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ABSTRACT
Mining frequent itemsets in data streams is beneficial to
many real-world applications but is also a challenging task
since data streams are unbounded and have high arrival
rates. Moreover, the distribution of data streams can change
over time, which makes the task of maintaining frequent
itemsets even harder. In this paper, we propose a false-
negative oriented algorithm, called TWIM, that can find
most of the frequent itemsets, detect distribution changes,
and update the mining results accordingly. Experimental
results show that our algorithm performs as good as other
false-negative algorithms on data streams without distrib-
ution change, and has the ability to detect changes over
time-varying data streams in real-time with a high accuracy
rate.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications –
Data Mining

General Terms
Algorithms, Performance, Experimentation

Keywords
Data stream, Frequent itemset

1. INTRODUCTION
Mining frequent itemsets in data stream applications is

beneficial for a number of purposes such as knowledge dis-
covery, trend learning, fraud detection, transaction predic-
tion and estimation. However, the characteristics of stream
data – unbounded, continuous, fast arriving, and time- chang-
ing – make this a challenging task. Existing mining tech-
niques that focus on relational data cannot handle streaming
data well [4].

Mining frequent itemsets is a continuous process that runs
throughout a data stream’s life-span. Since the total number
of itemsets is exponential, it is impractical to keep statistics
for each itemset due to bounded memory. Therefore, usually

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

only the itemsets that are already known to be frequent are
recorded and monitored, and statistics of other infrequent
itemsets are discarded. However, data streams can change
over time. Hence, an itemset that was once infrequent can
become frequent if a stream changes its distribution. It is
hard to detect such itemsets that change from infrequent to
frequent, since they are not maintained due to limited mem-
ory. Furthermore, even if we could detect these itemsets, we
would not be able to obtain their statistics (supports), since
mining a data stream is a one-pass procedure and history
information is not retrievable. Distribution changes over
data streams might have considerable impact on the mining
results, but few of the previous works have addressed this
issue.

In this paper, we develop a new algorithm, called TWIM,
that can find most of the frequent itemsets in real time. It
can also predict the distribution change and update the min-
ing results accordingly. Our approach maintains two tum-
bling windows over a data stream: a maintenance window
and a prediction window. All current frequent itemsets are
recorded and maintained in the maintenance window, and
we use the prediction window to keep track of candidates
that have the potential of becoming frequent if the distri-
bution of stream values changes. Every time the windows
tumble, we check if new frequent itemsets and candidates
should be added, and if some existing ones need to be re-
moved from the lists. Since we do not keep statistics for
every itemset within the windows, memory usage is limited.
Experimental results show that TWIM is as effective as pre-
vious approaches for non-time-varying data streams, but is
superior to them since it can also capture the distribution
change for time-varying streams in real-time.

2. PROBLEM STATEMENT
Let I = {i1, i2, ..., in} be a set of items. A transaction

T accesses a subset of items I ⊆ I. A data stream is an
unbounded sequence of tuples that continuously arrive in
real time. In this paper, we are interested in transactional
data streams, where each tuple corresponds to a transaction.

Let Tt = {T1, T2, ..., TNt} be the set of transactions at
time t. Nt is the total number of transactions received up to
time t. The data stream that contains Tt is denoted by DTt .
Note that the number of items, n, is finite and usually not
very large, while the number of transactions, Nt, will grow
monotonically as time progresses.

Definition 1. Given a transaction Tj ∈ Tt, and a subset
of items A ⊆ I, if Tj accesses A (i.e., A ⊆ Ij), then we say
Tj supports A.

Definition 2. Let sup(A) be the total number of trans-



actions that support A. If S(A) = sup(A)/Nt > δ, where δ
is a predefined threshold value, then A is a frequent itemset
in DTt under current distribution. S(A) is called the support
of A.

3. RELATED WORKS
Mining frequent items and itemsets is a challenging task

and has attracted attention in recent years. Jiang and Gru-
enwald [5] provide a good review of research issues in fre-
quent itemsets and association rule mining over data streams.
One of the classical frequent itemset mining techniques for
relational DBMSs is Apriori [1], which is based on the heuris-
tic that if one itemset is frequent, then its supersets may also
be frequent. However, Apriori-based approaches suffer from
a long delay when discovering large sized frequent itemsets,
and may miss some frequent itemsets that can be easily de-
tected using TWIM. Most of the techniques proposed in lit-
erature are false-positive oriented. False-positive techniques
may consume more memory, and are not suitable for many
applications where accurate results, even if not complete,
are preferred.

4. TWIM ALGORITHM
We propose an algorithm called TWIM that uses two tum-

bling windows to detect and maintain frequent itemsets for
any data stream. The algorithm is false-negative oriented:
all itemsets that it finds are guaranteed to be frequent under
current distribution, but there may be some frequent item-
sets that it will miss. However, TWIM usually achieves high
recall according to our experimental results.

We define a time-based tumbling window WM for a given
data stream, which we call the maintenance window since it
is used to maintain existing frequent itemsets.

Since data streams are time-varying, a frequent itemset
can become infrequent in the future, and vice versa. It is
easy to deal with the first case. Since we keep counters for all
frequent itemsets, we can check their supports periodically
(every time WM tumbles), and remove the counters of those
itemsets that are no longer frequent. However, in the latter
case, since we do not keep any information about the cur-
rently infrequent itemsets, it is hard to tell when the status
changes. Furthermore, even if we can detect a new frequent
itemset, we would not be able to estimate its support, as no
history exists for it.

To deal with this problem, we define a second tumbling
window called the prediction window (WP ) on the data stream.
It keeps history information for candidate itemsets that have
the potential to become frequent. The size of WP is larger
than WM , and it is predefined based on system resources,
the threshold δ, and the accuracy requirement of the support
computation for candidates. Note that we do not actually
maintain WP ; it is a virtual window that is only used to
keep statistics. Hence, the size (time length) of WP can be
as large as required.

Figure 1 demonstrates the relationship between WM and
WP . In Figure 1, WM and WP are the windows before
tumbling, while W ′

M and W ′
P are windows afterwards. When

the end of WM is reached, it will tumble to the new position
W ′

M . Every time WM tumbles, WP will tumble at the same
time. This is to ensure that the endpoints of WM and WP

are always aligned, so that frequent itemsets and candidate
itemsets can be updated at the same time.

Mining frequent itemsets requires keeping counters for all
itemsets; however, the number of itemsets is exponential.
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Figure 1: Tumbling windows for a data stream

Consequently, it is not feasible to keep a counter for all of
them, and thus, we only keep counters for the following:

• A counter for each item ij ∈ I . Since total number of
items n is small (typically less than tens of thousands),
it is feasible to keep a counter for each item.

• A counter for each identified frequent itemset. As long
as the threshold value δ is reasonable (i.e., not too low),
the number of frequent itemsets will not be large.

• A counter for each itemset that has the potential to
become frequent. We call these candidate itemsets.
The list of all candidates is denoted as C. The number
of candidate itemsets |C| is also quite limited, as long
as the threshold value θ is reasonable.

4.1 Predicting candidates
Any itemset A with θ ≤ S(A) < δ is considered a candi-

date and included in C. Here θ is the support threshold for
considering an itemset as a candidate. Every time WP tum-
bles, we evaluate all candidates in C. If the counter of one
candidate itemset is below θ, it is removed from C and its
counter is released. θ is user defined: smaller θ may result
in a higher recall, but consumes more memory since more
candidates are generated; a high θ value can reduce memory
usage by sacrificing the number of resulting frequent item-
sets.

Every time WM and WP tumble, the counters of all can-
didates and the supports of all items will be updated. If one
candidate itemset A′ ∈ C becomes frequent, then ∀A′′ ∈
ATt , A = A′ ∪ A′′ might be a candidate. Similarly, if one
infrequent item i becomes frequent at the time windows tum-
ble, then ∀A′′ ∈ ATt , A = {i} ∪ A′ can be a candidate.

One simple solution is to add all such supersets A into the
candidate list C. However, this will result in a large increase
of the candidate list’s size, since the total number of A for
each A′ or {i} can be |ATt | in the worst case. The larger the
candidate list, the more memory required for storing coun-
ters, and the longer it takes to update the list when WM

and WP tumble. Many existing frequent itemset mining
techniques for streams are derived from the popular Apriori
algorithm [1]. Apriori increases the size of candidate super-
sets by 1 at every run, until the largest itemset is detected.
This strategy successfully reduces the number of candidates;
however, in cases when the itemset size |I| is large, it may
take extremely long time until one large frequent itemset is
detected. Furthermore, since Apriori-like approaches only
check the supersets of the existing frequent itemsets, the
subsets of existing frequent itemsets are not considered. To
solve these problems, we introduce the concept of smallest
cover set defined as follows.

Definition 3. Given an itemset list A = {A1,A2, ...,Am},
for ∀A′ = {A′

1,A′
2, ...A′

r}, where A′
1,A′

2, ...A′
r ∈ A, if A′

1 ∪
A′

2 ∪ ... ∪ A′
r = A1 ∪ A2 ∪ ... ∪ Am and r < m, then we say

A′ is a cover set of A, denoted as AC .
Definition 4. Given an itemset list A and all its cover set

AC
1 ,AC

2 , ...,AC
q , if |AC

s | = min(∀|AC
i |), where i = 1, ..., q, we

call AC
s the smallest cover set of A, denoted as ASC .



When a candidate itemset or an infrequent item becomes
frequent, the candidate list can be expanded from either di-
rection, i.e., combining the new frequent itemset with all
current frequent items in ATt or with the smallest cover set
of ATt . The decision as to which direction to follow depends
on the application. If the sizes of the potential frequent
itemsets are expected to be large, then the smallest cover
set could be a better option. On the other hand, if small
sized frequent itemsets are more likely, then Apriori-like ap-
proaches can be applied. However, in many real-world sce-
narios, it is hard to make such predictions, especially when
the distribution of the data streams is changing over time.
Hence, we apply a hybrid method in our approach.

4.1.1 Hybrid approach for generating candidates
Our hybrid candidate prediction technique is as follows.

At the time WM and WP tumble:

• Step 1. Detect new frequent itemsets and move them
from candidate set C into ATt . Also detect any new
frequent items and add them into ATt .

• Step 2. Update ATt = ATt ∪ P(ASC
Tt

) − φ, where

P(ASC
Tt

) is power set of ATt ’s smallest cover set.

• Step 3. Detect itemsets in C whose supports have
fallen below θ. Replace each of these itemsets by its
subsets of length one smaller, and then remove it from
C. This process can be regarded as the reverse process
of Apriori-like approach.

• Step 4. Set C = C − ATt . After Steps 2 and 3, there
could be some candidates that are already included
in ATt , hence we do not need to keep them in the
candidate list C anymore.

• Step 5. Let A′ be one candidate itemset that becomes
frequent, or {j} where j is an item that turns from
infrequent to frequent.

Step 5.1. ∀A = {i}∪A′, where i ∈ (I−A′) and {i} ∈
ATt , if A is not in ATt , then A is a new candidate.

Step 5.2. ∀A′′ ∈ (ATt −A′)SC , if A = A′′ ∪A′ is not
in ATt , then A is a new candidate.

Property: For each itemset A with size k that moves
from infrequent to frequent at tumbling point t, let CA be the
list of new candidates generated using our hybrid approach
at Step 5. Let |CA| be the number of itemsets in CA, and
β be the total time required for all frequent itemsets in CA
to be detected. We can prove that |CA| + 2

|WM |β ≤ 2p − k,

where p is the total number of frequent items in ATt . (The
proof is omitted due to page limit.)

Notice that p, i.e. the number of frequent items, is de-
termined by the nature of the stream and is not related to
the chosen mining method. This property indicates that the
time and memory usage of our hybrid candidate generation
approach are correlated. They are bounded to a constant
that is not related to the size of minimal cover set ASC

Tt
.

Hence, this nice property guarantees that the overall mem-
ory usage of the proposed hybrid approach is small, and its
upper bound is only determined by the number of frequent
items in the stream.

4.1.2 Finding smallest cover set
Our candidate prediction technique uses smallest cover set

of ATt to discover the most number of frequent itemsets in
the shortest time. In this section, we present an approxi-
mate algorithm that can find a good cover set for a given

frequent itemset list ATt efficiently in terms of both time
and memory.

• Step 1. Let ASC
Tt

= φ. Build a set of itemsets B =
{B1,B2, ...,Bm}. Let Bi = Ai for ∀Ai ∈ ATt .

• Step 2. Select the largest itemset Bk ∈ B, i.e., |Bk| =
max(|Bi|),Bi ∈ B, i = 1, ..., m. If there is a tie, then
select the one with larger corresponding itemset in
ATt . In other words, if |Bk| = |Br | = max(|Bi|) and
|Ak| > |Ar|, where Ak and Ar are the corresponding
frequent itemsets of Bk and Br according to step 1,
then select itemset Bk.

• Step 3. For ∀Bi ∈ B, i = 1, ..., m, set Bi = Bi − Bk.
Remove all empty sets from B.

• Step 4. If B = φ, then stop. Else go to step 2.

The run time of this algorithm in the worst case is (|ATt |−
n) × |ASC

Tt
|, where n is the total number of frequent items

in the stream.

4.1.3 Updating candidate support
For any itemset that changes its status from frequent to

infrequent, instead of discarding it immediately, we keep it
in the candidate list C for a while, in case distribution drifts
back quickly and it becomes frequent again. Every time
WM and WP tumble, C is updated: any itemset A ∈ C
with S(A) < θ along with its counter is removed, and new
qualified itemsets are added resulting in the creation of new
counters for them.

For an itemset A that has been in C for a long time,
if it becomes frequent at time ti, its support may not be
greater than δ immediately, because the historical transac-
tions (i.e., the transactions that arrive in the stream be-
fore ti) dominate in calculating S(A). Therefore, in order
to detect new frequent itemsets in time, historical transac-
tions need to be eliminated when updating S(A) for every
A ∈ C. Since WM and WP are time-based tumbling win-
dows, they tumble every |WM | time units. Hence, we can
keep a checkpoint every |WM | time intervals in WP , denoted
as chk1, chk2, ..., chkp, where chk1 is the oldest checkpoint,
and p = �|WP |/|WM |�. For each A ∈ C, we record the num-
ber of transactions arriving between chki−1 and chki that
access A. When WM and WP tumbles, sup(A) is updated
by expiring transactions before chk1.

Every time WM tumbles, we update support values for all
the existing frequent itemsets. If the support of an itemset
A drops below δ, then we move it from the set of frequent
itemsets ATt to the candidate list C, and the counter used
to record its frequency will be reset to zero, i.e. sup(A) = 0.
This is to ensure that, if the distribution change is not rapid,
A may stay in the candidate list for some time, as its history
record plays a dominant role in its support. By resetting its
counter, we eliminate the effect of historical transactions and
only focus on the most recent ones.

New frequent itemsets will come from either the infre-
quent items or the candidate list. Since we keep counters
for all items i ∈ I, when an item becomes frequent, it is
easy to detect and its support is accurate. However, for
a newly selected frequent itemset A that comes from can-
didate list C, its support will not be accurate, as most of
its historical information is not available. If we keep calcu-
lating its support as S(A) = sup(A)/Nt, where Nt is the
number of all transactions received so far, this S(A) will
not reflect A’s true support. Hence, we need to keep an



offset for A, denoted offset(A), that represents the number
of transactions that were missed in counting the frequency
of A. A’s support at any time t′ > t should be modified
to S(A) = sup(A)/(Nt′ − offset(A)), where Nt′ is the to-
tal number of transactions received at time t′, as the data
stream monotonically grows.

5. EXPERIMENTS
We conduct a series of experiments to evaluate TWIM’s

performance in comparison with three others: SW method
[2], which is a sliding window based technique suitable for
dynamic data streams, FDPM [7], which is also a false-
negative algorithm, and Lossy Counting (LC) [6], which is
a widely-adopted false positive algorithm. We use synthetic
data streams in our experiments to gain easy control over
the data distributions. We adopt parameters similar to those
used in previous studies [3, 7]. The total number of different
items in I is 1000, and the average size of transactions in
Tt is 8. The number of transactions in each data stream is
100,000.

5.1 Effectiveness over non-dynamic streams
We evaluate the effectiveness of the four algorithms over

four data streams with Zipf-like distributions. Since FDPM
and LC cannot deal with time-varying streams, to fairly
compare effectiveness, the test data streams do not have dis-
tribution changes. The objective of these experiments is to
test the performance of TWIM over streams with stable dis-
tribution. The results indicate that, that TWIM performs
at least as well as existing algorithms on streams without
distribution change.

5.2 Effect of threshold δ
To evaluate the effectiveness of the four algorithms with

different values of threshold δ, we apply TWIM, SW, FDPM
and LC to a data stream with Zipf 1.2, and vary δ from 0.4%
to 2%. The results demonstrate that the effectiveness of
TWIM is comparable with FDPM when δ varies. TWIM’s
recall is improved with higher δ. Although SW always has
a better recall than TWIM and FDPM, its precision never
reaches 1. LC has a low precision even when δ is high (2%).

5.3 Effectiveness over dynamic streams
To evaluate the effectiveness of these three algorithms over

time-varying data streams, we created two data streams Ds

and Df using the same statistics as in Section 4.1, with
Zipf = 1.5 and 50,000 transactions in each stream. Both of
the streams start changing their distributions every 10,000
transactions. The change of Ds is steady and slow, whereas
Df has a faster and more noticeable change.

The results show that TWIM and SW adapt to time-
varying data streams, while neither FDPM nor LC is sen-
sitive to distribution changes. SW performs worse than
TWIM in both tests. Mining results of TWIM over the
stream with faster and more noticeable changes are better
than the one that changes slower, while SW seems more suit-
able to slower and mild changes. However, note that we may
improve the mining results of TWIM for such slow-drifting
data streams by reducing the sizes of WM and WP .

5.4 TWIM Parameter Settings
We test TWIM on Ds and Df and vary θ from 0.4% to 1%.

It is shown that the performance of TWIM can be improved
by decreasing θ. However, a low θ value may result in higher
memory consumption.

To evaluate the effect of tumbling window sizes, we vary
the size of WM from 200 transactions to 1000 transactions,
and WP from 1000 transactions to 4000 transactions, and
test TWIM on these two streams. We notice that larger
windows size may reduce TWIM’s recall, since sudden dis-
tribution changes will be missed. On the other hand, large
windows can ensure high accuracy of the estimated supports
for candidate itemsets.

5.5 Memory usage
The major memory requirements for TWIM are the coun-

ters used for all items, frequent itemsets, and candidates.
We compare the maximal number of counters that we cre-
ate for each of the previous experiments. According to the
results, the memory consumed by SW is about four times of
TWIM’s memory usage. TWIM uses slightly more memory
than FDPM, and LC has the lowest memory requirement.
We also notice that the memory consumption is inversely
correlated to threshold θ, and larger windows sizes result in
more counters to be used.

6. CONCLUSION
In this paper, we propose a novel algorithm called TWIM

for mining frequent itemsets. Our approach has the ability
to detect changes in a data stream and update mining re-
sults in real-time. We use two tumbling windows to maintain
current frequent itemsets and predict distribution changes.
A list of candidate itemsets that have the potential to be-
come frequent if distribution changes is generated and up-
dated during mining. Every time the two tumbling windows
move, we apply a set of heuristics to update the candidate
list and maintain frequent itemsets. Our approach produces
only true frequent itemsets, and requires less memory. Ex-
perimental results demonstrate that TWIM has promising
performance on mining data streams with or without distri-
bution changes.

We are currently investigating a number of issues, includ-
ing proving the complexity for finding the kth frequent item-
set in a data stream, developing more heuristics for main-
taining candidate itemsets, designing a more sophisticated
and more efficient counting system, and analyzing the rela-
tionship among thresholds, window sizes, and memory space
for different applications.
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