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Abstract

Many emerging applications that use XML are distributed, usually over large peer-to-peer (P2P) networks on
the Internet. The deployment of an XML query shipping system over P2P networks requires a specialized synopsis
to capture XML data in routing tables. In this paper, we propose a movel graph-structured routing synopsis,
called kd-synopsis, for deployment over unstructured super-peer based P2P networks. This synopsis is based on
length-constrained FBsimulation relationship, which allows the balancing of the precision and size of the synopsis
according to different space constraints on peers with heterogeneous capacity. We report comprehensive experiments
to demonstrate the effectiveness of the kd-synopsis.

1 Introduction

In recent years, Peer-to-Peer (P2P) architecture has become a popular decentralized platform for many Internet-
scale applications such as file-sharing®, instant messaging?, and computing resource sharing®. Meanwhile, XML
data are increasingly used as a format for data exchange and storage on the Internet, such as XML-based sensor
data [17] and Web service data defined in WSDL and SOAP. Thus, it is increasingly important to process queries
efficiently over data deployed in large-scale P2P networks, where centralized catalogs are not always available and
peers may join and leave arbitrarily.

Distributed (XML) query processing can follow either data-shipping or query-shipping approaches. While data
shipping moves data to a query processing site, query shipping systems route queries to where the data are located
for processing. Query shipping is preferable in P2P systems because it can exploit the computational power of
peers to process queries in parallel, and the cost of sending queries is usually much smaller than that of sending
data.

Query shipping strategies vary based on different P2P overlay network architectures and routing protocols. In
structured P2P architectures, data are placed on peers that are organized in a structured overlay network by using
distributed hashing, and each peer manages, along with data, hash-based routing information for “neighboring”
peers. In contrast, unstructured P2P architectures keep data on original peers and route queries either by flooding
(e.g., Gnutella v0.4 [3]) or by using super-peers (e.g., Gnutella v0.6 [4]). While flooding is effective when searching
popular data with a lot of replicas [26], a super-peer based architecture makes routing more efficient by organizing
peers hierarchically where upper-level peers maintain information about the content of their lower-level ones and use
this for routing. Such an architecture combines the advantages from both centralized systems (e.g., the exploitation
of heterogeneity of peers) and distributed systems (e.g., scalability and robustness), and has been employed in real
P2P file-sharing systems [6, 7].
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In this paper, we focus on XML query routing in query-shipping P2P systems under super-peer based overlay
network architectures. More specifically, we propose an effective XML synopsis that can be used for maintaining
routing state. For the sake of simplicity, we assume that each peer contains a tree-structured XML document (i.e.,
without ID or IDREF). In the case that a peer has multiple documents, we can model them under a virtual root.
We are concerned with a commonly used subset of XPath [14], called Branching Path Query (BPQ) [22]. Briefly,
BPQ covers self, child, descendant, descendant-or-self, parent, ancestor and ancestor-or-self axes. Moreover, we
consider the conjunction (i.e., and operator) of predicates. Since we do not consider negation in queries, we actually
work on a subclass of BPQ, defined as BPQ™ [31].

Our solution, called kd-synopsis, is a graph-structured synopsis over XML data that can easily balance its
precision and size. The k and d are length constraints to be imposed over the Backward and Forward-simulation
relationships (Section 2), which are theoretical foundations of our routing synopsis. To be more specific, our major
design novelties are as follows:

e Most proposed routing state data structures are simple, such as the pair of <file name, IP address> used
in file-sharing P2P systems, or the <IP address, physical address> used in Internet routing. These simple
routing states usually capture, quite precisely, the information necessary for routing, and small-sized routing
tables improve the scalability of the system with respect to both the storage size and the routing decision
making process. However, XML data are much more complex, requiring a hierarchically-richer synopsis to
capture its information. Furthermore, modern P2P systems are heterogeneous, in that different peers have
different capacities including storage space size*, which requires a more adaptive routing state representation
whose size can be easily adjusted. Kd-synopsis better captures XML hierarchical information, while using a
length-constrained FBsimulation relationship to control the size of the synopsis.

e The organization of the routing synopsis into routing tables is nontrivial, because it is not straightforward to
aggregate synopses from multiple peers. In particular, for kd-synopsis, this is more critical since each peer’s
routing synopsis may have different & and d values. In this work, we propose a method to aggregate multiple
kd-synopses into a routing state organized as a sequence of synopses ordered by k and d values, which keeps
the precision of the synopses as much as possible with respect to specific space constraints.

Consequently, the contributions of this paper consist of three parts: First, we give the first formal definition
of length-constrained FBsimulation relationship over XML data, which we call kd-simulation. Second, we develop
a novel size-adjustable routing synopsis, named as kd-synopsis. Finally, we address the aggregation and update
maintenance issues for routing tables consisting of kd-synopses, and demonstrate the effectiveness of our design
with extensive experiments.

The organization of the paper is as follows. We introduce the background and related work in Section 2. In
Section 3 we precisely define the kd-simulation relationship and address the generation of kd-synopses over XML
documents. Section 4 focuses on the XML query shipping enforced in super-peer based unstructured P2P networks.
Experimental results are presented in Section 5, demonstrating the effectiveness of our routing synopsis. Finally,
we conclude in Section 6.

2 Related Work and Background
2.1 Related Work

XML query shipping problem is addressed in both structured [19, 16, 18] and unstructured P2P [24] domains.
Since we are interested in unstructured P2P systems in this paper, Koloniari and Pitoura’s work [24] is the most
relevant, where Bloom filters are used to capture the set of elements on document tree levels and paths with same
lengths. The basic idea is to encode the set of all the elements on each document level into a specific Bloom filter
(the Breadth Bloom filter), and encode the set of all the linear path strings with a fixed length into a specific
Bloom filter (the Depth Bloom filter). For example, Figure 1 shows the Breadth and Depth Bloom filters of an
XML document that adheres to the DTD in the figure. Here the Bloom filters are presented in rectangles while
their corresponding set of elements or paths are attached next to each entry for clarity. For simplicity, we use the
first characters to represent element names.

4This space especially indicates main memory space used to store routing information.



XML DTD :

<IELEMENT book (title, authors, chapter*)>
<|ELEMENT authors (name*)>

<|ELEMENT chapter(title, paragraph*, section*)>
<IELEMENT section (title?, paragraph*, section*)>

. Breadth Bloom Filter|

2 autors b level 1 0010010111 1 {b)
conper T level 2 0101011110 > {a, o, 1}
 chap 7 level 3 1110010101 1> {n. p, )

p: paragraph
t: title

Depth Bloom Filter:

depth 0 1111011111
depth 1 0101101000
depth 2 1010111001

= {a, b.cnpt
> {b/t, b/a, bic, ain, cit, clp}
> {blaln, bich, blc/p}

Figure 1. A Bloom-filter based synopsis

Although Bloom filter is space efficient in checking membership over a set of elements, it has several disadvantages
when used to encode hierarchically-rich XML data. First, it cannot precisely encode the ancestor-descendant
relationship among elements, because Breadth Bloom filter does not capture the parent-child relationship among
nodes at different levels, and Depth Bloom filter only captures linear XML paths with specific lengths by uniform
hashing. Thus a query with ancestor-descendant axis cannot be checked against the data effectively. For example,
using the Bloom filter synopsis proposed in [24], the query “c//n” will be falsely determined as positive against
the document in Figure 1 (a query is positive to a document if the evaluation result is non-empty). Second, to
guarantee that there are no false negatives, which is desirable in query shipping systems, each document level
has to correspond to a Breadth Bloom filter, so the size of the synopsis increases sharply when used to encode
deep-structured documents, such as those following a recursive schema [25]. Finally, each peer in the system needs
to use the same hash functions and agree on the size of the Bloom filters (i.e., size of bit sequences of the Bloom
filter) corresponding to a specific level or a fixed path length. This may not be feasible in large heterogeneous P2P
systems. In this work, we develop a graph-structured synopsis to represent routing state, which can capture the
XML hierarchial information more easily and is size-adjustable so as to fit the heterogeneous capacity on different
peers.

Compact graph-structured synopses have been developed to index XML data. Milo et al. employ Forward-
bisimulation equivalence relationship (described in Section 2.2) to devise a reduced index for XML data [27] with
respect to linear path XML queries. Polyzotis et al. develop XSketch synopsis for selectivity estimation, which
also exploits the Bisimulation relationship to reduce the common structures in XML data [30]. Further, Ramanan
proves that FBsimulation quotient is the smallest covering index® of XML data with respect to BPQ™ queries [31],
and the quotient can be much smaller than Bisimulation-based synopses. Kd-synopsis shares the graph structure
of these synopses and builds on the same foundation of the FBsimulation relationship, but it can be significantly
smaller than FBsimulation quotient. Moreover, to make the routing synopsis size-adjustable according to the
heterogeneous capacity on different peers, we impose length constraints over the FBsimulation relationship such
that we can easily balance the size and the precision through the constraint parameters.

Kaushik et al. also consider a length constrained equivalence relationship (i.e., k-bisimilarity) in their A(k)-
index for XML indexing [23], but they impose length constraints only on the backward direction of the Bisimulation
relationship, such that document nodes with different subtree structures can not be distinguished, leading to a less
precise synopsis for BPQ™T queries.

Homomorphic Compression has been proposed to encode XML data into a compressed form. Tolani et al.
propose the XGrind system, which employs dictionary encoding and Huffman encoding to compress tags and data
values respectively [32]. Min et al. use reverse arithmetic encoding to compress XML linear paths in the XPress
system [28]. While both of the compression schemes provide reduced queriable XML data encodings, they do not
compress structures of original XML data, so basically they are orthogonal work and their encoding strategies over
element names can be applied directly over our kd-synopsis.

5An index DI of document D is a covering index with respect to a query set if no query in the set can distinguish between two
nodes of D that correspond to the same indexing node in DI.



2.2 Background

FBsimulation relationship has been shown to capture similar structures in XML data for BPQ™ queries [31].
We use it as the theoretical foundation of kd-synopsis to remove redundancy with respect to the positive check®
of BPQ* queries. FBsimulation is an extensively researched concept, which is used to describe the structure of
semi-structured data [13], and has recently been employed to build compact covering indexes for XML data [31].
Given a directed graph G = (V, E), where V is the node set and E is the edge set, for a node v € V, let label(v)
return the label of v. Then

e Backward-simulation (<) is a binary relation over V2, such that, Vu,v € V, u <p v iff

— label(u) = label(v);

— for every parent node u’ of v in G, there is a parent v’ of v such that v’ <pg v'.
e Forward-simulation (<) is a binary relation over V2, such that, Vu,v € V u < v iff

— label(u) = label(v);

— for every child node u’ of u, there is a child v' of v such that v < v'.

e FBsimulation is a binary relation (K rp) over V2, such that V u,v € V, u <pp v (called u is FBsimulated
to v) iff

— label(u) = label(v);
— for every child node u’ of u, there is a child v’ of v such that v’ <pp v';

— for every parent node u’ of u, there is a parent v’ of v such that v’ <pp v'.

Specifically, with respect to an XML document tree, if node u is FBsimulated to node v, two properties will
hold: first, the incoming path starting from the document root to u exactly matches that from the document root
to v; second, for any node v’ on the matching incoming path (including u itself), all subtree patterns rooted at u’
can be found in the subtrees rooted at v’, which is u’s counterpart node on the matching incoming path affiliated
with v. For example, consider a document tree shown in the Figure 2, where we use subscripts to distinguish
nodes with same labels for demonstration (i.e., c1, c2, c3 all have label ¢). While ¢ is FBsimulated to t4, ¢; is not
FBsimulated to t4 because they do not share matching incoming paths. Similarly, s; is FBsimulated to both s
and s3, while s5 is not FBsimulated to s4 because they have distinct subtree patterns. Once a node is FBsimulated
to the other, the former becomes redundant when used in the positive check of BPQ" queries against documents.
For example, given a query /b/c/s, we can correctly determine that the query is positive to the document in Figure
2 without considering s;. We will exploit this finding to build the kd-synopsis later.

b
t/a/ \C\\Cc
| t/s/\s t/\s t/z\s

t ts P

Figure 2. An XML document tree

FBsimulation quotient is a FBsimulation-based synopsis that can be used as a covering index of XML data with
respect to BPQ™ queries. Briefly, nodes FBsimulated to one another are merged so as to build a smaller sized
index to answer BPQT queries. For example, in the XML document shown in Figure 3, sy and s3 are merged into
the same node in the FBsimulation quotient because they are FBsimulated to each other, while s; is not collapsed
because it is not FBsimulated to any node. While distinguishing s; from other nodes is crucial for answering queries
precisely, it is unnecessary when we are concerned with the positive check of queries, where we only care whether
a query can be answered by the data. Thus we can take a more aggressive reduction strategy than FBsimulation

6The check of whether the result set of evaluating a query against a document (or a synopsis) is non-empty.



quotient, which will be addressed in Section 3. Moreover, in a heterogeneous P2P environment, peers have different
capacities to store routing information, such that we need a strategy to adjust the size of the synopsis dynamically,
which requires an elegant way to trade off the precision of the synopsis.

nodeﬂm_apping

! /C2 /°3 FBsimulation
//\ \s A AN quotient
3 U Sy

t, 51,\77‘32 t

t ts P
Figure 3. FBSimulation quotient

3 kd-synopsis

An XML routing synopsis should satisfy two properties to be effective in P2P environments. First, it should
be as precise as possible such that the routing synopsis can discriminate queries accurately — this will save the
communication cost since false positive queries” will not be routed. Second, the routing synopsis should adapt to
heterogeneous capacities (i.e., storage space for routing information) on different peers. In this Section, we describe
kd-synopsis, a novel routing synopsis that is based on kd-simulation, a length-constrained version of FBsimulation
relationship. Through the adjustment of length constraints over kd-simulation, kd-synopsis can acquire a level of
precision with respect to specific size constraints.

3.1 Definition of kd-simulation

In this section, we define kd-simulation relationship that can identify XML element nodes that have similar
structures within the specified incoming and outgoing levels. Specifically, based on the notions of Backward-
simulation, Forward-simulation, and FBsimulation, we define their length-constrained variants: k-Backward-
simulation, d-Forward-simulation and kd-simulation.

e Given a graph G = (V, E), k-Backward-simulation (<%) is a binary relation over V2 defined inductively
as follows (k > 0). Given u,v € V,

— u <% v iff label(u) = label(v);

— u <k v iff (1) label(u) = label(v); (2) for every parent node u’ of u, there is a parent v’ of v such that
u <<B71 V.

e Given a graph G = (V, E), d-Forward-simulation (<%) is a binary relation over V2 defined inductively
as follows (d > 0). Given u,v € V,

— u <% v iff label(u) = label(v);

— u <% v iff (1) label(u) = label(v); (2) for every child node u’ of u, there is a child v’ of v such that
u <<cFl‘71 v

Briefly, k-Backward-simulation identifies similar incoming paths within k& XML tree levels, while d-Forward-
simulation identifies similar outgoing structures within d XML tree levels. For example, in the XML document
tree shown in Figure 2, t; <% t2 holds because they share the same label, but ¢; <} t2 does not because they
have different parents (i.e., different incoming edge one level away); ca <} c3 holds but c2 <% c3 does not hold
because they have distinct outgoing edges two levels away (i.e., s/t and s/p respectively).

Now we define kd-simulation as a reflexive and transitive relation over V2, with k and d values as the length
constraints over Backward and Forward-simulation relationship respectively.

7TA query is false positive when it is determined as positive to the synopsis while it is actually negative to the data on which the
synopsis is generated.



e Given a graph G = (V, E), kd-simulation (u < W) 4 called u is kd-simulated to v) is a binary relation
over V2 defined inductively as follows. Given u,v € V,

— u <Oy iff label(u) = label(v) and u <% v;
— u <®O) ¢ iff label(u) = label(v) and u <% v;

— u <O g iff (1) label(u) = label(v); (2) for every child node u’ of u, there is a child v’ of v such that
u' <FId=1) 4/ (3) for every parent node u of u, there is a parent v’ of v such that v’ <*=1(d)

For example, in the Figure 2, t4 is kd-simulated to tg with respect to k = 1,d = 1 because their parent nodes
ey <O c3, and neither of them has children nodes. However, t4 is not kd-simulated to tg anymore under k =1
and d = 2, since ¢y <02 ¢4 (i.e., o <<% ¢3) does not hold. Note that when both k and d are equal to G’s graph
diameter (i.e., the tree depth when G is an XML document tree), kd-simulation evolves into the FBsimulation
relationship, which is the basis of the covering index graph for BPQ™ [31], and when both k and d are equal to zero,
it degrades into the label-equivalence relationship, which is the basis of the label-splitting graph® that captures all
the basic label and edge information in G.

Efficient algorithms have been designed to compute the Forward-simulation relationship among graph nodes
[15, 21]. We propose an algorithm (Algorithm 1) to cover our special circumstances. This algorithm is similar to
that given by Henzinger et al. [21], but has two important differences. First, instead of only Forward-simulation,
we consider both Backward and Forward-simulation. Second, we apply length constraints over the FBsimulation
relationship. The implementation is straightforward, containing iterations for the computation of d-Forward-
simulation (k-Backward-simulation), where in each iteration, the distinction among nodes incurred by different
outgoing edges (incoming edges) are propagated to an upper (lower) level in the tree. It is more economical
to put the computation of d-Forward-simulation before that of the k-Backward-simulation, because the latter
computation can easily take into account the distinction of same-labelled nodes that do not have d-Forward-
simulation relationship. Otherwise, an extra step is needed to propagate such distinctions k levels down the tree.
This asymmetry over the computation order is caused by the characteristic of the tree structure that each node
has at most one incoming path while it probably has multiple outgoing edges. Since Algorithm 1 is a length
constrained version of Henzinger et al. [21], the time complexity is still O(|V||E|) with respect to the graph G. In
the following, we give the correctness proof of the algorithm.

Proof. Given an XML document tree D = (V, E) and w,v € V with label(v) = label(u), if (v, u) belong to the
kd-simulation relationship under k£ and d values, two sufficient conditions as follows: first, Vp, that is the ancestor
node of v that is within [ (0 < I < k) tree levels from v, there exists a node p, as the ancestor node of u that
is I tree levels away from u such that p, <*=D() p - second, Ve, that is a descendant node of v that is within
I (0 <l <d) tree levels from v, there exists a node ¢, as the ancestor node of u that is I’ levels away from u
such that ¢, <®@=1) ¢ Consider the iteration (lines 12 to 15 in Algorithm 1), Vz € V, sim(z) (i.e, the set of
the potential nodes that x is kd-simulated to) changes in each iteration according to its children nodes. We claim
invariant 1 before the iy, (1 < i < d) iteration: Yy € sim(z), x <01 3. Initially before the iteration, sim(z)
contains all the nodes that share the same lable as x, so the invariant holds (i.e., Vy € sim(x), 2 <(©©) 4). Then
consider the iy, iteration, let us assume that for a node y € sim(z), there exist at least one child node ¢, of  such
that there is no child node ¢, of ¥ and c, <=1 ¢y. Thus, in this i, iteration, y will be removed from sim(z)
(line 18), such that after this iteration, it holds that Vz € sim(z), label(z) = label(x) and for any child node ¢,
of z, there exists a child node ¢, of z such that ¢, <@~ 2 which leads to the conclusion that z < () 4,
satisfying the invariant 1. As for the second iteration (lines 28 to 41), we claim another invariant (i.e., invariant 2)
before each iteration: Vy € sim(x), < i=1(d) 4 Tnitially before the first iteration, the invariant holds because it
is obvious that Vy € sim(z), x <@ y resulting from the invariant 1. Then consider the iy, iteration, and let
us assume that before this iteration, Yy € sim(z),  <~D(@ g then in this iy, iteration, for an node y € sim(z),
for a parent node of z, p,, it there does not exist a parent node p, of y such that < i=1)(d) Dy, then y will be
removed from the sim(x) (line 34), thus after the 4, iteration, it holds that Vz € sim(x), label(z) = label(x) and
for any parent node p, of x, there exists a parent node p, of z such that p, <=1 p_ Meanwhile, after the iz,
iteration, it naturally becomes true that, for an arbitrary child node ¢, of x, there exists a child node ¢, of y such
that ¢, <@ ¢, because ¢, <@ ¢, holds according to invariant 1, meanwhile there is no distinction on

81n such a graph, nodes are merged if they have common labels, and edges are merged if they have common labels on both ends.



the incoming paths within ¢ tree levels away (otherwise, y will be removed from sim(z) in this iteration by line
34). Consequently, if y still belongs to sim(z) after the iy, iteration, z <@ y will hold, thus after k iterations,
Yy € sim(z), z <F)@ 4, O

Algorithm 1 compute_kd_simulation

Input: G = (V,E), k, d

Output: for each node v € V, the set of vertices sim(v) such that sim(v) contains all the nodes v satisfying v <D
Auxiliary functions: Vz,y € V, pre(y) = {z|(z,y) € E}, post(z) = {y|(z,y) € E}

for v € V do
stm(v) < the set of the vertices with the same label as v’s;
end for

ktmp — k; dtm,p — d;

11: //d-Forward-simulation

12: for all v € V do

13: sim/ (v) «— sim(v);

14: end for

15: while dypmp > 0 do

16: for all v € V,u € sim(v) do

17: if Jv. € post(v), such that there does not exist u. € sim(v.), where u. € post(u) then
18: remove u from sim’(v);

19: end if

20: dt'mp — dt'mp -1

21: for all v € V do

22: sim(v) « sim’(v);

23: end for

24: end for
25: end while

27: //k-Backward-simulation

28: for all v € V do

29: sim’ (v) «— sim(v);

30: end for

31: while k¢p,p > 0 do

32:  for all v € V,u € sim(v) do

33: if Jv, € pre(v), such that there does not exist u, € sim(vp), where u, € pre(u) then
34: remove u from sim’(v);

35: end if

36: ktmp < ktmp — 1;

37: for allv € V do

38: sim(v) «— sim’(v);

39: end for

40:  end for
41: end while

3.2 Building kd-synopsis

In this section, we develop our new graph-structured synopsis (kd-synopsis) based on the kd-simulation
relationship. Algorithm 1 already determines the kd-simulation relationship among document nodes, based on
which we collapse an arbitrary graph node u to v (u # v) if u <®(@ 4. This process continues until no node
remains that can be kd-simulated by any other. Accordingly, an arbitrary edge e; = (u1,v1) is collapsed into
ez = (ug,v) if both u; <®(@ v and uy <®@ g, Additionally, since absolute BPQ* queries (i.e., queries
starting from root level) require the synopsis to capture level information of the original document, we keep a mark
for the kd-synopsis vertex” that the root node of the original document is collapsed into. We propose Algorithm 2
to build the kd-synopsis for an XML document, where sim(v) is the set of all the nodes that v is kd-simulated to
(i.e., the output from Algorithm 1). For clarity, we use V and E to denote the node and edge set of the original
XML document tree, and use V and E to denote their counterparts in the synopsis graph. Briefly, we go through
each node v of an XML document tree, and if there does not exist other nodes that v is kd-simulated to (lines 11
and 12), we insert it into final_set; otherwise, we make sure that final_set includes at least one node u that v is
kd-simulated to (lines 15 to 19). Meanwhile, to facilitate the synopsis generation, we use ext(u) to track all the
document tree nodes that are kd-simulated to u (line 20). After all the nodes are traversed, no nodes in final_set
will be kd-simulated to another one, thus we can build the kd-synopsis by generating a separate synopsis vertex for

9To distinguish from the nodes in original document trees, we use vertex when we refer to a node in kd-synopsis.



each node in final_set and establish synopsis edges accordingly (lines 24 to 38). Figure 4 depicts the kd-synopses
of the example document (Figure 2 and 3) under different k¥ and d values. Note that in the kd-synopsis with k = 1
and d = 2, ¢3 is not collapsed because it has a distinct outgoing edge (i.e., s/p) two levels away.

Algorithm 2 compute_synopsis

: Input: sim(v), a set of nodes that v (v € V) is kd-simulated to; G = (V, E), the original data graph
Output: a kd-synopsis graph S = (V,E)

Auxiliary function: Vv € V, label(v) returns v’s label.

for all v € V do
sim(v) «— sim(v) — {v};
cat(v) — {v};

end for

final_set — ¢;

10: for all v € V do

11:  if sim(v) = ¢ then

12: final_set — final_set U {v};
13:  else

14: final_set «— final_set — {v};
15: if final_set N sim(v) = ¢ then
16: choose any u € sim(v);

17: final_set — final_set U {u};
18: end if

19: choose any u € final_set N sim(v);
20: ext(u) — ext(u) Uext(v);

21: end if

22: end for

23: //generate synopsis vertices

24: for all v € final_set do

25: generate a synopsis vertex vs;

260 V—VuU{us};

27: establish a mapping from u € ext(v) to vs;

28:  if Ju € ext(v) that has no parent vertex in G then

29: mark vs as a root;
30: end if
31: end for

32: //establish synopsis edges
33: for all e = (u,v) € E do

34: if Jus, vs such that v maps to us and v maps to vs then
35: generate a synopsis edge (us,vs) in S;

36: E—EU{(us,vs)};

37:  end if

38: end for

b node mapping b

Figure 4. kd-synopsis

The size of the kd-synopsis is bounded by the size of the original document, and the reduction ratio depends
on k and d values. The smaller k and d are, the higher the reduction ratio will be, and in the extreme case when
k = d = 0, the kd-synopsis is the same as the label-splitting graph. The time cost of Algorithm 2 primarily consists
of three parts: first, The cost to building the final_set, where the most expensive part is due to the set intersection
between final_set and sim(v) (line 15 and 19). In this work, we maintain the membership of each node v € G
in final_set, such that the cost of the set intersection can be bounded by |V, leading to a total cost of this part
as O(]V]?). Second, since the extent set corresponding to the final_set is a partition of V, line 27 is executed at
most V' times, so the generation of V (line 24 to 28) costs at most |V|. Third, the establishment of E (line 33 to
38) iterates over each edge in G, leading to a cost of |E|. In all, the time complexity of Algorithm 2 is bounded by
|V2|+ |V|+|E|, which is efficient. To demonstrate that our construction algorithm is optimum, we prove that the



kd-synopsis S constructed by Algorithm 2 has no redundant nodes that can be kd-simulated by others. To prove
this, we argue that, given u,v € G, first, when v <)@ 4 while u <®(4 4 does not hold, v will not be kept in
S; second, when both v <@ 4 and u <)@ 4 hold, at most one of them (actually the one to be first processed
in Algorithm 2) will be kept in S.

Proof. e According to the lines 11 to 21 of Algorithm 2, when vertex v is processed, if v € final_set and
sim(v) is non-empty, then v will be removed, and a vertex u € sim(v) (rather than v) will be kept in
final_set such that v <®(@ y: later even if u is replaced by another vertex w in final_set, it always
holds that Jw € final_set such that v <®)(4 . Based on the property of the simulator set, Va € V, if
z <) 4 sim(x) contains all the vertices that v is also kd-simulated to, so V& processed after the removal
of v, sim(x) N final_set # ¢, thus v will never get a chance to enter final_set any more.

o Without loss of generality, let us assume that v is processed after u. When v is processed, if v € final_set,
it will be removed according to Algorithm 2 (line 14); if u € final_set, then u will be kept in final_set,
rejecting v to enter final_set later, as analyzed in proof of (1); or if u does not belong to final_set when
v is processed, there must be w € V such that u,v <®(@ 4, and since sim(v) # ¢, w must belong to
sim(v) N final_set, rejecting v to enter final_set in the same way.

O

kd-synopsis has two important properties: first, the synopsis has no false negatives when checked against BPQT
queries; second, the synopsis maintains a well-defined precision that is determined by length constraints k& and d.
The first property is obvious, since when a graph node (i.e., document tree node) is collapsed into another, all its
edge information is kept, which indicates that there is no loss of label or edge information in the synopsis. Note
that we assume that root information is kept so that absolute BPQT queries can be checked correctly. With this
guarantee, all data relevant to a query can be identified, which is desirable in query shipping systems. As for the
precision of the synopsis, a kd-synopsis can be used to precisely check the positive of BPQ™ queries that can be
characterized by kd-pattern, a parameter-constrained query pattern defined in the following.

o (1)-descendant is a query pattern defined as child::c, where child is the axis defined in XPath, and ¢ is an
arbitrary label. (d)-descendant (d > 1) is a query pattern recursively defined as child::c[(d-1)-descendant]*.

e (1)-ancestor is a query pattern defined as parent::p, where parent is an axis defined in XPath, and p is an
arbitrary label. (k)-ancestor (k > 1) is a query pattern defined as parent::p[(k-1)-ancestor/[(d)-descendant]*.

e Then kd-pattern is a query pattern defined as z/(k)-ancestor][(d)-descendant]*, where z is an arbitrary label.
Moreover, to model absolute BPQ* queries, we can impose a root constraint over z.

To visualize the kd-pattern, we illustrate it as a kd-pattern tree in Figure 5 (a), where p; denotes an ancestor
element that is ¢ edges away from z, and ¢; ; denotes the jy, element on the ¢ level of a (d)-descendant pattern
tree. For future reference, the node labelled as x is called pivot of the kd-pattern tree. For example, given a
BPQ™ query t/parent::c[child::s[child::t][child::p]]], its kd-pattern tree is shown in Figure 5 (b) where £ = 1 and
d = 2. Since the modelling of BPQ™ queries into kd-patterns is straightforward, we do not discuss it further in this
paper. While the kd-pattern basically captures parent-child axis in BPQ™ queries, ancestor and descendant axes
can also be modelled as kd-patterns if the document depth information is available. For example, given a query
c[descendant::t] and the information that the depth of the documents to be queried over is up to three, the query
can be modelled as three kd-patterns c/child::t], c[child::*[child::t]], and c[child::*[child::*[child::t]]] with k = O
(i.e., no (k)-ancestor) and d = 1,2, 3 respectively. Note here the “*” denotes wild card labels. Note, further, that
kd-pattern tree is a general pattern tree not defined only for modelling queries, and we will use it to characterize
a subtree in XML documents as well.

The following theorem states that kd-synopsis maintains a well-defined precision with respect to the positive
check of BPQ™ queries.

Theorem 3.1. If a BPQ' query can be modelled as kd-patterns (under k and d values), its positive/negative check
against an XML document can be done correctly on all kd-synopses that are constrained by k' and d' values, where
k' > maz(k,d) and d' > max(k,d).
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Figure 5. kd-pattern tree

Proof. We first prove that all queries positive to documents will also be positive to their kd-synopses. Given a
BPQ™ query g, let us consider a specific XML document D that ¢ is positive to. ¢ will definitely be positive to D’s
arbitrary kd-synopses because we already claimed that kd-synopsis has no false negatives when checked against
BPQ™ queries.

Now we prove that if ¢ is negative to D, while ¢ can be modelled as a kd-pattern tree T' under k and d values,
it will also be negative to D’s kd-synopses under k' and d’, where k' > k and d’ > d. If any node or edge in T' does
not exist in D, then ¢ will be directly determined negative for all the kd-synopses because we do not add label or
edge there. Thus let us assume that nodes labelled with x exist in D and focus on all the D’s kd-pattern (under k
and d) subtrees that have a pivot node labelled as x (other kd-pattern subtrees will not affect the positive check
of ¢). Consider nontrivial kd-patterns with k > 1 and d > 1 (the conclusion can be easily extended to kd-patterns
with £ < 1 and d < 1). Since ¢ is negative to D, there exists at least one node in T that can not be satisfied
by D, called the failure point (fp). There are two possible reasons for this failure. First, an edge incident to fp
is missing from any D’s kd-pattern subtree that has the pivot node with the same label as z. Let us denote the
missing edge as e = (ue, ve) and consider an arbitrary D’s kd-pattern subtree S that includes another node w,
with the same label as wu.. Since S does not include e, u, will not have an edge that ends with another node that
has the same label as v, so u; is not kd-simulated to u, under k¥’ > 1 and d’ > 1. Meanwhile, the unavailability
of the pivot node within S, whose scope is bounded by k' and d’, distinguishes u, from u,. with respect to the
kd-simulation relationship. Thus u, is not kd-simulated to u, either. Consequently, e will not merge into S in
any kd-synopsis constrained by &’ and d’, and T can not match with any kd-pattern subtree in the kd-synopsis,
such that ¢ is definitely negative against the synopsis. Second, consider the case that fp in T has several edges
(or paths) incident to it, and we will prove that fp can not be satisfied by any kd-synopsis under &’ and d’ values.
We will focus on edges in the following, but the same proof holds for paths. Let us consider two edges e; and es
incident on fp, which exist in D but do not appear in the same kd-pattern subtree. Without loss of generality, take
two kd-pattern subtrees S; and S5, which have different pivot nodes x; and x5, and include e; and es respectively.
Z9 is not kd-simulated to x; because the unavailability of e; will be propagated to xo within Ss, according to the
definition of the kd-simulation. Similarly, x1 is not kd-simulated to x5 because of the unavailability of es in S7.
Consequently, z1 and x5 will not collapse into each other in any kd-synopsis under k' and d’ values. Moreover,
both e; and e; have an end node that shares the same label as fp, denoted as e{p and egp respectively. Since e{p
and egp are incident to edges that end with distinct labels (i.e., e; and es), neither is kd-simulated to the other
(under &' > 1 and d' > 1), so they do not collapse into each other in any kd-synopsis. Thus, no kd-pattern subtree
with a pivot node labelled as = in the synopsis will contain both e; and ey, leading to the conclusion that ¢ is
negative against the synopsis. [

Consider the example document tree and its two kd-synopses in Figure 6 (a), which are constrained by ¥’ = d' = 1
and k' = d’ = 2 respectively. Further consider two kd-pattern trees shown in Figure 6(b) and 6(c) that are negative
to the document. The failure point ¢ in the kd-pattern tree with ¥ = 2 and d = 1 (Figure 6 (b)) has a missing
edge ¢/s, while the failure point b in the kd-pattern tree with £ = 1 and d = 2 (Figure 6 (c)) has two paths (i.e.,
s/t and s/p) incident to it, which belong to different kd-pattern subtrees in the document. While both kd-pattern
trees are false positive when checked against the kd-synopsis under k' = d’ = 1, they are correctly determined as
negative against the kd-synopsis under ¥’ = d’ = 2, where ¥’ > k and d’ > d.

In summary, kd-synopsis qualifies as a routing synopsis in P2P environments since its size can be easily adjusted
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Figure 6. Check kd-patterns
through k£ and d value so as to adapt to the heterogeneous capacity on different peers, while maintaining a well-
defined precision to check the positive/negative of BPQ™ queries. On peers with larger space, k and d values can
be set higher such that we can get a more precise synopsis of the data, while on peers with less space, we can use
smaller k and d values, trading off some precision. A label-splitting graph is normally compact, therefore, in this
work we do not consider more aggressive reductions such as collapsing nodes or edges with different labels into
each other.

4 kd-synopsis Based Routing

kd-synopsis can be used in all kinds of routing-based P2P networks. In this work, we consider super-peer based
unstructured P2P networks, where there are plain peers and super-peers, both of which keep XML data, but only
the latter act as routers for query shipping. Since peers are heterogeneous with respect to the storage space for
the routing information, the routing states are organized under space constraints (Section 4.1). A query can be
originated on an arbitrary peer. If the peer is a plain peer, the query will be forwarded to its super-peer, otherwise
if the peer is a super-peer, the query will be routed to peers where the query can be potentially answered. In
parallel, the query will also be forwarded to upper-level super-peers. For simplicity, we assume that top-level
super-peers broadcast queries among each other such that no propagation of routing information happens among
them. Since peers may join and leave the network dynamically, we will also discuss the update of the routing
information (Section 4.2).

4.1 Routing State and Routing Decision Making

The routing tables on super-peers are managed in a bottom-up way. To establish a routing entry on super-peers
for a plain peer, a kd-synopsis of the document stored on the plain peer will be generated and sent over to its
super-peer. This synopsis generation algorithm can be obtained from Algorithm 2 by setting the initial values
of k and d as the depth of the document, and then decreasing the (k,d) values step-by-step until the size of the
synopsis satisfies the space constraint imposed by the super-peer. To establish a routing entry for a super-peer on
upper-level super-peers, we first need to aggregate the routing information of the lower-level super-peers, which
constitutes a set of kd-synopses. Given a space constraint for this super-peer S (i.e., the space allowed to store
the information of S on its upper-level super-peers), a naive way to aggregate is to merge the synopses into one
kd-synopsis under the minimum % and d values among all the k and d values of the synopses in routing table of
S, denoted as ki and d,g, respectively. In this way, the resulting synopsis is precise in positive check of the
BPQ™ queries that can be modelled as kd-patterns under k = d = min(kmin, dmin ), which is a natural conclusion
from Theorem 3.1. However, it is obvious that the precision of the synopsis is limited by ki and dpin, which
is undesirable when either k,,;, or d;, is small. So, instead of merging all synopses into a single synopsis, we
organize the kd-synopses by using a sequence, which keeps the precision of the original kd-synopses as much as
possible. The reason of employing a sequence instead of a set is that we can easily track where a synopsis is
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aggregated. The algorithm is given in Algorithm 3. Briefly, given a set of kd-synopses, we first sort them in a
decreasing lexicographic order over (k, d) value pair. Then we union the synopses with same (k, d) value pair, which
leads to a synopsis sequence with a strict decreasing order over (k,d) value pair. Afterwards, if the size of this
sequence violates the specified space constraint, we start to reduce the size of the sequence by pairwise aggregating
synopses: in each iteration, we choose a pair of kd-synopses 57 (e.g., under k = k; and d = dy) and S5 (e.g., under
k = ko and d = dz) such that S; and Sy are the first pair in the sequence that satisfies ky = ko and dy < da. S
and Sy are then aggregated into Sy, a kd-synopsis with k = k1 and d = min(di, dz2). If the pair of S; and S5 does
not exist, which indicates that all the kd-synopses in the sequence have different k values, we aggregate the first
pair of kd-synopses in the sequence. This aggregation process continues until the space constraint is satisfied. In
this way, we can easily locate an original kd-synopsis in the aggregated sequence: it is either located at a synopsis
with the same k£ and d values, or located at the foremost synopsis with the same k value but a lower d value,
otherwise, the synopsis must be aggregated into the foremost synopsis (i.e., with a lower k value) of the sequence.
This will facilitate the update maintenance of the routing information which requires the location of a synopsis
already aggregated in routing tables on super-peers.

Algorithm 3 aggregate_synopsis

1: Input: a set of synopses {S;}, with S; following kd-simulation under k; and d; constraints; the space constraint C
2: Output: a sequence of (aggregated) synopses satisfying C.

3

4: Sort the set {S;} in an decreasing lexicographic order on (k;, d;);

5: while there exist two synopses S; and S» following the same (k)(d)-simulation do
6: Sagg «— S1 U Sy;

71 compute_synopsis(Sagg, k, d);

8: remove S; and Sy and add S,44 into the sequence, keeping the decreasing order;
9: end while

10: while (the aggregated size of the sequence) > C do

11: if there exists only one kd-synopsis S in the sequence that is under k£ and d values then

12: if k£ > d then

13: k—k—1,

14: else

15: d«—d-—1;

16: end if

17: Sagg — compute_synopsis(S, k, d);

18: replace S with Sag4;

19: else

20: if there exists a pair of kd-synopses Si, Sz in the sequence such that S; conforms to kd-simulation under k; and ks values and Sa2
conforms to kd-simulation under ks and ds values, and k1 = k2 and di < d2 then

21: get the foremost such pair Si, Sz from the sequence;

22: else

23: get the foremost pair Si, S from the sequence;

24: end if

25: kmin = min(ki, k2); dmin = min(di, ds2);

26: Sagg «— S1 U Sg;

27: Sagg — compute_synopsis(Sagg, kmin, dmin);

28: remove S; and Sz from the list and add Su44 into the list, keeping the decreasing order;

29: end if

30: end while

The routing decision making of a query g against a routing entry works in a straightforward way. When ¢ is
routed to a super-peer, it is checked against the kd-synopses in the sequence of each routing entry. If ¢ is positive
to any kd-synopsis, it will be routed to the peer corresponding to the routing entry, where the routing process
continues in the same way; in contrast, if ¢ is negative to all the kd-synopses in the routing entry, ¢ will not be
sent to the corresponding peer. The check of whether a query ¢ is positive against a kd-synopsis can be reduced
to the evaluation of the query over the synopsis. A FBsimulation-based query evaluation strategy addressed by
Ramanan [31] is directly applicable. Another efficient XPath evaluation algorithm is addressed in [20], but we
prefer Ramanan’s strategy since it evaluates queries over a graph-based synopsis rather than a tree-structured
document.

4.2 Maintenance of Routing Information
In a super-peer based P2P network, the routing information (i.e., kd-synopsis) is propagated and replicated on
multiple peers. So it needs to be updated when peers join or leave the network. Specifically, when a joining peer

P is connected to its super-peer SP, it propagates its routing information (i.e., the kd-synopsis) to SP and then
S P forwards changes over its own routing table to upper-level super-peers in an iterative way. When P leaves the
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overlay network, its corresponding routing information needs to be removed from all upper-level super-peers that
contain P’s information.

Since kd-synopses are aggregated together in routing tables, we need counter mechanisms to record the
frequencies of common edges and vertices. Given a kd-synopsis S, the corresponding frequency-enabled synopsis
is built by attaching to each edge e an integer counter that keeps the sum of the occurrences of common edges
that collapse into e. Then two synopses S; and Sy are aggregated (through Algorithm 3) into Sgq4, we track all
edges in S; and Sy that contribute to the same edge in S,44, and then assign the summary of the frequencies
to the edge in S,44. Since the aggregation of kd-synopses is based on the computation of the kd-synopsis, we
integrate this process into compute_synopsis (i.e., Algorithm 2), which leads to Algorithm 4. Besides the addition
of the frequency accumulation, a tricky part of this algorithm is that the extent for each synopsis vertex now
corresponds to all the original document nodes (or synopsis vertices in the case of computation over synopses) that
can be aggregated into it (see Algorithm 4 lines 7-9), in other words, a node in the original tree (or synopsis) is
merged into all the nodes that can kd-simulate it. In this way, we waive off the cost to track where a node or
edge is collapsed, simplifying the maintenance task. The computation cost of adding the counter mechanism over
compute_synopsis is contributed by the frequency summarization in Algorithm 4 lines 28 and 38. Since extents
now can overlap, the frequency updates for vertices (line 28) and edges (line 38) execute O(|V|?) and O(|E|?)
times in the worst case, leading to a total cost of O(|E|?). Accordingly, we replace all calls to compute_synopsis
in aggregate_synopsis (i.e., Algorithm 3 lines 7,18 and 28) with compute_synopsis_freq to support the frequency
maintenance. To ease the presentation, without explicit indication, in the remainder of this paper, we assume that
all kd-synopses are frequency-enabled.

Algorithm 4 compute_synopsis_freq

: Input: a simulator set for each vertex sim(v); the original data graph G = (V, E)
Output: a frequency-enabled kd-synopsis graph S = (V,E)
Auxiliary function: Vv € V, label(v) returns v’s label.

for all v € V do
stm(v) «— sim(v) — {v};
for all u € sim(v) do
ext(u) — ext(u) U{v};
end for
end for
final_set — ¢;
: for all v € V do
if sim(v) = ¢ then
final_set «— final_set U {v};
else
final_set «— final_set — {v};
if final_set N sim(v) = ¢ then
choose any u € sim(v);

e e e e

19: final_set «— final_set U {u};
20: end if

21: end if

22: end for

23: //generate synopsis vertex

24: for all v € final_set do

25: generate a synopsis vertex vg;

26:  V—VU{vs};

27: establish a mapping from u € ext(v) to vs;
28: freq(vs) < the size of ext(v);

29: end for

30: //establish synopsis edge

31: for all e = (u,v) € E do

32: us, Vs < the synopsis vertex corresponding to u, v;
33: if there does not exist (us,vs) € E then

34: generate a synopsis edge es = (us,vs) in S;

35: E — EU {(us,vs)};

36: freq(es) < 0;

37: end if

38: freq(es) = freq(es) + freq(e);

39: end for

Based on compute_synopsis_freq, the maintenance of the routing information becomes straightforward. When
a peer P joins, it will send its kd-synopsis S to its direct super-peer SP, where a routing entry is established. Then
S, as the change over SP’s routing information, is sent to SP’s direct super-peer SSP, followed by a call of the
aggregation mechanism (Section 4.1) to guarantee that the routing entry still satisfies the space constraint. Then all
the changes that have occurred over this routing entry, represented as removal and addition of specific kd-synopses,
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are sent to SSP’s super-peers iteratively. When a peer P leaves, its corresponding routing entry is removed from
SP’s routing table. If P is a super-peer, we need to move its children and descendant peers under other super-
peers. Since this work is focused on synopsis issues, we do not consider a complicated mechanism for super-peer
selection, and just move the P’s children peers up a level. Accordingly, the routing information corresponding to
P’s children peers is sent to S P, where a new space constraint will be imposed over all routing entries. Afterwards,
all the changes over SP’s routing information are sent to its super-peer SSP, where we take the routing entry
corresponding to S P, remove and insert kd-synopses accordingly, and adjust the sequence according to the space
constraint. Algorithm 5 shows the update of a synopsis sequence with respect to a kd-synopsis’ join or leaving,
where we use changes to collect all the removal and addition of synopses on the current peer. Since this is an
incremental update approach, we do not need to generate sequences from a scratch for each join/leaving operation.
To illustrate the maintenance process, we show an example of routing information propagation progress in Figure
7, where when S; is added with p5, it is aggregated into Sy that already aggregates Sy and S on super-peer
p7, and when Sg is removed with the leaving of p6, we first figure out that it is aggregated into S4 56, and then
we remove its frequency information from Sy 56 on p7. Since p6 is a super-peer, we change hand of children and
descendant peers to p7, with the routing entries adjusted there according to the new space constraint.

routing table upper-level peers
. ->p6
S,->p3 p5 joins s,->p3 Sg
S,->p2 <P 5,p2 S;->p5

5,,5,55->p3

=

propagation p6 leaves

sop5 | — >

S->p3
s>pl | P3
S, >p2

s;->p3
sopl | P3
s, >p2

5,>P6
s,>p4

p5

Change- $,->p3
hand sopl | P3
s,->p2

Figure 7. Routing information update

5 Performance Evaluation
5.1 Testbed

We generate random XML data from a repository of XML documents with rich structures, including DBLP [1],
TPC-H XML data [9], XMark [12], Treebank [10], and XBench [11, 33]. The size of the data that we populate on
each peer is uniformly distributed between 2k and 20kbytes. Because most of the XPath query generators do not
consider backward axes (i.e., parent and ancestor axes), we develop a query generator to generate random BPQ™
queries over the repository.

Since there is no widely deployed P2P XML query processing system, we considered using P2P simulators
[5, 8]. Unfortunately, they are not directly applicable to this work for two reasons. First, they do not support
general hierarchical overlay networks discussed in this work. Both [5] and [8] basically address a two-tier hierarchy.
Second, we need a storage model to simulate the size for holding routing tables on super-peers, and it is unclear
how to integrate them into the existing simulators. So, we developed a simulator that simulates a super-peer based
hierarchical overlay network, where the space constraint on peers is uniformly distributed between 10k to 20k
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Algorithm 5 update_routing_table

: Input: {S;}, a sequence of (aggregated) synopses on a super-peer; S = (V, E), a synopsis following kd-simulation under k and d values;
an operation option opt € {join, leaving}; the space constraint C for this sequence

: Output: the updated sequence of (aggregated) synopses after join/leaving S

1 Auxiliary function: abs(z) returns absolute value of z

—_

for e € E do
frea(e) = —abs(frea(e));
: end for
9: end if

10: S’ « ¢;
11: locate S’ in the sequence {S;} such that S’ conforms to kd-simulation under k and d;
12: if S’ = ¢ then
13: if opt = join then

2
3
4:
5: if opt = leaving then
6~
7
8

14: locate the S’ that conforms to kd-simulation under k' and d’ values, where k' = k and d’ is next lower to d;
15: if S’ is not an aggregated synopsis then

16: S — ¢;

17: end if

18: else

19: locate the S’ that conforms to kd-simulation under k' and d’, where (k’,d’) is next lower to (k, d);

20: end if

21: end if

22: if S’ # ¢ then

23: S «— compute_synopsis_freq(S,k’,d’);

24: Sagg — SUS

25: mark Sag4 as an aggregated synopsis;

26: Sagg — compute_synopsis-freq(Sagg, k', d’);
27: if opt = leaving then

28: for all vertices and edges v, e € Squq4 such that freq(e), freq(v) =0 do
29: remove v, e from Sqg4;

30: end for

31: end if

32:  remove S’ from the sequence and add S,44 into the sequence;

33: record the deletion of S’ and insertion of S,q4 in changes

34: else

35: //this branch should only satisfy for join operation

36: add S into the sequence directly;

37: record the insertion of S in changes

38: end if

39: if (the size of the sequence) > C then

40:  aggregate_synopsis({S;}, C);

41: record every deletion and insertion of synopses in changes
42: end if

43: send changes to the direct super-peer

bytes. Specifically, we extract a specific number of maximum spanning trees from transit-stub hierarchical graphs
generator by GT-ITM [2], then connect roots of the trees as top-level super-peers, which will broadcast all queries
among each other. To simulate the dynamism feature of the P2P networks (i.e., the join and leaving of peers), we
follow the common practice [29] to use a poisson distribution function to simulate the arrival of new nodes, and
an exponential distribution function to simulate the uptime of peers. Our simulation is conducted centrally under
Linux on a 3G MHz PC with 1G memory. Since the Bloom-filter based strategy [24] is a closely related work, we
re-implement it and use it as a comparison system in part of the experiments.

5.2 Precision and Size of kd-synopsis

In this experiment we try to demonstrate the precision that the Bloom-filter based synopsis [24] and kd-synopsis
can provide vis-a-vis the space consumed by them. We use the metric of false-positive ratio to measure the precision.
Given a document and a set of queries'® negative to the document, the false-positive ratio is computed by dividing
the number of queries that are positive to the synopsis by the size of the query set.For this experiment we extract
250 small documents between 2k to 20k from each document in the repository (e.g., DBLP, XMark) and a certain
number(25 in our case) of false(negative) queries are generated over each document.We note the average values
including the size of FBSimulation quotient, the size and false-positive ratio of the Bloom-filter based synopsis
[24], and kd-synopses under k < 2 and d < 2. Here we take FBsimulation quotient into account so as to show
that kd-synopses can be significantly smaller. The experimental results are recorded in Table 1. It is obvious that

10For comparison purpose, in this experiment we consider a subset of BPQ™ queries containing only forward axes, since Bloom-filter
based synopsis can not handler backward axes.
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with the increasing of k£ and d values, the false-positive ratio of the kd-synopsis decreases sharply, while the size of
the synopsis keeps smaller than Bloom-filter based synopsis, which demonstrates the effectiveness of kd-synopsis
in balancing the precision and size.

doc | FBQ| BF kd(0,0) | kd(0,1) | kd(0,2) | kd (1, 0) | kd (L, 1) | kd (1, 2) | kd (3,0) | kd (2, 1) | kd (2, 2)
size | size | S FP [ S [FP [ S |[FP [S [FP [S [FP [S [FP [S [FP [S [FP [S [FP [ S | FP
1| 8612 | 1211| 1609 0.99 | 286 | 1 569 | 0 569 | 0 318 | 0.997] 875 | 0 876 | 0 318 | 0.997 875 | O 876 | 0
2 [ 8142 | 4246] 2400] 1 573 | 1 1465 0.103 1742 0.035] 573 | 1 2796] 0.075] 3167 0 573 | 1 2910] 0.075 3311 0
3 | 8293 | 3538 6840] 0.758| 669 | 0.79 | 1357 0.26 | 1716 0.115] 1137 0.395 1965 0.193 2297 0.062 1787 0.315 3032 0.143 3282 0.03]
1| 10418 2348| 4000] 0.936| 115§ 1 1240 0.398 1244] 0.398| 1233) 0.208 1378 0.001] 1422 0.001 1294 0.001 1375 0.001 1507 0
5 | 11303 3871| 2400| 0.818| 717 | 0.059] 834 | 0 831 0 806 | 0.059 1233 0 1233 0 806 | 0.059 1233 0 1233 0

1: DBLP 2: TPC-H 3: Treebank 4: XBench(DCSD) 5: Xmark
FBQ: FBsimulaion quotient BF: Bloom-filter based synopsis S: size (in bytes) FP: False-positive ratio

Table 1. Precision and size

5.3 Query Shipping Performance

In this experiment, we use the number of hops on the overlay network for routing queries to their relevant data
as the metric of the query shipping cost. We consider randomly generated networks up to 1000 peers, where each
peer keeps one XML document randomly generated over the repository, with its size between 2k and 20k bytes. To
demonstrate the advantage of the kd-synopsis over Bloom-filter based synopsis, we deploy the two synopses as the
routing synopsis separately over the same network, and use 100 queries to test the average shipping cost. We also
compare the query shipping cost with the optimal shipping cost, defined as the smallest number of hops to be used
to ship queries to all the peers that the queries are positive to. Since Bloom-filter based synopsis does not handle
backward axes (i.e., parent and ancestor axes) in BPQ™T queries, we run separate experiments for queries with and
without backward axes, where we only compare performance of kd-synopsis and Bloom-filter based synopsis under
the latter scenario. Figure 9(a) shows the comparison between the kd-synopsis and Bloom-filter based synopsis,
which demonstrates that the shipping cost based on kd-synopsis is 53% smaller than that based on Bloom-filter
based synopsis. Moreover, the shipping cost based on kd-synopsis keeps close to the optimal shipping cost, further
demonstrating the effectiveness of the kd-synopsis. In Figure 9(b), we test the shipping cost for a different set of
BPQ™ queries including backward axes. The result once again shows that the average cost is very close to the
optimal shipping cost.
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Figure 8. Query shipping cost

In this experiment, we also demonstrate that the positive check of queries against kd-synopsis is still time-
efficient, and wins over the Bloom-filter based synopsis. Again, we use the same set of BPQ™' queries that do not
contain backward axes. The average time for positive check is recorded for networks up to 1000 peers, and the
result (Figure 9) shows that the time of positive check against kd-synopsis is sharply (86%) lower than that against
Bloom-filter based synopsis. since this work is focused on the design of a routing synopsis rather than a routing
protocol, the time we measure here only captures the computation time required by the routing decision making,
not including the communication latency on the physical network.

16



Positive Check Time

mzecond
SO0o0 o000
S L B -1 00

peer mumber (=100

| Okd-zynopzis BMEloom—filter ‘

Figure 9. Routing decision making cost
5.4 Maintenance Cost

The join of peers is modeled by Poisson distribution, and the uptime of each peer is independently modeled
by using exponential distribution. Whether a peer join or leave, the update of the routing information will be
propagated upward the overlay topology until it reaches the top-level peer, so we can focus on a tree-like network
topology. To evaluate the maintenance cost, we measure two metrics: first, the number of hops needed to propagate
the update, which basically depends on the network topology and network size; second, the average size of the
update messages, which is proportional to the communication cost incurred by the maintenance. The experiment
results are shown in Figure 10, where in Figure 10 (a), we illustrate the average number of hops for peer join and
leaving over tree-like networks containing 10 to 100 peers, and in Figure 10 (b), we show the average size of the
update messages for the same setting. All the data are collected during 10 logical time intervals, with the mean of
Poisson distribution as 5 (i.e., on average, 5 peers join the network per unit time), and the mean of the exponential
distribution as 5 (i.e., on average, a peer leaves the network after 5 time units). Since the leaving of a super-peer
needs other super-peers to take over its children peers, the maintenance cost is expected to be higher, so we also
compare the average size of update messages regarding the leaving of plain peers and super-peers (in Figure 10
(¢)), which demonstrates that on average, the former (i.e., super-peers leave the network as well) takes cost than
the latter when the network becomes large.

6 Conclusion

We discussed the design of a novel routing synopsis for distributed XML query processing over P2P network.
The primary problem we are interested in is how to locate distributed XML data relevant to XML queries in a
super-peer based unstructured P2P network. A key part of the problem is on the design of a routing synopsis that
can capture the rich hierarchical information of XML data. Taking both the precision of routing synopses and
the heterogeneity of P2P systems into account, we propose kd-synopsis, a novel synopsis that is built over length
constrained FBsimulation relationship. Based on this routing synopsis, we address the issues on query routing and
routing information maintenance. Experiments show that our scheme is much cheaper on query shipping than a
comparison system proposed by Koloniari [24].

Since we are considering BPQ™ that is a subset of XPath language, we expect to extend our strategy to include
more constructs such as IDREF, negation operator, sibling axes and others. To implement those, we need to
capture order and ID/IDREF information from the data. These information must be encoded together with the
basic graph-structure in a compact way so as to avoid a blowup of the synopsis size. Another problem we are
working on is the optimization of queries to facilitate the check of the positive of queries against routing information.
Finally, building a super-peer based overlay network topology that takes multiple factors (e.g., content similarity,
storage size, network bandwidth) into account is still an open and interesting problem on its own.
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