
DISTRIBUTED DATABASE SYSTEMS: WHERE ARE WE NOW?

M. Tamer Özsu†
GTE Laboratories Incorporated

40 Sylvan Road
Waltham, MA 02254

mto@gte.com

Patrick Valduriez
INRIA, Rocquencourt

78153 Le Chesnay
France

patrickv@madonna.inria.fr

ABSTRACT

Distributed database technology is expected to have a significant impact on data processing in the
upcoming years. With the introduction of commercial products, expectations are that distributed
database management systems will by and large replace centralized ones within the next decade. In
this paper, we reflect on the promises of distributed database technology, take stock of where we
are, and discuss the issues that remain to be solved. We also highlight new research issues that
arise with the introduction of new technology and the subsequent relaxation of some of the
assumptions underlying current systems.

Keywords: distributed database, data distribution, transaction management, distributed query
processing, object-oriented system, knowledge base, multidatabase system.

Appeared in IEEE Computer, Vol. 24, No. 8, August 1991.
† On leave from Department of Computing Science, University of Alberta, Edmonton, Canada T6G 2H1; email:
ozsu@cs.ualberta.ca.

-1-

1. INTRODUCTION

Distributed database technology is one of the more important developments of the past decade.
During this period, distributed database research issues have been topics of intense study, culmi-
nating in the release of a number of “first generation” commercial products. Distributed database
technology is expected to impact data processing the same way that centralized systems did a
decade ago. It has been claimed that within the next ten years, centralized database managers will
be an “antique curiosity” and most organizations will move toward distributed database managers
[1, page 189].

The technology is now at the critical stage of finding its way into commercial products. At this
juncture, it is important to seek answers to the following questions:

1. What were the initial goals and promises of the distributed database technology? How do
the current commercial products measure up to these promises? In retrospect, were these
goals achievable?

2. Have the important technical problems already been solved?

3. What are the technological changes that underlie distributed data managers and how will
they impact next generation systems?

The last two questions hold particular importance for researchers since their answers lay down
the road map for research in the upcoming years. Recent papers that address these questions have
emphasized scaling problems [2] and issues related to the introduction of heterogeneity and
autonomy [3]. While these problems are important ones to address, there are many others that
remain unsolved. Even the much studied topics such as distributed query processing and
transaction management have research problems that have yet to be addressed adequately.
Furthermore, new issues arise with the changing technology, expanding application areas, and the
experience that has been gained with the limited application of the distributed database technology.

In this paper our purpose is to address the above questions. Our emphasis is on answering
these questions rather than providing a tutorial introduction to distributed database technology or a
survey of the capabilities of existing products.

2. WHAT IS A DISTRIBUTED DATABASE SYSTEM?

A distributed database (DDB) is a collection of multiple, logically interrelated databases dis-
tributed over a computer network [4]. A distributed database management system (distributed
DBMS) is then defined as the software system that permits the management of the DDB and makes
the distribution transparent to the users. We use the term distributed database system (DDBS) to
refer to the combination of the DDB and the distributed DBMS. Assumptions regarding the system
that underlie these definitions are:

1. Data is stored at a number of sites. Each site is assumed to logically consist of a single pro-
cessor. Even if some sites are multiprocessor machines, the distributed DBMS is not con-
cerned with the storage and management of data on this parallel machine.

2. The processors at these sites are interconnected by a computer network rather than a multi-
processor configuration. The important point here is the emphasis on loose-interconnection
between processors which have their own operating systems and operate independently.
Even though shared-nothing multiprocessor architectures are quite similar to the loosely

-2-

Figure 1. A Distributed Database Environment

Site 1

Site 2

Site 3Site 4

Site 5

Communication
Network

interconnected distributed systems, they have different issues to deal with (e.g., task allo-
cation and migration, load balancing, etc) that are not considered in this paper.

3. The DDB is a database, not some “collection” of files that can be individually stored at each
node of a computer network. This is a distinction between a DDB and a collection of files
managed by a distributed file system. To form a DDB, distributed data should be logically
related, where the relationship is defined according to some structural formalism, and ac-
cess to data should be at a high level via a common interface. The typical formalism that is
used for establishing the logical relationship is the relational model. In fact, most existing
distributed database system research assumes a relational system.

4. The system has the full functionality of a DBMS. It is neither, as indicated above, a dis-
tributed file system, nor a transaction processing system. Transaction processing is not
only one type of distributed application, but it is also among the functions provided by a
distributed DBMS. However, a distributed DBMS provides other functions such as query
processing, structured organization of data, and so on that transaction processing systems
do not necessarily deal with.

These assumptions are valid in today's technology base. Most of the existing distributed sys-
tems are built on top of local area networks in which each site is usually a single computer. The
database is distributed across these sites such that each site typically manages a single local
database (Figure 1). However, next generation distributed DBMSs will be designed differently due
to the effects of technological developments – especially the emergence of affordable multiproces-
sors and high-speed networks – the increasing use of database technology in application domains
which are more complex than business data processing, and the wider adoption of client-server
mode of computing accompanied by the standardization of the interface between the clients and the
servers. Thus, the next generation distributed DBMS environment will include multiprocessor
database servers connected to high speed networks which link them and other data repositories to
client machines that run application code and participate in the execution of database requests.
Distributed relational DBMSs of this type are already appearing and a number of the existing ob-
ject-oriented systems also fit this description.

-3-

A distributed DBMS as defined above is only one way of providing database management sup-
port for a distributed computing environment. In [4] we present a working classification of
possible design alternatives along three dimensions: autonomy, distribution, and heterogeneity.

• Autonomy refers to the distribution of control, and indicates the degree to which individual
DBMSs can operate independently. It involves a number of factors such as whether the
component systems exchange information1, whether they can independently execute trans-
actions, and whether one is allowed to modify them. Three types of autonomy are tight in-
tegration, semiautonomy and full autonomy (or total isolation). In tightly integrated sys-
tems a single-image of the entire database is available to users who want to share the infor-
mation which may reside in multiple databases. Semiautonomous systems consist of
DBMSs that can (and usually do) operate independently, but have decided to participate in a
federation to make their local data shareable. In totally isolated systems, however, the in-
dividual components are stand-alone DBMSs which know neither of the existence of other
DBMSs nor of how to communicate with them.

• Distribution dimension of the taxonomy deals with data. We consider two cases, namely,
either data are physically distributed over multiple sites that communicate with each other
over some form of communication medium or they are stored at only one site.

• Heterogeneity can occur in various forms in distributed systems, ranging from hardware
heterogeneity and differences in networking protocols to variations in data managers. The
important ones from the perspective of database systems relate to data models, query lan-
guages, interfaces, and transaction management protocols. The taxonomy classifies
DBMSs as homogeneous or heterogeneous.

The alternative system architectures based on this taxonomy are illustrated in Figure 2. The ar-
rows along the axes do not indicate an infinite number of choices, but simply the dimensions of the
taxonomy that we discussed above. For most of this paper, we deal with tightly integrated, dis-
tributed, and homogeneous database systems.

3. THE CURRENT STATE OF DISTRIBUTED DATABASE TECHNOLOGY

As with any emerging technology, DDBSs have their share of fulfilled and unfulfilled
promises. In this section, we consider the commonly cited advantages of distributed DBMSs and
discuss how well the existing commercial products provide these advantages.

3.1 Transparent Management of Distributed and Replicated Data

Centralized database systems have taken us from a paradigm of data processing, in which data
definition and maintenance was embedded in each application, to one in which these functions are
abstracted out of the applications and placed under the control of a server called the DBMS. This
new orientation results in data independence, whereby the application programs are immune to
changes in the logical or physical organization of the data and vice versa. The distributed database
technology intends to extend the concept of data independence to environments where data is dis-
tributed and replicated over a number of machines connected by a network. This is provided by
several forms of transparency: network (and, therefore, distribution) transparency, replication
transparency, and fragmentation transparency. Transparent access to data separates the higher-
level semantics of a system from lower-level implementation issues. Thus the database users
would see a logically integrated, single image database even though it may be physically

1In this context “exchanging information” does not refer to networking concerns, but whether the DBMSs are
designed to exchange information and coordinate their actions in executing user requests.

-4-

Figure 2. Implementation Alternatives

Multidatabase
system

Autonomy

Heterogeneity

Distribution Distributed
homogeneous
DBMS

Distributed
homogeneous
multidatabase
system

Heterogeneous
multidatabase
system

Distributed
heterogeneous
multidatabase
system

Distributed
heterogeneous
federated DBMS

Heterogeneous
integrated
DBMS

Logically
integrated
homogeneous
multiple DBMSs

Distributed
homogeneous
federated
DBMS

Single site
heterogeneous
federated DBMS

Distributed
heterogeneous
DBMS

Single site
homogeneous
federated DBMS

distributed, enabling them to access the distributed database as if it was a centralized one. In its
ideal form, full transparency would imply a query language interface to the distributed DBMS
which is no different from that of a centralized DBMS.

Most commercial distributed DBMSs do not provide a sufficient level of transparency. Part of
this is due to the lack of support for the management of replicated data. A number of systems do
not permit replication of the data across multiple databases while those that do require that the user
be physically “logged on” to one database at a given time. Some distributed DBMSs attempt to
establish their own transparent naming scheme, usually with unsatisfactory results, requiring the
users either to specify the full path to data or to build aliases to avoid long path
names. An important aspect of the problem is the lack of proper operating system support for
transparency. Network transparency can easily be supported by means of a transparent naming
mechanism by the operating system. The operating system can also assist with replication
transparency, leaving the task of fragmentation transparency to the distributed DBMS.

Full transparency is not a universally accepted objective. Gray argues that full transparency
makes the management of distributed data very difficult and claims that “applications coded with
transparent access to geographically distributed databases have: poor manageability, poor
modularity, and poor message performance” [5]. He proposes a remote procedure call mechanism
between the requestor users and the server DBMSs whereby the users would direct their queries to
a specific DBMS. We agree that the management of distributed data is more difficult if transparent

-5-

access is provided to users, and that the client-server architecture with a remote procedure call-
based communication between the clients and the servers is the right architectural approach. In fact,
some commercial distributed DBMSs are organized in this fashion (e.g., Sybase). However, the
original goal of distributed DBMSs to provide transparent access to distributed and replicated data
should not be given up due to these difficulties. The issue is who should be taking over the
responsibility of managing distributed and replicated data: the distributed DBMS or the user
application? In our opinion, it should be the distributed DBMS whose components may be
organized in a client-server fashion. The related technical issues are among the remaining research
issues that need to be addressed.

3.2 Reliability Through Distributed Transactions

Distributed DBMSs are intended to improve reliability since they have replicated components
and, thereby eliminate single points of failure. The failure of a single site, or the failure of a com-
munication link which makes one or more sites unreachable, is not sufficient to bring down the en-
tire system2. In the case of a distributed database, this means that some of the data may be un-
reachable, but with proper care, users may be permitted to access other parts of the distributed
database. This “proper care” comes in the form of support for distributed transactions.

A transaction consists of a sequence of database operations, executed as an atomic action that
transforms a consistent database state to another consistent database state even when a number of
such transactions are executed concurrently (sometimes called concurrency transparency), and
even when failures occur (also called failure atomicity). Therefore, a DBMS that provides full
transaction support guarantees that concurrent execution of user transactions will not violate
database consistency in the face of system failures as long as each transaction is correct, i.e., obeys
the integrity rules specified on the database.

Distributed transactions execute at a number of sites at which they access the local database.
With full support for distributed transactions, user applications can access a single logical image of
the database and rely on the distributed DBMS to ensure that their requests will be executed cor-
rectly no matter what happens in the system. “Correctly” means that user applications do not need
to be concerned with coordinating their accesses to individual local databases nor do they need to
worry about the possibility of site or communication link failures during the execution of their
transactions. This illustrates the link between distributed transactions and transparency, since both
involve issues related to distributed naming and directory management, among other things.

Providing transaction support requires the implementation of distributed concurrency control
and distributed reliability protocols, which are significantly more complicated than their centralized
counterparts. The typical distributed concurrency control algorithm is some variation of the well-
known two-phase locking (2PL) depending upon the placement of the lock tables and the assign-
ment of the lock management responsibilities. Distributed reliability protocols consist of distributed
commit protocols and recovery procedures. Commit protocols enforce atomicity of distributed
transactions by ensuring that a given transaction has the same effect (commit or abort) at each site
where it exists, whereas the recovery protocols specify how the global database consistency is to
be restored following failures. In the distributed environment, the commit protocols are two-phase
(2PC). In the first phase, an agreement is established among the various sites regarding the fate of
a transaction. The agreed upon action is taken in the second phase.

Data replication increases database availability since copies of the data stored at a failed or un-
reachable site (due to link failure) exist at other operational sites. However, supporting replicas re-

2We do not wish to discuss the differences between site failures and link failures at this point. It is well-known that
link failures may cause network partitioning and are, therefore, more difficult to deal with.

-6-

quire the implementation of replica control protocols that enforce a specified semantics of
accessing them. The most straightforward semantics is one-copy equivalence which can be
enforced by the ROWA protocol (“read one write all”). In ROWA, a logical read operation on a
replicated data item is converted to one physical read operation on any one of its copies, but a
logical write operation is translated to physical writes on all of the copies. More complicated replica
control protocols that are less restrictive and that are based on deferring the writes on some copies
have been studied, but are not implemented in any of the systems that we know.

Concurrency control and commit protocols are among the two most studied topics in dis-
tributed database research. Yet, their implementation in existing commercial systems is not
widespread. The performance implications of implementing distributed transactions, which are not
fully understood, make them unpopular among vendors. Commercial systems provide varying
degrees of distributed transaction support. Some (e.g., Oracle) require users to have one database
open at a given time, thereby eliminating the need for distributed transactions while others (e.g.,
Sybase) implement the basic primitives that are necessary for the 2PC protocol, but require the user
applications to handle the coordination of the commit actions. In other words, the distributed
DBMS does not enforce atomicity of distributed transactions, but provide the basic primitives by
which user applications can enforce it. There are other systems, however, that implement the 2PC
protocols fully (e.g., Ingres and NonStop SQL).

3.3 Improved Performance

 The case for the improved performance of distributed DBMSs is typically made based on two
points. First, a distributed DBMS fragments the conceptual database, enabling data to be stored in
close proximity to its points of use (also called data localization). This has two potential advan-
tages: (1) since each site handles only a portion of the database, contention for CPU and I/O ser-
vices is not as severe as for centralized databases, and (2) localization reduces remote access delays
that are usually involved in wide area networks (for example, the minimum round-trip message
propagation delay in satellite-based systems is about 1 second). Most distributed DBMSs are
structured to gain maximum benefit from data localization. Full benefits of reduced contention and
reduced communication overhead can be obtained only by a proper fragmentation and distribution
of the database.

Second, the inherent parallelism of distributed systems may be exploited for inter-query and
intra-query parallelism. Inter-query parallelism results from the ability to execute multiple queries
at the same time while intra-query parallelism is achieved by breaking up a single query into a
number of subqueries each of which is executed at a different site, accessing a different part of the
distributed database.

If the user access to the distributed database consisted only of querying (i.e., read-only ac-
cess), then provision of inter-query and intra-query parallelism would imply that as much of the
database as possible should be replicated. However, since most database accesses are not read-
only, the mixing of read and update operations requires the implementation of elaborate concur-
rency control and commit protocols.

Existing commercial systems employ two alternative execution models (other than the imple-
mentation of full distributed transaction support) in realizing improved performance. The first al-
ternative is to have the database open only for queries (i.e., read-only access) during the regular
operating hours while the updates are batched. The database is then closed to query activity during
off-hours when the batched updates are run sequentially. This is time multiplexing between read
activity and update activity. A second alternative is based on multiplexing the database.
Accordingly, two copies of the database are maintained, one for ad hoc querying (called the query
database) and the other for updates by application programs (called the production database). At

-7-

regular intervals, the production database is copied to the query database. This second alternative
does not eliminate the need to implement concurrency control and reliability protocols for the pro-
duction database since these are necessary to synchronize the write operations on the same data;
however, it improves the performance of the queries since they can be executed without the over-
head of transaction manipulation.

The performance characteristics of distributed database systems are not very well understood.
There are not a sufficient number of true distributed database applications to provide a sound base
to make practical judgements. In addition, the performance models of distributed database systems
are not sufficiently developed. The database community has developed a number of benchmarks to
test the performance of transaction processing applications, but it is not clear whether they can be
used to measure the performance of distributed transaction management. The performance of the
commercial DBMS products, even with respect to these benchmarks, are generally not openly
published. NonStop SQL is one product for which performance figures, as well as the experimen-
tal setup that is used in obtaining them, has been published.

3.4 Easier and More Economical System Expansion

In a distributed environment, it should be easier to accommodate increasing database sizes.
Major system overhauls are seldom necessary; expansion can usually be handled by adding pro-
cessing and storage power to the system. We may call this database size scaling, as opposed to
network scaling discussed later. It may not be possible to obtain a linear increase in “power,” since
this also depends on the overhead of distribution. However, significant improvements are still
possible.

Microprocessor and workstation technologies have played a role in improving economies. The
price/performance characteristics of these systems make it more economical to put together a sys-
tem of smaller computers with the equivalent power of a single big machine. Many commercial
distributed DBMSs operate on minicomputers and workstations to take advantage of their favorable
price/performance characteristics. The current reliance on workstation technology is because most
of the commercial distributed DBMSs operate within local area networks for which the workstation
technology is most suitable. The emergence of distributed DBMSs that run on wide-area networks
may increase the importance of mainframes. On the other hand, future distributed DBMSs may
support hierarchical organizations where sites consist of clusters of computers communicating over
a local area network with a high-speed backbone wide area network connecting the clusters.

Another economic factor is the trade-off between data communication and telecommunication
costs. In the previous section, we argued that data localization improves performance by reducing
delays. It also reduces costs. Consider an application (such as inventory control) that needs to run
at a number of locations. If this application accesses the database frequently, it may be more eco-
nomical to distribute the data and to process it locally. This is in contrast to the execution of the
application at various sites and making remote accesses to a central database that is stored at an-
other site. In other words, the cost of distributing data and shipping some of it from one site to the
other from time to time to execute distributed queries may be lower than the telecommunication cost
of frequently accessing a remote database. We should state that this part of the economics argument
is still speculative. As we indicated above, most of the distributed DBMSs are local area network
products, and how they can be extended to operate in wide area networks is a topic of discussion
and controversy.

4. UNSOLVED PROBLEMS

In the previous section we discussed the current state of commercial distributed DBMSs and
how well they meet the original objectives that were set for the technology. Obviously, there is still

-8-

some way to go before the commercial state-of-the-art fulfills the original goals of the technology.
The issue is not only that the commercial systems have to catch up and implement the research re-
sults, but that there are still significant research problems that remain to be solved. The purpose of
this section is to discuss these issues in some detail.

4.1 Network Scaling Problems

As noted before, the database community does not have a full understanding of the perfor-
mance implications of all the design alternatives that accompany the development of distributed
DBMSs. Specifically, questions have been raised about the scalability of some protocols and al-
gorithms as the systems become geographically distributed [2] or as the number of system
components increase [3]. Of specific concern is the suitability of the distributed transaction
processing mechanisms (i.e., the two-phase locking, and, particularly, two-phase commit
protocols) in wide area network-based distributed database systems. As mentioned before, there is
a significant overhead associated with these protocols and implementing them over a slow wide
area network may face difficulties [2].

Scaling issues are only one part of a more general problem, namely that we don't have a good
handle on the role of the network architectures and protocols in the performance of distributed
DBMSs. Almost all the performance studies that we know assume a very simple network cost
model, sometimes as unrealistic as using a fixed communication delay that is independent of all
network characteristics such as the load, message size, network size and so on. The inappropriate-
ness of these models can be demonstrated easily. Consider, for example, a distributed DBMS that
runs on an Ethernet-type local area network. Message delays in Ethernet increase as the network
load increases, and, in general, cannot be bounded. Therefore, realistic performance models of an
Ethernet-based distributed DBMS cannot realistically use a constant network delay or even a delay
function which does not consider network load. In general, the performance of the proposed al-
gorithm and protocols in different local area network architectures is not well understood, let alone
their comparative behavior in moving from local area neetworks to wide area networks.

The proper way to deal with scalability issues is to develop general and sufficiently powerful
performance models, measurement tools and methodologies. Such work for centralized DBMSs
have been going on for some time, but have not yet been sufficiently extended to distributed
DBMSs. We already raised questions about the suitability of the existing benchmarks. Detailed and
comprehensive simulation studies do not exist either. Even though there are plenty of performance
studies of distributed DBMS, these usually employ simplistic models, artificial workloads, con-
flicting assumptions or consider only a few special algorithms. It has been suggested that to make
generalizations based on the existing performance studies requires a giant leap of faith. This does
not mean that we do not have some understanding of the trade-offs. In fact, certain trade-offs have
long been recognized and even the earlier systems have considered them in their design. For ex-
ample, the query processor of the SDD-1 system was designed to execute distributed operations
most efficiently on slow wide area networks. Later studies considered the optimization of query
processors in faster, broadcasting local area networks. However, these trade-offs can mostly be
spelled out only in qualitative terms; their quantification requires more research on performance
models.

4.2 Distribution Design

The design methodology of distributed databases varies according to the system architecture. In
the case of tightly integrated distributed databases, design proceeds top-down from requirements
analysis and logical design of the global database to physical design of each local database. In the
case of distributed multidatabase systems, the design process is bottom-up and involves the inte-
gration of existing databases. In this section we concentrate on the top-down design process is-

-9-

sues.

The step in the top-down process that is of interest to us is distribution design. This step deals
with designing the local conceptual schemas by distributing the global entities over the sites of the
distributed system. The global entities are specified within the global conceptual schema. In case
of the relational model, both the global and the local entities are relations and distribution design
maps global relations to local ones. The most important research issue that requires attention is the
development of a practical distribution design methodology and its integration into the general data
modeling process.

There are two aspects of distribution design: fragmentation and allocation. Fragmentation
deals with the partitioning of each global relation into a set of fragment relations while allocation
concentrates on the (possibly replicated) distribution of these local relations across the sites of the
distributed system. Research on fragmentation has concentrated on horizontal (i.e., selecting) and
vertical (i.e., projecting) fragmentation of global relations. Numerous allocation algorithms based
on mathematical optimization formulations have also been proposed.

There is no underlying design methodology that combines the horizontal and vertical partition-
ing techniques; horizontal and vertical partitioning algorithms have been developed completely in-
dependently. If one starts with a global relation, there are algorithms to decompose it horizontally
as well as algorithms to decompose it vertically into a set of fragment relations. However, there are
no algorithms that fragment a global relation into a set of fragment relations some of which are de-
composed horizontally and others vertically. It is always pointed out that most real-life fragmenta-
tions would be mixed, i.e., would involve both horizontal and vertical partitioning of a relation,
but the methodology research to accomplish this is lacking. What is needed is a distribution design
methodology which encompasses the horizontal and vertical fragmentation algorithms and uses
them as part of a more general strategy. Such a methodology should take a global relation together
with a set of design criteria and come up with a set of fragments some of which are obtained via
horizontal and others obtained via vertical fragmentation.

The second part of distribution design is allocation which is typically treated independently of
fragmentation. The process is, therefore, linear, where the output of fragmentation is input to allo-
cation. At first sight, the isolation of the fragmentation and the allocation steps appears to simplify
the formulation of the problem by reducing the decision space. However, closer examination re-
veals that isolating the two steps actually contributes to the complexity of the allocation models.
Both steps have similar inputs, differing only in that fragmentation works on global relations
whereas allocation considers fragment relations. They both require information about the user ap-
plications (e.g., how often they access data, what the relationship of individual data objects to one
another is, etc), but ignore how each other makes use of these inputs. The end result is that the
fragmentation algorithms decide how to partition a relation based partially on how applications ac-
cess it, but the allocation models ignore the part that this input plays in fragmentation. Therefore,
the allocation models have to include all over again detailed specification of the relationship among
the fragment relations and how user applications access them. What would be more promising is to
extend the methodology discussed above so that the interdependence of the fragmentation and the
allocation decisions is properly reflected. This requires extensions to existing distribution design
strategies (e.g., [6]).

We recognize that integrated methodologies such as the one we propose here may be consider-
ably complex. However, there may be synergistic effects of combining these two steps enabling
the development of quite acceptable heuristic solution methods. There are some studies that give us
hope that such integrated methodologies and proper solution mechanisms can be developed. These
methodologies build a simulation model of the distributed DBMS, taking as input a specific
database design, and measure its effectiveness. Development of tools based on such

-10-

methodologies, which aid the human designer rather than attempt to replace him, is probably the
more appropriate approach to the design problem.

4.3 Distributed Query Processing

Distributed query processors automatically translate a high-level query on a distributed
database, which is seen as a single database by the users, into an efficient low-level execution plan
expressed on the local databases. Such translation has two important aspects. First, the translation
must be a correct transformation of the input query so that the execution plan actually produces the
expected result. The formal basis for this task is the equivalence between relational calculus and
relational algebra, and the transformation rules associated with relational algebra. Second, the exe-
cution plan must be “optimal,” i.e., it must minimize a cost function that captures resource con-
sumption. This requires investigating equivalent alternative plans in order to select the best one.

Because of the difficulty of addressing these two aspects together, they are typically isolated in
two sequential steps which we call data localization and global optimization in [4]. These steps are
generally preceded by query decomposition which simplifies the input query and rewrites it in
relational algebra. Data localization transforms an input algebraic query expressed on the dis-
tributed database into an equivalent fragment query (i.e., a query expressed on database fragments
stored at different sites) which can be further simplified by algebraic transformations. Global query
optimization generates an optimal execution plan for the input fragment query by making decisions
regarding operation ordering, data movement between sites and the choice of both distributed and
local algorithms for database operations. There are a number of problems regarding this last step.
They have to do with the restrictions imposed on the cost model, the focus on a subset of the query
language, the trade-off between optimization cost and execution cost, and the
optimization/reoptimization interval.

The cost model is central to global query optimization since it provides the necessary abstrac-
tion of the distributed DBMS execution system in terms of access methods, and an abstraction of
the database in terms of physical schema information and related statistics. The cost model is used
to predict the execution cost of alternative execution plans for a query. A number of important re-
strictions are often associated with the cost model, limiting the effectiveness of optimization in im-
proving throughput. Work in extensible query optimization [7] can be useful in parameterizing the
cost model which can then be refined after much experimentation.

Even though query languages are becoming increasingly powerful (e.g., new versions of
SQL), global query optimization typically focuses on a subset of the query language, namely se-
lect-project-join (SPJ) queries with conjunctive predicates. This is an important class of queries for
which good optimization opportunities exist. As a result, a good deal of theory has been developed
for join and semijoin ordering. However, there are other important queries that warrant optimiza-
tion, such as queries with disjunctions, unions, fixpoint, aggregations or sorting. A promising so-
lution is to separate the language understanding from the optimization itself which can be dedicated
to several optimization “experts.”

There is a necessary trade-off between optimization cost and quality of the generated execution
plans. Higher optimization costs are probably acceptable to produce “better” plans for repetitive
queries, since this would reduce query execution cost and amortize the optimization cost over many
executions. However, it is unacceptable for ad hoc queries which are executed only once. The op-
timization cost is mainly incurred by searching the solution space for alternative execution plans. In
a distributed system, the solution space can be quite large because of the wide range of distributed
execution strategies. Therefore, it is critical to study the application of efficient search strategies
that avoid the exhaustive search approach.

-11-

Global query optimization is typically performed prior to the execution of the query, hence
called static. A major problem with this approach is that the cost model used for optimization may
become inaccurate because of changes in the fragment sizes or database reorganization which is
important for load balancing. The problem, therefore, is to determine the optimal intervals of re-
compilation/reoptimization of the queries taking into account the trade-off between optimization and
execution cost.

4.4 Distributed Transaction Processing

It may be hard to believe that in an area as widely researched as distributed transaction process-
ing there may still be important topics to investigate, but there are. We have already discussed the
scaling problems of transaction management algorithms. Additionally replica control protocols,
more sophisticated transaction models, and non-serializable correctness criteria require further
attention.

In replicated distributed DBMSs, database operations are specified on logical data objects3. The
replica control protocols are responsible for mapping an operation on a logical data object to an
operation on multiple physical copies of this data object. In so doing, they ensure the mutual con-
sistency of the replicated database. The ROWA rule that we discussed earlier is the most
straightforward method of enforcing mutual consistency. Accordingly, a replicated database is in a
mutually consistent state if all the copies of every data object have identical values.

The field of data replication needs further experimentation, research on replication methods for
computation and communication, and more work to enable the systematic exploitation of applica-
tion-specific properties. Experimentation is required to evaluate the claims that are made by algo-
rithm and system designers, and we lack a consistent framework for comparing competing tech-
niques. One of the difficulties in quantitatively evaluating replication techniques lies in the absence
of commonly accepted failure incidence models. For example, Markov models that are sometimes
used to analyze the availability achieved by replication protocols assume the statistical indepen-
dence of individual failure events, and the rarity of network partitions relative to site failures. We
do not currently know that either of these assumptions is tenable, nor do we know how sensitive
Markov models are to these assumptions. The validation of the Markov models by simulation can-
not be trusted in the absence of empirical measurements, since simulations often embody the same
assumptions that underlie the Markov analysis. Thus, there is a need for empirical studies to moni-
tor failure patterns in real-life production systems, with the purpose of constructing a simple model
of typical failure loads.

To achieve the twin goals of data replication, namely availability and performance, we need to
provide integrated systems in which the replication of data goes hand in hand with the replication
of computation and communication (including I/O). Only data replication has been studied in-
tensely; relatively little has been done in the replication of computation and communication.
Replication of computation has been studied for a variety of purposes, including running syn-
chronous duplicate processes as “hot standbys,” and processes implementing different versions of
the same software to guard against human design errors. Replication of communication messages
primarily by retry has been studied in the context of providing reliable message delivery, and a few
papers report on the replication of input/output messages to enhance the availability of transactional
systems. However, more work needs to be done to study how these tools may be integrated to-
gether with data replication to support such applications as real time control systems, that may ben-
efit from all three kinds of replication. This work would be invaluable in guiding operating system

3We use the term “data object” here instead of the more common “data item” because we do not want to make a
statement about the granularity of the logical data.

-12-

and programming language designers towards the proper set of tools to offer in support of fault-
tolerant systems.

In addition to replication, but related to it, work is required on more elaborate transaction mod-
els, especially those that exploit the semantics of the application. Higher availability and perfor-
mance, as well as concurrency, can be achieved this way. As database technology enters new ap-
plication domains such as engineering design, software development and office information sys-
tems, the nature and requirements for transactions change. Thus, work is needed on more compli-
cated transaction models and on correctness conditions different from serializability.

As a first approximation, the existing work on transaction models can be classified along two
dimensions: the transaction model and the structure of objects that they operate on. Along the
transaction model dimension, we recognize flat transactions, closed nested transactions and open
nested transaction models such as sagas and the like, and models that include both open and closed
nesting, in increasing order of complexity. Along the object structure dimension, we identify
simple objects (e.g., pages), objects as instances of abstract data types (ADTs), and complex
objects, again in increasing complexity. We make the distinction between the last two to indicate
that objects as instances of abstract data types support encapsulation (and therefore are harder to
run transactions on than simple objects), but do not have a complex structure (i.e., do not contain
other objects) and their types do not participate in an inheritance hierarchy.

Within the above framework, most of the transaction model work in distributed systems has
concentrated on the execution of flat transactions on simple objects. This point in the design space
is quite well understood. While some work has been done in the application of nested transactions
on simple objects, much remains to be done, especially in distributed databases. Specifically, the
semantics of these transaction models are still being worked out. Similarly, there has been work
done on applying simple transactions to objects as instances of abstract data types and to complex
objects. Again, these are initial attempts which need to be followed up to specify their full
semantics, their incorporation into a DBMS, their interaction with recovery managers and, finally,
their distribution properties.

Complex transaction models are important in distributed systems for a number of reasons.
First, transaction processing in distributed multidatabase systems can benefit from the relaxed
semantics of these models. Second, the new application domains that distributed DBMSs will
support in the future (e.g., engineering design, office information systems, cooperative work, etc)
require transaction models that incorporate more abstract operations that execute on complex data.
Furthermore, these applications have a different sharing paradigm than the typical database access
that we are accustomed to. For example, computer-assisted cooperative work environments require
participants to cooperate in accessing shared resources rather than competing for them as is usual in
typical database applications. These changing requirements necessitate the development of new
transaction models and accompanying correctness criteria.

4.5 Integration with Distributed Operating Systems

The undesirability of running a centralized or distributed DBMS as an ordinary user application
on top of a host operating system (OS) has long been recognized [8, 9]. There is a mismatch
between the requirements of the DBMS and the functionality of the existing OSs. This is even
more true in the case of distributed DBMSs which require functions (e.g., distributed transaction
support including concurrency control and recovery, efficient management of distributed persistent
data, more complicated access methods) that existing distributed OSs do not provide. Furthermore,
distributed DBMSs necessitate modifications in how the distributed OSs perform their traditional
functions (e.g., task scheduling, naming, buffer management). In this section, we briefly highlight
the fundamental issues in distributed DBMS/distributed OS integration. They relate to the system

-13-

architecture, transparent naming of resources, persistent data management, distributed scheduling,
remote communication and transaction support. A more detailed discussion of the issues can be
found in Chapter 13 of [4].

An important architectural consideration is that the coupling of distributed DBMSs and dis-
tributed OSs is not a binary integration issue. There is also the communication network protocols
that need to be considered, adding to the complexity of the problem. Thus the architectural
paradigm has to be flexible enough to accommodate distributed DBMS functions, distributed op-
erating system services as well as the communication protocol standards such as the ISO/OSI or
IEEE 802. In this context, efforts that include too much of the database functionality inside the op-
erating system kernel or those that modify tightly-closed operating systems are likely to prove un-
successful. In our view, the operating system should only implement the essential OS services and
those DBMS functions that it can efficiently implement and then should get out of the way. The
model that best fits this requirement seems to be the client-server architecture with a small kernel
that provides the database functionality that can efficiently be provided and does not hinder the
DBMS in efficiently implementing other services at the user level (e.g., Mach, Amoeba). Object-
orientation may also have a lot to offer as a system structuring approach to facilitate this
integration.

Naming is the fundamental mechanism that is available to the operating system for providing
transparent access to system resources. Whether or not access to distributed objects should be
transparent at the operating system level is a contentious issue involving the tradeoff between
flexibility of data management and ease of use on the one hand and system overhead on the other.
From the perspective of a distributed DBMS, transparency is important. As we indicated earlier,
many of the existing distributed DBMSs attempt to establish their own transparent naming schemes
without significant success. More work is necessary in investigating the naming issue and the
relationship between distributed directories and OS name servers. A worthwhile naming construct
that deserves some attention in this context is the capability concept which was used in older
systems such as Hydra and is being used in more modern OSs such as Amoeba.

Storage and management of persistent data which survive past the execution of the program
that manipulates them is the primary function of database management systems. Operating systems
have traditionally dealt with persistent data by means of file systems. If a successful cooperation
paradigm can be found, it may be possible to use the DBMS as the OS file system. At a more gen-
eral level, the cooperation between programming languages, DBMS and OS to manage persistent
data requires further research. The distributed file systems do not address distributed DBMS
concerns because either they do not provide for concurrent access to data, or the granularity of
sharing is too large.

Two communication paradigms that have been widely studied in distributed operating systems
are message passing4 and RPC. The relative merits of each approach have long been debated, but
the simple semantics of RPC (blocking, one time execution) have been appealing to distributed
system designers. As discussed before, an RPC-based access to distributed data at the user level is
sometimes proposed in place of providing fully transparent access [5]. However, implementation
of an RPC mechanism for a heterogeneous computing environment is not an easy matter. The issue
is that the RPC systems of different vendors do not interoperate. It may be necessary to look at
communication at higher levels of abstraction in order to overcome heterogeneity or at lower levels
of abstraction (i.e., message passing) to achieve more parallelism. This tradeoff needs to be further
studied.

4Note that we are referring to logical message passing, not to physical. Remote procedure calls have to be
transmitted between sites as physical messages as well.

-14-

In current DBMSs, the transaction manager is implemented as part of the DBMS. Whether
transactions should and can be implemented as part of standard operating system services has long
been discussed. It is fair to state that there are strong arguments on both sides, but a clear resolu-
tion of the issue requires more research as well as some more experience with the various general
purpose (i.e., non-DBMS) transaction management services.

4.6 Distributed Multidatabase Systems

As we indicated, multidatabase system organization is an alternative to logically integrated
distributed databases. The fundamental difference between the two approaches is the level of
autonomy afforded to the component data managers at each site. While integrated DBMSs have
components which are designed to work together, multidatabase management systems (multi-
DBMS) consist of components which may not have any notion of cooperation. Specifically, the
components are independent DBMSs, which means, for example, that while they may have facili-
ties to execute transactions, they have no notion of executing distributed transactions that span
multiple components. In this section, we briefly highlight the open problems that relate to query
processing and transaction management. We also address the standardization issues and their role
in interoperability. More detailed discussion can be found in [10], among others.

 The autonomy and potential heterogeneity of component systems create problems in query
processing and especially in query optimization. The fundamental problem is the difficulty of
global optimization when local cost functions are not known and local cost values cannot be com-
municated to the multi-DBMS. It has been suggested that semantic optimization based only on
qualitative information may be the best that one can do, but semantic query processing is not fully
understood either. Potentially, it may be possible to develop hierarchical query optimizers which
perform some amount of global query optimization and then let each local system perform further
optimization on the localized subquery. This may not provide an “optimal” solution, but may still
enable some amount of optimization. The emerging standards, which we will discuss shortly, may
also make it easier to share some cost information.

Transaction processing in autonomous multidatabase systems is made more difficult by the
autonomy of the underlying DBMSs. Since they are autonomous, they have their own transaction
processing services (i.e., transaction manager, scheduler, recovery manager) and are capable of
accepting local transactions and running them to completion. The multi-DBMS layer has its own
transaction processing components in charge of accepting global transactions which access multiple
databases and coordinating their execution. A global transaction is divided into subtransactions
each of which is submitted to one of the component DBMSs. However, since the multi-DBMS is
not aware of the local transactions, it cannot control the local conflicts, nor can it control indirect
conflicts between global transactions caused by the interference of local transactions.

A number of different solutions have been proposed to deal with concurrent multidatabase
transaction processing. Some of these use global serializability of transactions as their correctness
criteria while others relax serializability. Most of this work should be treated as being preliminary
initial attempts at understanding and formalizing the issues. There are many issues that remain to be
investigated. One area of investigation has to deal with revisions in the transaction model and the
correctness criteria. There are initial attempts to recast the transaction model assumptions and this
work needs to continue. Nested transaction models look particularly promising for multidatabase
systems and its semantics based on knowledge about the transaction's behavior needs to be for-
malized. In this context, it is necessary to go back and reconsider the meaning of consistency in
multidatabase systems. A good starting point is the four degrees of consistency defined by Gray
[8].

Another difficult issue that requires further investigation is the reliability and recovery aspects

-15-

of multidatabase systems. The autonomy of individual DBMSs makes it difficult to incorporate
2PC into global transaction processing, which, in turn, makes it difficult to enforce distributed
transaction atomicity. Even though the topic has been addressed in some recent studies, these ap-
proaches are initial engineering solutions. The development of reliability and recovery protocols for
multidatabase systems and their integration with concurrency control mechanisms still needs to be
worked out.

Probably one the fundamental impediments to further development of multidatabase systems is
the lack of understanding of the nature of autonomy, which is a major contributor to the additional
complexity of these systems. It is probably the case that what we call autonomy is itself composed
of a number of factors. Thus, the nature of autonomy needs to be clearly and precisely
characterized. Furthermore, most researchers treat autonomy as if it were a “all-or-nothing”
feature. Even the taxonomy that we considered indicated only three points along this dimension.
However, the spectrum between “no autonomy” and “full autonomy” probably contains many
distinct points. It is essential, in our opinion, to (a) precisely define what is meant by “no
autonomy” and “full autonomy”, (b) precisely delineate and define the many different levels of
autonomy, and (c) identify, as we indicated above, the appropriate degree of database consistency
that is possible for each of these levels. At that point, it would be more appropriate to discuss the
different transaction models and execution semantics that are appropriate at each of these levels of
autonomy. In addition, this process should enable the identification of a layered structure, similar
to the ISO Open System Interconnection model, for the interoperability of autonomous and
possibly heterogeneous database systems. Such a development would then make it possible to
specify interfacing standards at different levels. Some standardization work is already under way
within the context of the Remote Data Access (RDA) standard, and this line of work will make the
development of practical solutions to the interoperability problem possible.

5. CHANGING TECHNOLOGY AND NEW ISSUES

Distribution is commonly identified as one of the major features of next generation database
systems which will be ushered in by the penetration of database technology into new application
areas with different requirements than traditional business data processing and the technological
developments in computer architecture and networking. One of the common features of next-gen-
eration database systems is that the data model to be supported will need to be more powerful than
the relational model, yet without compromising its advantages (data independence and high-level
query languages). When applied to more complex application domains such as CAD/CAM, soft-
ware design, office information systems, and expert systems the relational data model exhibits
limitations in terms of complex object support, type system and rule management. To address these
issues, two important technologies, knowledge bases and object-oriented databases, are currently
being investigated. Another major issue is going to be system performance as more functionality is
added. Exploiting the parallelism available in multiprocessor computers is one promising approach
to provide high performance. Techniques designed for distributed databases can be useful but need
to be significantly extended to implement parallel database systems.

Object-oriented databases (OODBs) [11] combine object-oriented programming and database
technologies in order to provide higher modeling power and flexibility to data intensive application
programmers. Over the last five years, OODBs have been the subject of intensive research and
experimentation which led to an impressive number of prototypes and commercial products.
However, the theory and practice of developing distributed object-oriented DBMSs (OODBMS)
have yet to be fully developed. Dealing with distributed environments will make the problems even
more difficult. Additionally, the issues related to data dictionary management and distributed object
management have to be dealt with. However, distribution is an essential requirement, since
applications which require OODB technology typically arise in networked workstation
environments. The early commercial OODBMSs (e.g., GEMSTONE) use a client/server architec-

-16-

ture where multiple workstations can access the database centralized on a server. However, dis-
tributing an OODB within a network of workstations (and servers) becomes very attractive. In fact,
some OODBMSs already support some form of data distribution transparency (e.g., ONTOS and
Distributed ORION).

Knowledge base management systems attempt to make database management more intelligent
by managing knowledge in addition to data. Capturing knowledge in the form of rules has been
extensively studied in a particular form of knowledge base system called a deductive database.
Deductive database systems manage and process rules against large amounts of data within the
DBMS rather than with a separate subsystem. Rules can be declarative (assertions) or imperative
(triggers). Rule management is essential since it provides a uniform paradigm to deal with semantic
integrity control, views, protection, deduction and triggers. Much of the work in deductive
databases has concentrated on the semantics of rule programs and on processing deductive queries,
in particular, in the presence of recursive and negated predicates. However, much work is needed
to combine rule support with object-oriented capabilities. For reasons similar to those for OODB
applications, knowledge base applications are likely to arise in networked workstation environ-
ments. These applications can also arise in parallel computing environments when the database is
managed by a multiprocessor database server (see next paragraph). In any case, there are a number
of similar issues which can get simplified by relying on distributed relational database technology.
Unlike most OODB approaches which try to extend an object-oriented programming language, this
is a strong advantage for implementing knowledge bases in distributed environments. Therefore,
the new issues have more to do with distributed knowledge management and processing and
debugging of distributed knowledge base queries than with distributed data management.

Parallel database systems intend to exploit the recent multiprocessor computer architectures in
order to build high-performance and fault-tolerant database servers [12]. This can be achieved by
extending distributed database technology, for example, by fragmenting the database across multi-
ple nodes so that more inter- and intra-query parallelism can be obtained. For obvious reasons such
as set-oriented processing and application portability, most of the work in this area has focused on
supporting SQL. There is a continuing discussion as to which of the shared-memory or dis-
tributed-memory multiprocessor architectures is more appropriate for data management. The reso-
lution of this question will require more experimental study. The design problems of parallel
database systems, such as the operating system support, data placement, parallel algorithms, and
parallelizing compilation, are common to both kinds of multiprocessor architectures. If parallel data
servers become prevalent, it is not difficult to see an environment where multiple of them are
placed on a backbone network. This gives rise to distributed systems consisting of clusters of pro-
cessors [5]. An interesting concern in such an environment is internetworking. Specifically, the
execution of database commands which span multiple, and possibly heterogeneous, clusters cre-
ates at least the problems that we discussed under distributed multidatabase systems. However,
there are the additional problems that the queries have to be optimized not only for execution in
parallel on a cluster of servers, but also for execution across a network.

6. CONCLUSIONS

In this paper we discuss the state-of-the-art in distributed database research and products.
Specifically, we (a) reviewed the initial goals and promises of the distributed database technology
and commented on how well the current commercial products fulfill these promises; (b) discussed
the degree to which the important technical problems have been addressed; and (c) briefly
considered the technological changes that underlie distributed data managers to determine how they
are likely to impact next generation systems.

The initial promises of distributed database systems, namely transparent management of dis-
tributed and replicated data, improved system reliability via distributed transactions, improved

-17-

system performance by means of inter- and intra-query parallelism, and easier and more economi-
cal system expansion, are met to varying degrees by existing commercial products. Full realization
of these promises is not only dependent upon the commercial state-of-the-art catching up with the
research results, but is also dependent upon the solution of a number of problems. The issues that
have been studied, but still require more work are the following:

1. performance models, methodologies and benchmarks to better understand the sensitivity of
the proposed algorithms and mechanisms to the underlying technology;

2. distributed query processing to handle queries which are more complex than select-project-
join, ability to process multiple queries at once to save on common work, and optimization
cost models to be able to determine when such multiple query processing is beneficial;

3. advanced transaction models that differ from those that are defined for business data pro-
cessing and that better reflect the mode of processing that is common in most distributed
applications (i.e., cooperative sharing vs competition, interaction with the user, long dura-
tion) for which the distributed database technology is going to provide support;

4. analysis of replication and its impact on distributed database system architecture and algo-
rithms and the development of efficient replica control protocols that improve system avail-
ability;

5. implementation strategies for distributed DBMSs that emphasize a better interface and co-
operation with distributed operating systems;

6. theoretically complete and correct and practical design methodologies for distributed
databases; and

7. full set of problems related to the interconnection of autonomous information processing
systems.

In addition to these problems, the changing nature of the technology on which distributed
DBMSs are implemented will make parallel database servers feasible. This will effect DDBSs in
two ways. First, distributed DBMSs will be implemented on these parallel database servers,
requiring the revision of most of the existing algorithms and protocols to operate on the parallel
machines. Second, the parallel database servers will be connected as servers to networks, requiring
the development of distributed DBMSs that will have to deal with a hierarchy of data managers.
Furthermore, as distributed database technology infiltrates non-business data processing type
application domains (e.g., engineering databases, office information systems, software
development environments), the capabilities required of these systems will change. This will
necessitate a shift in emphasis from relational systems to data models which are more powerful.
Current research along these lines concentrates on object-orientation and knowledge base systems.

As this paper clearly demonstrates, there are many important technical problems that await so-
lution, as well as new ones that arise as a result of the technological changes that underlie dis-
tributed data managers. These problems should keep researchers as well as distributed DBMS im-
plementers quite busy for some time to come.

ACKNOWLEDGMENTS

We would like to extend our thanks to Abdelsalam Heddaya of Boston University who not
only reviewed the entire paper and provided many comments, but also helped us with the
replication part, which is based on a draft written by him. Alex Biliris of Boston University,

-18-

Michael Brodie, Alex Buchmann, Dimitrios Georgakopoulos, and Frank Manola of GTE
Laboratories have also read the entire manuscript and provided many suggestions regarding the
content and the presentation that improved the paper significantly. The research of the first author
has been partially supported by the Natural Sciences and Engineering Research Council (NSERC)
of Canada under the operating grant OGP-0951.

REFERENCES

[1] M. STONEBRAKER. Readings in Database Systems. San Mateo, Calif.: Morgan Kaufmann,
1988.

[2] M. STONEBRAKER. “Future Trends in Database Systems,” IEEE Trans. Knowledge and
Data Eng., Vol. 1, No. 1, March 1989, pp. 33–44.

[3] H. GARCIA-MOLINA AND B. LINDSAY. “Research Directions for Distributed Databases,”
IEEE Q. Bull. Database Eng., Vol. 13, No. 4, December 1990, pp. 12–17.

[4] M.T. ÖZSU AND P. VALDURIEZ. Principles of Distributed Database Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[5] J. GRAY. Transparency in its Place – The Case Against Transparent Access to
Geographically Distributed Data, Technical Report TR89.1, Tandem Computers Inc.,
Cupertino, CA, 1989.

[6] S. CERI, B. PERNICI, AND G. WIEDERHOLD. “Distributed Database Design Methodologies,”
Proc. IEEE, Vol. 75, No. 5, May 1987, pp. 533–546.

[7] C. FREYTAG. “A Rule-based View of Query Optimization,” In Proc. ACM SIGMOD Int.
Conf. on Management of Data, San Francisco, 1987, pp. 173– 180.

[8] J. GRAY. “Notes on Data Base Operating Systems,” In Operating Systems: An Advanced
Course, R. Bayer, R. M. Graham, and G. Seegmüller (eds.), New York: Springer-Verlag,
1979, pp. 393–481.

[9] M. STONEBRAKER. “Operating System Support for Database Management,” Commun.
ACM, Vol. 24, No. 7, July 1981, pp. 412–418.

[10] A.K. ELMAGARMID AND C. PU (eds). ACM Comp. Surv. Special Issue on Heterogeneous
Databases, Vol. 22, No. 3, September 1990.

[11] S. ZDONIK AND D. MAIER (eds.). Readings in Object-Oriented Database Systems, San
Mateo, CA: Morgan Kaufmann, 1990.

[12] P. VALDURIEZ (ed.). Data Management and Parallel Processing, London, UK: Chapman
and Hall, 1991 (to appear).

