commits it requires a compensating transaction to cancel the reservation
in case the multitransaction aborts. If the reservation on United fails, a con-
tingency transaction is invoked to attempt a reservation on American. It is
only invoked if the primary option fails. If the contingency transaction also
fails, the multitransaction should abort, since the flight-reservation is a vi-
tal transaction (marked by the double outline). Notice that the transaction
to rent a car 1s not vital, since one might always use a taxi instead. It is
only executed in case the first choice fails. Precedence dependencies may be
specified between components of a multitransaction. For example, the flight
reservation should always precede the car and hotel reservations.

5.3.2 Multitransactions

Multitransactions are defined for long-running activities and access to
external databases over which the DOM cannot exert full control. Multitrans-
actions have the abort and commit properties of a transaction, but different
visibility rules. Transactions within a multitransaction are allowed to com-
mit individually, and to make their results visible outside the scope of the
multitransaction. The transactions within a multitransaction are either other
multitransactions or nested toptransactions. Any toptransaction in a multi-
transaction must have a compensating transaction defined for it. In our ex-
ample, the Trip Plan is a multitransaction with five toptransactions (Open
Account, Get Flight, Rent Car, Reserve Hotel, and Generate Bill).

When a multitransaction aborts, it causes all its component transactions
to abort. If a component transaction has already committed, a compensating
transaction is invoked. Conversely, if a component transaction aborts, the
multitransaction must abort if the component transaction is vital, or it may
continue execution if the component transaction is not vital. This is explained
in Section b.

Transactions within a DOM multitransaction are assumed to be exe-
cutable in parallel, unless specified otherwise through a precedence constraint
(for example, between Get Flight and Reserve Car). Precedence con-
straints are viewed as a user-level mechanism for specifying sequential behav-
ior.

Precedence constraints can have different meanings. The first inter-
pretation is that the subsequent cannot start execution before the precedent
commits (begin precedence used in sagas). Another possible interpretation
is that the subsequent cannot commit until the precedent commits (commit
precedence used in HiPAC’s causally dependent transactions).
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Both interpretations can be expressed through rules if the rule mecha-
nism provides for event composition. To express the serial, non-parallelizable
case the triggering event for the second transaction has to contain the commit
of the precedent.

If the flow of execution is specified without the help of rules and no strict
begin dependencies have to be enforced, then commit precedence will provide
the same effect as begin precedence. In the case where transactions ordered
by a precedence constraint perform no accesses to common data, they are
indistinguishable. In case of common data accesses, commit dependence will
delay the subsequent’s commit and abort/reexecute it if there is a conflict
over data with the precedent. Given the distributed, heterogeneous nature
of a full-fledged DOM 1t is possible that individual component transactions
of a multitransaction may be delayed for considerable time. An approach
that calls for sequential execution of component transactions could result in
unnecessary delays. Therefore we opted for commit precedence as the default
with begin precedence specifiable through rules.

5.3.3 Nested Transactions

A toptransaction is the root of a tree of closed nested transactions
through which the whole tree commits. If no confusion is possible within
a context, we refer to the whole nested transaction tree by the name of the
corresponding toptransaction. Nested transactions can be defined either ex-
plicitly by the user, or they can result from the firing of rules while execut-
ing another transaction (for example, the firing of rules specifying customer
preferences and credit information while executing Open Account). The
structure of a nested transaction that results from the firing of a rule within
another transaction depends on the coupling mode defined for the rule. The
valid coupling modes are immediate, deferred, detached, or causally dependent
detached [Hsu et al., 1988; Chakravarthy et al., 1989].

Immediate and deferred rule execution results in a nested transaction.
In the case of immediate coupling, the subtransaction is executed at the point
of the spawning transaction where the event was detected. Deferred coupling
causes execution of the subtransaction at the end of the transaction but prior
to commit.

Detached execution of the condition and/or action part of a rule results
in another transaction that is parallelizable without any commit dependencies.

Causally dependent detached execution results in a parallelizable sub-
transaction (called CDTop in [Chakravathy et al., 1989]) with a commit de-
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pendency on the spawning transaction. CDTop transactions are serialized like
independent transactions that can see only the latest committed state of the
database, i.e., they cannot see changes made by the spawning transaction. If
they can proceed in their evaluation in parallel with the spawning transaction,
that is an optimization. If they acquire locks later required by the spawning
transaction, the CDTop transaction is always the victim and the visibility
semantics are preserved.

5.3.4 Compensating Transactions

Each toptransaction within a multitransaction has a compensating trans-
action defined for it, e.g. Cancel Car is the compensating transaction for
Rent Car. A compensating transaction i1s a transaction with the opposite
effect of an already committed transaction. It is intended to undo the visible
effects of a previously committed transaction. Open nesting should be used
only if it is possible to define an appropriate compensating transaction for
each toptransaction in a multitransaction.

When a multitransaction must be aborted, the currently active trans-
actions within the multitransaction are aborted, while the committed trans-
actions are compensated. Compensation order i1s the inverse of the com-
mit order®. There exists a begin dependency between a toptransaction and
its compensating transaction. This begin dependency is comparable to the
strict precedence constraint discussed above. A compensating transaction may
never start unless the transaction that has to be compensated has previously
committed.

Rules complicate the definition of compensating transactions. In the
DOM model, rules are “attached” to objects. Therefore, any transaction may
fire an arbitrary number of rules. Since the user is not aware of all the rules
that might have fired, we define compensation in a system with rules strictly
as the semantic inverse of the user-specified transaction. If any rules were
triggered by the initial action, for example, constraint or security rules, the
proper rules will also fire when executing the compensating transaction. We
part from the assumption that in a correctly designed objectspace each rule
that modifies the state of the objectspace also has a compensation defined for
it®.
5We have to investigate conditions under which it is safe to relax the requirement of having
compensation in reverse commit order, i.e. to compensate in some other order.

6 There exists a strong relationship between the rule- and the execution models. If rules

are introduced and new couplings between the user-submitted transactions and system-
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5.3.5 Contingency Transactions

Transactions within DOM can also have contingency transactions asso-
ciated with them. In our example, Reserve Hotel Hilton is the contingency
transaction for Reserve Hotel Sheraton. A contingency transaction is in-
voked upon the occurrence of some failure condition and before commit of the
transaction for which it is an alternative. It is intended to accomplish a similar
goal as the original transaction, as opposed to the compensating transaction
which is intended to undo a committed (sub)transaction. The DOM transac-
tion model makes a clear distinction between compensating transactions and
contingency transactions. While compensating transactions can be viewed as
a special case of contingency transactions, their semantics are sufficiently dif-
ferent to warrant their distinction in the model. One of the main differences
is that contingency transactions may abort like any other transaction. Failure
of a compensating transaction requires special exception handling, the default
being human intervention.

The notion of failure condition is difficult to define. It could range from
the abort of a transaction to its termination but without accomplishing its
intended task. For example, a reservation transaction may execute correctly
but it cannot book a seat because none is available, or even more subtly,
because none is available in the desired class or fare-category. Therefore, each
transaction that defines a contingency transaction must also define its failure
condition(s), and the contingency transaction has to include the definition of
the proper triggering event.

Two possible ways of modeling the notion of “contingency plans” as
transactions are possible. A simple structure requires just one contingency
transaction for a toptransaction. If the toptransaction fails, the contingency
transaction is invoked, which may in turn have its own contingency transac-
tion.

In the more general case, a transaction can have multiple contingency
transactions associated with it. The order in which the contingency trans-
actions are executed is determined by the definition of the triggering events.
For example, a transaction could have one contingency transaction defined
for the case that a resource is not available (if Sheraton has no rooms make

triggered tasks are introduced, the execution model has to be extended to account for it, as
demonstrated by HIPAC. Similarly, if the execution model is extended to account for new
processing strategies, such as externally visible subtransactions and compensation, then
the rule system has to be extended to accommodate the added flexibility of the transaction

model.
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a reservation with Hyatt), and another in case the deadline for execution is
missed.

It is left to the user to model contingency transactions in the man-
ner most natural to the user or the application’s semantics. A contingency
transaction always takes the place of the failed transaction in any transaction
structure and inherits its properties, such as being vital.

5.3.6 Vital and Non-vital Transactions

Transactions that are specified as component transactions of another
transaction may be either wvital or non-vital. This distinction was first intro-
duced in [Garcia-Molina et al., 1990]. A vital transaction must be executed
successfully (i.e. it has to commit) for its parent transaction to commit. A
non-vital transaction may abort without preventing the parent transaction
from committing. In the example, Get Flight and Reserve Hotel are vital,
while Rent Car is not.

5.4
Formal Specification of the Model

To eliminate ambiguities, to allow analysis and further reasoning about
our transaction model, and to facilitate its comparison with other models, it 1s
necessary to express the model in a formal manner. In this section, we define
the operational semantics of the DOM transaction model, using the ACTA
transaction metamodel. We present first in Section 5 a brief summary of
the formalism, but refer to [Chrysanthis and Ramamritham, 1990] for detail.
The specification of our transaction model is then presented in four parts:
the specification of the semantics of multitransactions and their component
transactions (open nesting) in Section 5, the nested structure of the compo-
nent transactions (closed nesting) in Section 5, the semantics of contingency
transactions in Section 5, and compensating transactions in Section 5. For
each part of the specification, we present the formal notation followed by a
brief textual explanation of the formalism.

5.4.1 Summary of the ACTA Formalism

The ACTA framework is a notation for formal specification and analysis
of transaction models. The basic concepts of this framework are:
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A transaction model is characterized by the interactions of objects and
transactions. Each object has a state and a status. The state represents
an object’s value; the status contains concurrency control information.

Fach transaction T has a view set (denoted as ViewSety) which is the
set of objects potentially visible to it, and an access set (denoted as
AccessSetp ), which is the set of all objects accessed by a transaction.
No distinction is made in the access set between read and write accesses.

Transactions may relinquish objects that belong to their access set via
delegation. A transaction may delegate the state or the status of objects
in 1ts access set. In delegation of state, partial results become visible
to other transactions. In delegation of status, the modifications of the
delegator are undone before the objects are added to the access set of
the delegate.

Transactions interact with each other through comm:t and abort depen-
dencies:

Commit dependencies: If A ~ B (A develops a commit depen-
dency on B) then transaction A cannot commit until transaction
B either commits or aborts.

Abort dependencies: If A — B (A develops an abort dependency
on B) and transaction B aborts, then transaction A also must
abort.

Abort/compensation dependencies: If A = B (A develops an abort
or compensation dependency on B) and transaction B aborts, then
transaction A must abort or be compensated. For the sake of clar-
ity we make the distinction between abort and abort/compensation
dependencies, although this is not part of the original ACTA model”.
The above dependencies can be restricted by making them exclu-
sive (e.g., L) meaning that the dependency can only be established
with one transaction, thus representing a hierarchical structure of
dependencies, or they may be transitive (e.g., i>) meaning that the
dependency, in this case an abort dependency, is on the transitive
closure of that particular type of dependency starting at A.

"We later introduce another extension, exclusion dependencies, which are needed for mod-

eling contingency transactions.



5.4 Formal Specification of the Model 25

e The compatibility table of an object specifies the dependencies formed
by the interactions of an object’s operations and encodes its synchro-
nization properties. An (0;, ;) entry may be a condition involving
completion dependencies, operation arguments and results. Example
entries might be wait, abort, notify, form_x_dependency, etc.

5.4.2 Multitransactions

The following specifications formally describe the semantics of multi-
transactions.

Commit Dependencies for Multitransactions:
M ~T

This means that the multitransaction M has a commit dependency on
all its active component transactions 7. An active component transaction
has neither committed nor aborted. This specification applies between two
levels in the transaction structure, but can be applied recursively in the case
of nested multitransactions. Among the possible contingency transactions
for any given component transaction, only the first for which the triggering
condition is true will be executed. Contingency transactions are not active
unless the primary transaction failed.

Abort Dependencies for Multitransactions:
VI'eV MZT

This means that the multitransaction M aborts if any of the vital com-
ponent transactions aborts.

Ve VUNV) T=M

This abort/compensation dependency means that all vital and non-vital
transactions of a multitransaction M are aborted or compensated if M aborts.
The dependencies of the compensating transactions are specified below. Note
that independent transactions are not affected. The exclusive property reflects
the fact that each component transaction can only belong to one multitrans-
action M.
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Compensation is understood as in sagas. If M aborts while executing T;
then the compensation order 1s Cj_1,...,Cy. Given the more general notion
of commit dependencies in DOM versus begin dependencies in sagas, the
compensation order is also specified as the inverse of the commit order.

A transaction 7' may be nested. If the nesting is due to user definition,
it is the user’s responsibility to define the compensating transaction such that
the nesting is considered. If the nesting is due to rule firing and the fired rules
are compensatable, then the system will fire the corresponding compensation
rules.

Visibility Rules for Multitransactions:
Vi'e M ViewSety = DB

This means that the view set for each component transaction of a mul-
titransaction M is the whole database.

5.4.3 Nested Transactions

Each component transaction of a multitransaction M can itself be a
multitransaction or a nested toptransaction. Nested multi-transactions are
defined recursively as above. Nested toptransactions are defined below.

Commit Dependencies for Nested Toptransactions:
YO T~C

This means that T' (the top level of a nested transaction) cannot commit
until all its children €' commit or abort. The set of transactions C'is composed
of all transactions that are coupled via an immediate or deferred coupling
mode.

YCDTop CDTop~T

This means that the causally dependent transactions that were spawned
by a transaction 7' cannot commit until 7' commits or aborts (this case is
restricted further through the abort dependency specified below to ensure
that T commits before any C'DTop can commit).
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Abort Dependencies:
vo i T

This means that all the children C' (i.e., immediately and deferred-
coupled subtransactions) should be aborted if the parent transaction 7" aborts.

YCDTop 2 T

This means that all causally dependent top transactions should abort
if the parent (or spawning) transaction aborts. It also specifies that each
C'DTop transaction depends exclusively on one spawning transaction.

Visibility Rules:
The visibility rules are expressed via the ViewSet:

VO ViewSete = {UAccessSelp | C = P}UDB

where U is an ordered union that has the effect that a child transaction gets to
see the latest version accessible to its parent rather than the original version.
This is the classic rule of visibility in nested transactions. The children can
view the partial results of their ancestors, the partial results of their commit-
ted siblings, plus any results from committed detached transactions.

Delegation Specification:
The delegation specification for the nested subtransactions is:

VC'  DelegateSetsiqre (C, P) = AccessSete

The delegation specification states that, at commit, the child transac-
tion’s objects are delegated to the parent transaction. This delegation makes
the effects of committing child transactions selectively visible to the parent
and the parent’s other descendants.

5.4.4 Contingency Transactions

Commit Dependencies for Contingency Transactions:

The commit dependency between a transaction and its contingency
transaction K is one of exclusion. We introduce the notion of an ezclusion
dependency:
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DEFINITION

A transaction B has an exclusion dependency on A, A+ B, if B may
not commit in the case that A has already committed.

For all transactions 7" in DOM for which a contingency transaction is
specified the commit dependencies are:

VT A K

If T and K execute in a common environment, i.e. under the control of
the same transaction manager so that K can be aborted at any time, a commit
dependency is enough. If K executes under the control of a separate trans-
action manager, for example in an external repository, then the dependency
has to be a begin dependency.

The commit dependency between K and its multitransaction is the same
as for any other transaction.

Abort Dependencies for Contingency Transactions:

There are no abort dependencies between the original transaction 7" and
its contingency transaction K. The abort dependencies between the transac-
tion A and the multitransaction it executes in are the same as between any
member transaction.

Visibility Rules for Contingency Transaction:
The view set of a contingency transaction is exactly the same as that of
the transaction it replaces.

Delegation for Contingency Transactions:
No delegation occurs between a transaction and its contingency transaction®.

5.4.5 Compensating Transactions

The semantics of the compensating transactions is defined by the fol-
lowing specifications.
Commit Dependencies for Compensating Transactions:

8In case we want to change this specification, it would have to be a delegation of status,
namely, the passing of objects from T'’s access set to K's access set after undoing all changes

to the transferred objects, given that we consider that T failed.
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Compensating transactions cannot begin executing unless the transac-
tion they are compensating has committed. This i1s a strictly serial begin
dependency.

Compensating transactions also have an exclusion dependency on the
multitransaction of which the transaction to be compensated is a part.

YOT M A CT

This means that a compensating transaction C'T" cannot execute if the
multitransaction committed.

Abort Dependencies for Compensating Transactions:
vi'eM CT'=T

This means that any compensating transaction has meaning only if T
the transaction that is to be compensated, commits. If 7" aborts, then CT is
never enabled.

Visibility Rules for Contingency Transaction:
The view set of a contingency transaction is the latest committed state
of the database.

Delegation for Contingency Transactions:
No delegation occurs among a compensating transaction and other trans-
actions.

5.5
Conclusions and Future Work

We described the transaction model for the DOM system. DOM is a
distributed active object system that promotes interoperability among het-
erogeneous systems, and provides object management support for complex
applications. Because of the variety and complexity of the applications DOM
intends to support, the transaction model needs to be powerful. We illus-
trated this by means of a few examples in Section 5. The relative power
of our transaction model vis a vis other models can easily be seen from the
taxonomy we present in Section 5. The development of this framework, even
though preliminary, is an additional contribution of this chapter.
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The main points of the DOM transaction model are:

It 1s a complete, distributed, object-oriented transaction model that
combines in a single model the capability of handling open nesting,
closed nesting, both explicitly and as a result of handling active objects,
and contingency transactions.

It is tailorable and can provide as much flexibility as is required by the
applications.

It can use the LAI objects as concurrency control placeholders for ex-
ternal repositories.

There are many issues of the DOM transaction model that require fur-

ther investigation. Some of the more important are:

Even though we formulated our model in terms of the ACTA formaliza-
tion, a correctness theory for it is yet to be developed. The execution
semantics of the transactions certainly points to a non-serializable cor-
rectness criterion, but the formalization has not yet been attempted.

Our transaction model has yet to deal with many of the recovery rami-
fications. This 1s closely related to the determination of the correctness
criterion, as pointed out by [Weihl, 1988 and 1989]. We are currently
examining architectural issues, such as update policy, to determine their
impact on the whole transaction system.

We have, so far, not relaxed the notion of consistency beyond what
results from relaxed visibility constraints among transactions. For the
full heterogeneous system, new notions of consistency must be defined.
Relaxations along the lines of locality or timeliness of consistency en-
forcement must be formalized.

Transactions in the DOM model are first-class objects. We started ex-
pressing the transaction model in terms of the ECA rules that are an
integral part of the DOM object model. If successful, we expect to have
a system that uses the same rule mechanism to enforce consistency and
transaction execution.

Temporal dependencies among transactions are not currently captured
by the DOM transaction model. In order to satisfy such dependencies,
new correctness criteria and mechanisms for enforcing them have to be
developed.
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In addition to the DOM transaction model per se, there are a number
of issues that need to be worked out. The first issue is to determine whether
the framework of our taxonomy is complete and minimal. In our view, an
equally important issue concerns the correctness criteria classification, espe-
cially the relationship between the various serializability-based definitions.
Each of the proposals claim to provide “more concurrency” than some other
criterion. However, there is no formal and comparable definition of “level
of concurrency.” It is not clear how to incorporate the ultimate measure of
performance, throughput, into these formal models. Furthermore, our initial
attempt to establish a “containment” relationship between conflict relations
has not proven successful. Such a containment relationship is necessary to be
able to assert the compatibility of schedules based on different conflict rela-
tionships. Conflicting results exist. On the one hand, the set of serializable
schedules obtained using recoverability and invalidation under certain condi-
tions seem to be equivalent. On the other hand, invalidation (as in [Herlihy,
1990]) and semantic commutativity (as in [Weihl, 1989]) appear to be incom-
parable. This contradicts the claims in [Badrinath and Ramamritham, 1988]
that all commutative schedules as defined in [Weihl, 1989] are recoverable.
The available results suggest a lattice of correctness criteria rather than a
linear containment.
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