
Mining Data Streams with Periodically
Changing Distributions

Yingying Tao, M. Tamer Özsu
University of Waterloo

Waterloo, Ontario, Canada
{y3tao, tozsu}@cs.uwaterloo.ca

ABSTRACT
Dynamic data streams are those whose underlying distrib-
ution changes over time. They occur in a number of ap-
plication domains, and mining them is important for these
applications. Coupled with the unboundedness and high ar-
rival rates of data streams, the dynamism of the underlying
distribution makes data mining challenging. In this paper,
we focus on a large class of dynamic streams that exhibit pe-
riodicity in distribution changes. We propose a framework,
called DMM, for mining this class of streams that includes
a new change detection technique and a novel match-and-
reuse approach. Once a distribution change is detected, we
compare the new distribution with a set of historically ob-
served distribution patterns and use the mining results from
the past if a match is detected. Since, for two highly similar
distributions, their mining results should also present high
similarity, by matching and reusing existing mining results,
the overall stream mining efficiency is improved while the
accuracy is maintained. Our experimental results confirm
this conjecture.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications –
Data Mining

General Terms
Algorithms, Performance, Experimentation

Keywords
Data stream, Distribution change

1. INTRODUCTION
Mining data streams for knowledge discovery, such as se-

curity protection [19], clustering and classification [2], and
frequent pattern discovery [12], has become increasingly im-
portant. Within this context, an important characteristic
of the unbounded data streams is that the underlying dis-
tribution can show important changes over time, leading to
dynamic data streams. Traditional data mining techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

that make multiple passes over data or that ignore distrib-
ution changes are not applicable to dynamic data streams.

In this paper, we address the problem of mining dynamic
data streams. This problem is particularly challenging when
one tries to balance accuracy with efficiency – highly accu-
rate mining techniques are generally computationally expen-
sive. Many change detection techniques for dynamic streams
have been proposed (e.g., [1, 12, 14, 15]). However, some of
these techniques can only generate an alarm to indicate that
a distribution change has occurred, without providing new
mining results corresponding to the new distribution. Oth-
ers follow the “detect-and-mine” approach where the distri-
bution change is detected and mining is adjusted between
changes, but many of these techniques are ad-hoc in that
they are only suitable for one type of mining application, and
they usually perform well only on certain types of streams.

For dynamic data streams, an interesting question is whether
the distribution changes are entirely random and unpre-
dictable, or whether it is possible for the distribution changes
to follow certain patterns. If some regularity can be de-
tected, this can be exploited in mining. An analysis of dif-
ferent applications and data streams reveals that there is
a large class of data streams that exhibit periodic distri-
bution changes; that is, a distribution that has occurred
in the past generally reappears after a certain time period.
Consider, for example, a scientific stream that records sea
surface temperature [17]. There is periodicity to the distri-
bution of collected data that may not be visible within one
year, but is apparent over multiple years. Other examples
of applications that may present periodically changing dis-
tributions include financial data streams such as stock price
[25], scientific streams such as magnetic resonance imaging
(MRI) readings [5], and network traffic.

1.1 Our proposal
Based on this observation, we propose a method for min-

ing dynamic data streams where we store important (to be
defined later) observed distribution patterns, and compare
new detected changes with these patterns. For two sub-
streams with the same (or highly similar) distributions, min-
ing results such as a list of all frequent items/itemsets for
frequent pattern discovery, and set of clusters/classes for
clustering and classification, should be the same (or highly
similar). Therefore, if a distribution change is detected and
if a match is found between the new distribution and an
archived one, then it is possible to skip the re-mining process
and directly output the mining results for the archived distri-
bution as the results for the newly detected distribution. We
call this the match-and-reuse strategy. Compared with the

traditional detect-and-mine stream mining approaches, our
match-and-reuse strategy is faster for periodically changing
streams, since pattern matching is usually considerably less
time consuming than mining.

The key issues that need to be resolved in our approach
are the pattern selection, pattern representation, and match-
ing. Since the historical patterns need to be stored along
with their mining results, typical memory restriction in data
stream systems make it infeasible to store every pattern that
has ever occurred in the past. Hence, only important distri-
butions, i.e., the ones that have a high probability to reoccur
in the future, should be archived. Being able to determine
these distributions is the first important issue. Second, each
pattern needs to be stored as succinctly as possible - ide-
ally by representing a distribution (pattern) using its den-
sity function. However, it is not possible to get an accurate
density function for a random set of data elements. Hence,
in data stream mining, the most popular approach is to rep-
resent the current distribution using a representative data
set. Intuitively, the larger the size of the representative set,
the closer is the distribution of this set to the real distrib-
ution. However, memory limitation forces the size of each
representative set to be as small as possible. To find such a
small representative set that can accurately reflect the true
distribution of each pattern is a challenge. The third issue is
that the matching procedure needs to be efficient for rapid
data streams, with an accuracy high enough to meet the
application requirements.

Similarity matching over time series has been extensively
studied (e.g. [3, 10, 13, 16]). However, the distribution
matching problem is far more complicated than time series
matching in a number of ways. First, the sample patterns
in time series matching are usually predefined. These well-
chosen predefined patterns are very representative and usu-
ally noise-free. In our case, the patterns are directly ex-
tracted from the stream and may contain noise. Second, in
time series data, each data element contains only one value.
Streams generated from real-world are far more complex
and have different forms. Many of the real-world stream
elements have the form of relational tuples with multiple
attributes. Hence, many of the time series matching tech-
niques are too simple to be directly applicable on real-world
streams. Third, a number of distance functions have been
proposed for pattern matching. Each of these distance func-
tions has its advantages and disadvantages. It is not clear
which distance function would best fit a particular type of
application and stream, nor is it known how to tune the
distance threshold accordingly.

Our proposed match-and-reuse approach deals with these
problems. For each important distribution, a set of repre-
sentative sample data is extracted from the stream, which
is continuously refined when new data arrive. Experimental
results demonstrate that our distribution change detection
technique using incrementally maintained representative set
can achieve high accuracy. Experiments also reveal that, by
reusing existing mining results on the newly detected distri-
bution after a match is found, the overall efficiency of the
mining application can be greatly improved without losing
accuracy.

1.2 Contributions
In summary, the contributions of this paper are as follows:

• We propose a method for matching patterns and reusing

mining results for mining a data stream with period-
ically changing distributions. Compared to previous
work, this approach can reduce the overall mining time
without affecting accuracy of the mining results.

• We develop a framework for detecting changes and
generating mining results for dynamic data streams
using the proposed match-and-reuse strategy. This
framework is flexible. The detection process is inde-
pendent of the mining process, and hence this frame-
work can be used in most stream mining applications.

• We consider the issue of representing distributions of
the stream. Existing techniques use the data set within
a sliding window as the representative set for current
distribution. This method is problematic, as will be
discussed in more detail in Section 3.2. We propose
a new technique to intelligently choose a small set of
data as the representative set that can reflect the true
distribution with high accuracy.

1.3 Paper organization
The rest of this paper is organized as follows. The problem

is formalized in Section 2. We propose our stream mining
framework in Section 3. In Section 4, we analyze and com-
pare some of the popular distance functions. Experiments
are presented in Section 5. Section 6 gives a brief review of
the related work. We conclude the paper in Section 7.

2. PROBLEM DEFINITION
A data stream S is an unbounded sequence of elements

〈s, t〉, where s is the data element and t is a monotonically
increasing timestamp indicating the arrival time of the ele-
ment. s can have different forms, such as a relational tuple,
or a set of items, depending on the underlying application
that generates S. t can be either an explicit timestamp or
an implicit timestamp [4]. In this paper, the exact assign-
ment of timestamps is not important as long as they are
monotonic. Each stream mining application may only con-
sider a few attributes/items of the stream. The unconsidered
attributes/items can be filtered before data are fed to the
mining process.

A substream Si = {〈s1, t1〉, 〈s2, t2〉, ..., 〈sk, tk〉} of stream
S is a finite set of elements that occurs in S, i.e., 〈sj , tj〉 ∈
S, j = 1, ..., k. Similar to [15], we define the probability
distribution of a substream Si as the frequency distribution
of all values within this substream, without considering their
arrival time.

The following discussion and definitions assume the exis-
tence of two substreams SA and SB , with probability dis-
tributions PA and PB , respectively. As usual, we define
the similarity of SA and SB as 1 − dist(SA, SB), where
dist(SA, SB) denotes the distance between SA and SB. As
discussed in Section 1, in this work, we consider two sub-
streams as two bags of elements observed during different
time period. Therefore, we define the similarity between
two substreams as the similarity of their distributions, i.e.,
dist(SA, SB) = dist(PA, PB).

The distance between two substreams can be computed
by a distance function. There are a number of distance
functions that can be used. Specific functions for distribu-
tion matching in data streams have been proposed [15], but
functions that have been defined for time series can also be
used by appropriate conversions: the time axis and the at-
tribute value axis in these functions should be replaced with

value axis and probability value axis, respectively. Consider,
for example, the computation of Euclidean distance over the
two distributions PA and PB given in Figure 1, where v(s)
is the value domain of both substreams SA and SB , pA(vi)
and pB(vi) are the probability of each vi ∈ v(s) occurring
in SA and SB, respectively. Then the distance between PA

and PB can be calculated as

disteuclidean(PA, PB) =

����
n�
i

(pA(vi) − pB(vi))2

where n is the total number of distinct values in v(s).

Figure 1: Distributions for substream SA and SB

Definition 1. Given SA, SB , PA and PB as defined above,
if dist(PA, PB) < δ, where δ is a predefined threshold re-
ferred to as maximum matching distance, then we say that
the distribution of substreams SA and SB match each other,
denoted as PA
δ PB .

The main idea of this paper (reusing existing mining re-
sults for periodically changing data streams) can now be for-
malized as follows. Let K be the currently running stream
mining application over data stream S with periodically
changing distribution. Let P = {P1, ..., Pm} be a set of
preserved important distributions in S for K, and R =
{R1, ..., Rm} be the corresponding mining results where Ri

is the result obtained during the period that distribution Pi

was in effect. Let P ′ be the most recently detected distrib-
ution, if P ′

δ Pi, then the result of mining S during the
period when P ′ is effective is Ri, i.e., R(P ′) = Ri. Other-
wise, K is executed on P ′ to generate the result.

Due to the unboundedness of data streams and their high
arrival rates, at any given time, only a portion of a stream
can be monitored. Thus, window models are widely used in
many stream techniques, and they are mainly of two types:
time-based and count-based.

Time-based window is defined in terms of a time interval
∆. It contains a substream of S that arrives within time
〈t, t+∆〉. On the other hand, a count-based window contains
a substream of S with fixed number of elements. The size
of a window is the total number of data elements within it.
The size of a count-based window is fixed, while the size of
a time-based window can change, if the arrival rate of S is
not stable.

Definition 2. Let WA and WB be two windows (either
time-based or count-based) on stream S, containing sub-
streams SA and SB , respectively. We define the concate-

nation of windows WA and WB, denoted as WA + WB ,
as the set union of the two substreams within them, i.e.,
WA + WB = SA ∪ SB . Therefore, ∀〈si, ti〉 in WA + WB ,
〈si, ti〉 ∈ SA or 〈si, ti〉 ∈ SB.

Notice that although we do not consider the arrival time
of the elements when calculating the distribution, we do not
remove the timestamps attached to them. Therefore, two el-
ements 〈si, ti〉 and 〈sj , tj〉 with the same values, i.e., si = sj ,
are not considered duplicates in WA +WB. This guarantees
that the probability of a value that occurs in many elements

will be calculated correctly. Thus, |WA+WB| = |WA|+|WB |
when WA and WB do not overlap.

Table 1 summarizes the main symbols used in this pa-
per. Note that some of the symbols are introduced in later
sections.

Table 1: Meanings of symbols used
Symbols Meanings

S data stream
s data elements in S

v(s) value of data element s

p(v) probability of value v

Wr(W ′
r) reference window

Wr - before update; W ′
r - after update

Wt observation window
Sr , St substreams in Wr , Wt

Pr , Pt distributions of Sr , St

δ maximum matching distance
∆ tumbling time interval
Gi partition of a distribution
sGi

representative point of Gi

gS
i , gE

i start and end point for each Gi

k total number of partitions
P important distribution set

3. DMM FRAMEWORK
In this paper, we propose a framework called DMM (which

stands for Detect, Match, and Mine) for mining data streams
with periodically changing distributions. Briefly, DMM con-
sists of four sequential procedures: choosing representative
set, change detection, pattern matching, and (if pattern
matching fails) stream mining.

Change detection procedure (Section 3.3) continuously mon-
itors the distribution changes of stream S. Once a new dis-
tribution is detected, a representative set is generated for
this new distribution and is incrementally maintained during
its lifespan (Section 3.2). This new distribution is matched
against those that have been seen and archived earlier (Sec-
tion 3.4). If a match is found between the new distribution
and an archived one, DMM skips the re-mining process and
outputs the mining results of the archived distribution, be-
cause two substreams with similar distributions should have
similar data mining results. Consequently, processing time
is greatly reduced. On the other hand, if pattern matching
fails (i.e., no similar distribution has been seen previously),
then the mining process is activated to generate new results
for this new distribution. A set of “important” distributions
that have already been observed is maintained. Since it
may not be possible to store all observed distributions due
to space restrictions, a heuristic is applied to determine “im-
portant” distributions for storage. When a new distribution
is detected, this set is updated if appropriate.

Note that these four procedures are independent of each
other. This provides considerable flexibility as it is possible
to plug in any change detection and mining technique, and
change the distance function for pattern matching at any
point if the application requirements are altered.

3.1 Windows model
We maintain two windows on stream S: a count-based

window Wr and a time-based window Wt. As mentioned
in Section 1.1, since the distribution of the current stream
cannot be directly extracted, we use a set of elements in this
stream as a representative set to represent its distribution.
The substream Sr in Wr represents the current distribution,

and substream St in Wt records the set of data elements
that have arrived in the last ∆ time units. We call Wr the
reference window and Wt the observation window.

The observation window Wt is implemented as a tum-
bling window. Every ∆ time units, Wt “tumbles” so that
all the elements in it are deleted and a new empty window
is opened. We implement Wt as a tumbling window rather
than the more common sliding window because of perfor-
mance considerations. A time-based sliding window moves
forward at each clock tick (i.e., when time moves forward),
and, all items in the window with a timestamp less than
tnow − twindow−duration are evicted. Since our change de-
tection process is triggered every time Wt moves, using a
sliding window would greatly impact the performance when
the stream has high arrival rate.

The size of reference window Wr (|Wr|) and the time in-
terval ∆ of observation window Wt are pre-defined values.
|Wr| indicates the size of the representative set for each
distribution. Hence, if many important distributions (we
will precisely define important distributions in Section 3.5)
are expected during the lifespan of S, then |Wr| should be
smaller. However, intuitively, the larger the representative
set Sr, the closer its distribution is to the real distribution
of S. For a given minimum accuracy requirement a, |Wr|
should satisfy

Prob(|dist(Pr, PS)| ≥ δ) < e−a|Wr|

where Pr and PS are the distributions of substream Sr in Wr

and the real current distribution in stream S, respectively.
|Wr| can be determined either manually or by running a set
of training data at the beginning of S.

As mentioned above, the time interval ∆ of Wt indicates
the frequency of triggering the change detection procedure.
Smaller ∆ values would mean more frequent change detec-
tion, and thus, the number of delayed alarms will be fewer.
On the other hand, smaller ∆ values will reduce the effi-
ciency of our change detection technique. Therefore, ∆ value
should be determined according to the minimum efficiency
requirement of the relevant application.

3.2 Generating reference window
3.2.1 Motivation

Reference window Wr is used to store a set of data el-
ements that represent current distribution of S. Change
detection can be done by comparing the distribution of the
substream in Wr and the distribution of the newly arrived
data, i.e., the substream in Wt. This is discussed in detail
shortly.

Statistically, the more samples collected (i.e., the larger
|Wr|), the better the underlying distribution can be de-
scribed. However, in reality, the size of Wr needs to be
relatively small due to memory limitations. Furthermore,
efficiency of distribution matching and change detection is
related to the size of the sample sets. Therefore, for a min-
ing application with high efficiency requirement, Wr cannot
be too large. However, using a small data set to represent a
distribution could be highly inaccurate, especially when the
distribution is complicated.

In most of the existing work, representative set of the cur-
rent distribution is set to be the substream in a window that
starts when the distribution change is detected. This may
be problematic since the new distribution may not be prop-
erly captured within this window (unless the window is very

large). Furthermore, for slow distribution changes, it may
be a while until the new distribution is stabilized. Hence,
the substream captured immediately after the distribution
change cannot reflect the real distribution. Therefore, this
substream is not suitable as a representative set of the cur-
rent distribution in S.

Although the size of the representative set has to be lim-
ited due to memory and efficiency concerns, if, instead of
blindly using the first group of data that arrived after a
new distribution is detected, we can carefully choose a sam-
ple set with the same size from a large vault of samples,
then the distribution of this selected set will be much closer
to the true distribution. Based on this idea, we introduce
the concept of dynamic reference window Wr for solving the
problem of representing a (complicated) distribution using
a small sample set accurately.

3.2.2 Merge and select process
The overview of generating the dynamic reference window

Wr is as follows. We concatenate/merge windows Wr and
Wt so that a larger substream with at most |Wr| + |Wt| el-
ements is available. We then carefully select |Wr| elements
from the concatenated window Wr + Wt as the latest rep-
resentative set, and replace the substream in Wr by this
new set1. This merge-and-select process is triggered every
time Wt tumbles. Hence, elements in Wr can be regarded
as a “concentration” of all data from the current distribu-
tion that have been observed so far. In other words, this
representative set is a careful selection from the large vault
of observed elements since the beginning of the distribution.
Thus, substream Sr in Wr is highly representative of the
current distribution. This merge-and-select process is illus-
trated in Figure 2.

Figure 2: Reference window generation

Let a distribution change be detected at time t1. Star-
ing at t1, Wr records a substream Sr that contains the first
|Wr| observed elements. Observation window Wt contains
substream St with the newest |Wt| elements (Figure 2a).
At time t2, Wt is full and ready to tumble forward. If at
this point a distribution change is not detected, then we
“merge” the data elements in Wt and Wr to form a data
set with size |Wr + Wt|, denoted as Wt + Wr as per Defin-
ition 2 (Figure 2b). We then select |Wr| elements (will be
discussed in Section 3.2.3) from Wt + Wr, so that the se-
lected data set can better represent the current distribution
(Figure 2c). In other words, for the substreams Sr and S′

r

1In the rest of the paper, we use Wr and W ′
r to denote the refer-

ence windows before and after merge-and-select process, respec-
tively.

with distributions Pr and P ′
r, respectively, P ′

r is more sim-
ilar to the true underlying distribution P of stream S (i.e.,
dist(P ′

r, P) ≤ dist(Pr, P)). This merge-and-select process
continues until the next time a distribution change occurs.

3.2.3 Selecting representative set
Ideally, we want to find the data set W ′

r in Wr +Wt, such
that its distribution is the closest to the true distribution of
S, i.e., dist(P ′

r, P) = min∀P i
r
(dist(P i

r , P)), where P i
r is the

distribution of any substream in Wr + Wt with size |Wr|.
However, finding such a substream can be computationally
expensive. For stream applications that require high effi-
ciency, an approximate algorithm is required.

The goal for our approximation is to find a substream W ′
r

with size |Wr| from Wr + Wt, such that:

dist(P ′
r, P) ≤ min(dist(Pt, P), dist(Pr, P)) (1)

To achieve this goal, we propose a two-step sampling ap-
proach. We first estimate the density function of the dis-
tribution of data set in Wr + Wt. The density function is
estimated using the popular kernel density estimation [20]:

f̂h(s) =
1

(|Wr + Wt|)h

|Wr+Wt|�
i=1

K(
s − si

h
) (2)

where K is the kernel function, h is the smoothing parameter
called bandwidth, and si is a data element in Wr + Wt. The
intuition of kernel density estimation is to replace each data
element in the set with a smoothed “bump”, whose width
is determined by h. The resulting density function is the
sum of all the bumps. In this paper, we set K to be the
standard Gaussian function with mean zero and variance 1.
This setting is usually chosen when no pre-knowledge of the
distribution is available [22]. Thus,

K(s) =
1√
2π

e−
1

2
s2

(3)

Hence, equation (2) can be rewritten as

f̂h(s) =
1

(|Wr + Wt|)
√

2πh2

|Wr+Wt|�
i=1

e−(s−si)
2/2h2

(4)

The bandwidth h is a value between 0 and 1. A large h
setting is preferable if the distribution has a long lifespan
over the stream, whereas a small h value is suitable for a
short trend. If the lifespan of current distribution is unpre-
dictable, then it is reasonable to start from a small setting
(e.g., h = 0.1), and increase h each time Wr is updated until
the next distribution change is detected.

Although the kernel density estimation approach can gen-
erate an estimated density function of the current distribu-
tion, the accuracy of this estimation is usually low. This is
because kernel density estimation assumes that the under-
lying stream should have an approximately normal distrib-
ution. For complex streams, this assumption does not hold.
Performing a match by simply calculating the distance of
estimated density introduces a large error (as demonstrated
in Sections 5.1 and 5.2). On the other hand, representative
sets consist of elements directly extracted from the stream,
and thus are more reliable. Hence, we only use kernel den-
sity estimation as a preliminary guidance for our sampling
strategy.

In the rest of the discussion, we consider only single-
dimensional streams, i.e., the data element s in the stream
contains only one attribute. Our technique can be extended
to N-dimensional streams by replacing each single-attribute
element s with a N-dimensional vector s̄ = (s1, ..., sN), but

the complexity of the algorithm may increase considerably
for streams with high dimensions.

We use Figure 3 to illustrate the idea of our two-step
sampling approach. With the density function f̂h(s), we
are able to estimate the “shape” of the current distribution.
x-axis is the value of the data s (v(s)) in Wr + Wt, and
y-axis is the probability (p(v)) for all data values. Higher
p(v) values indicate that these values occur more frequent
in the stream, and thus more elements s with value v(s)
should be selected into the new reference window W ′

r, and
vice versa. Based on this insight, in the first step, we par-
tition the whole area under the density function f̂h(s) into
k disjoint groups G1, G2, ..., Gk, where k is a constant for
each f̂h(s) (we discuss k value selection shortly). The start
and end value for each partition Gi is denoted as gS

i and
gE

i , respectively. Each partition has the same area, i.e.,
area(G1) = ... = area(Gk) = 1

k
area(f̂h(s)).

Figure 3: Example of two-step sampling

The second step is sampling from each partition. For two
partitions Gi and Gj , if gE

i − gS
i < gE

j − gS
j (i.e., if the

value range for Gi is “narrower” than Gj), then the aver-
age probability of all values within partition Gi is greater
than the average probability of values within partition Gj .
If we select the same number of data elements with val-
ues within Gi and Gj , respectively, then the selected values
within range 〈gS

j , gE
j 〉 are more “sparse” than in 〈gS

i , gE
i 〉.

Hence, the shape of this distribution is better captured by
the data set selected using this technique. We use SGi to rep-
resent the elements selected from each partition Gi. Since
the resulting representative set is stored in Wr, the total
number of data selected from each partition should be |Wr|,
i.e., � k

i=1 |SGi| = |Wr|.
To partition Wr + Wt into a number of groups Gi (i =

1, ..., k), we adopt a machine learning method [26] that is
used for clustering real-valued attributes into disjoint sub-
regions. We define a discretizer function Q for partition-
ing. For each partition Gi, every data element s with value
v(s) ∈ Gi maps (or rounds off) to a representative point sGi

of Gi
2, such that:

Q(Wr + Wt) =

k�
i=1

sGi
1Gi(s), s ∈ (Wr + Wt) (5)

where 1Gi(s) is the indicator function of Gi, i.e.,

1Gi(s) =

�
1 if v(s) ∈ Gi;
0 if v(s) /∈ Gi

In the optimal case, we want to find a discretizer function
QO such that the error of mapping sample data to their
representative point is minimized, i.e.,

err(QO) = limk→(|Wr+Wt|)

k�
i=1 �Gi

|s − sGi
|2f̂h(s)ds = 0

(6)
Equation (6) implies that if the number of partitions is the

same as the number of data elements in Wr +Wt, then each
2Note that sGi

may not be a real data element observed in
Wr +Wt, and therefore, it may not qualify to be a representative
sample in W ′

r.

data will have itself as its representative point, and hence
the distribution of the selected representative set will have
the same distribution as the data set in Wr + Wt. How-
ever, since the number of data elements we will have in
the new reference window W ′

r is fixed, we will always have
k ≤ |Wr| < |Wr + Wt|. Hence, this optimal goal will not be
achieved in our approach.

Our proposed solution for partitioning Wr + Wt is as fol-
lows. First, we calculate the start and end values (gS

i and
gE

i) for each partition Gi. Using equations (4),(5),(6), we
get the following equation (intermediate steps are omitted
due to lack of space):

(f̂(gS) + f̂(gE))(gE − gS) =
2

k �Wr+Wt

f̂(s)ds (7)

The solution of equation (7) yields (gS
i , gE

i) pairs for all
partitions Gi (i = 1, ..., k).

On the second step, we select a number of representa-
tive data from each partition. The number of representa-
tive data selected from partition Gi is determined by ki =
round(|Wr|/k). If � k

1 ki 6= |Wr|, then we add or remove
several data from random groups to ensure |W ′

r| = |Wr|.
Within each partition Gi, ki data are randomly selected

with the indicator function 1Gi(s) as:

1Gi(s) =

�
1 if gS

i ≤ v(s) ≤ gE
i ;

0 otherwise
The random selection strategy is done to eliminate biases

introduced through our kernel density estimation and par-
tition process. The final substream S′

r in the updated refer-
ence window W ′

r is the union of all data elements selected
from all groups, i.e., S′

r = SG1
∪ SG2

∪ ... ∪ SGk
.

The number of total partitions k is a predefined constant
value for each distribution. A higher k value implies a bet-
ter quality of the representative set selection by reducing
err(Q). On the other hand, computation cost and memory
consumption will also increase with higher k. Therefore,
for a “smooth” distribution, i.e., fewer high density areas,
or less “bumpy” shape, k can be kept smaller, which means
that Wr + Wt can be partitioned into fewer groups.

3.3 Change detection
A review of change detection techniques for dynamic streams

indicates that a large portion of proposed techniques are
tightly associated with a mining technique. Hence, those
change detection approaches cannot be applied to other min-
ing applications, and they may not even perform well if
the mining techniques are changed. We propose an online
change detection technique for our DMM framework that
is not restricted to a specific stream processing application.
This is useful since DMM is a general-purpose method.

As mentioned in Section 3.1, every time Wt tumbles, the
change detection procedure is triggered. We compare the
distributions of substreams in both Wr and Wt windows.
By Definition 1, we evaluate dist(Pr, Pt). If dist(Pr, Pt) >
δ, where δ is the predefined maximum matching distance,
then a distribution change is flagged. The choice of distance
functions used for calculating dist(Pr, Pt) will be discussed
in detail in Section 4.

3.4 Distribution matching
When a new distribution is detected at time t1, we choose

a set of data elements as the sample data set representing
this new distribution. For applications that require high effi-
ciency, we directly use the substream in Wt from timestamp

t1 to t1 + ∆, so that the matching can start as soon as pos-
sible. However, as discussed in Section 3.2.1, the first set of
data that arrive at the beginning of a new distribution may
not capture the true distribution, especially when the dis-
tribution is complicated or the distribution change is slow.
Therefore, if the accuracy is more important than efficiency,
we observe the new distribution for a longer time (i.e., wait
until Wt tumbles several times) and refine the representa-
tive set by using the same merging technique discussed in
Section 3.2.

This new distribution is then matched with a set of impor-
tant historical distributions that have been preserved. The
representative sets of these distributions are sequences, and
thus, we use the appropriate distance measure to check their
similarity. If a match is found, then the preserved mining re-
sults for the stream with the matching distribution is output
as the mining results for the new distribution. The justifica-
tion is that for two highly similar distributions, their mining
results should present high similarity as well. This way, the
data mining time is dramatically reduced without reducing
the quality of mining results.

The maximum matching distance δ is important: smaller
δ implies a higher accuracy of the two matching distribu-
tions, while a larger δ increases the possibility of a new dis-
tribution to match a pattern in the preserved set leading to
higher efficiency, since the time for matching distributions
and reusing mining results are far less than the time for
re-mining the new distribution. Therefore, the question of
finding a balance between accuracy and efficiency for setting
δ value arises. The impact of δ is empirically studied in Sec-
tion 5.5. Our proposal for selecting δ is to initially start with
δ = 0 and increase it until the accuracy of matching reaches
the minimum accuracy requirement of the application.

3.5 Choosing important distributions
For a dynamic data stream, there could be a large number

of different distributions that are observed during the lifes-
pan of the stream. Due to limited memory, it is infeasible
to record all of these distributions along with their mining
results. Furthermore, maintaining a large number of distri-
butions could increase the time it takes to match a newly
detected distribution. Hence, only important distributions,
i.e., the ones that have a high probability to be observed
again in the future, should be archived. In this section, we
discuss how to determine the important distribution set, de-
noted by P .

We use the following heuristic rules to determine the im-
portance of distributions:

1. Distributions that have occurred in the stream for more
times are more important than the ones that have been
observed fewer times. For each archived distribution
Pi, we use a counter ci to indicate the number of times
Pi has occurred. Hence, for two distributions Pi and
Pj , if ci > cj , then Pi is more important than Pj .

2. The longer a distribution lasts in the stream’s lifespan,
the more important it is. If t1 is the timestamp a
distribution Pi is detected and t2 is the timestamp that
the subsequent change is detected, we can denote Pi’s
lifespan as Ti = t2 − t1. Hence, if Ti > Tj , then Pi is
more important than Pj .

3. The more distinctive a distribution is, the higher is
the chance that it will be archived. A distribution
that is similar to an existing distribution in P (but

not enough to be recognized as a match) is regarded
as less important. When searching for a match of a
new distribution Pi, we record the smallest distance
mini(dist) between Pi and any of the archived dis-
tributions. Hence, for two distributions Pi and Pj , if
mini(dist) > minj(dist), then Pi is more important
than Pj .

4. A distribution Pi that has mining results Ri with higher
accuracy is more important than a distribution with
less accurate mining results. Let Acc(Ri) be the accu-
racy of the mining results for Pi, hence if Acc(Ri) >
Acc(Rj), then Pi is more important than Pj

3.

When a distribution change is detected, whether or not a
match is found, the important distribution set P is updated.
The distribution Pr that was in effect when a change was
detected is evaluated to determine whether it should be in-
cluded in P . If Pr had been matched with pattern Pi ∈ P ,
then Pr replaces Pi in P if its lifespan is longer than Pi’s
lifespan (rule 2). If Pr has no matching distribution in P
and P has not reached its maximum memory allowance, we
add Pr to P . Otherwise, the distribution that is the least
important is pruned from P according to rules 1-4.

4. DISTANCE FUNCTION SELECTION
Both the change detection and distribution matching phases

of DMM rely on computing the distance between distribu-
tions. A number of distance functions have been proposed
in literature for both distribution matching and time series
pattern matching. Examples include L1-norm (also known
as Manhattan distance), L2-norm (also known as Euclidean

distance), Dynamic Time Wrapping (DTW) [21], Longest
Common Subsequence (LCSS) [23], Edit Distance on Real
sequence (EDR) [7], and Relativized Discrepancy (RD) [15].
For most of these distance functions, there is no proof of
lower bound accuracy, nor is there a systematic comparison
that would suggest the appropriate distance function for a
given application when distribution matching (as defined in
Definition 1) is performed.

L1-norm and L2-norm do not have the stretching abil-
ity, i.e., they require the two matching substreams to have
the same length. Therefore, they are very inflexible and
cannot be applied to many stream applications such as the
applications using time-based sliding window model. This
is because the length of a time-based window is not a con-
stant; thus there is no guarantee that two time-based win-
dows will always have the same number of data items. On
the other hand, L1-norm and L2-norm are the only two dis-
tance functions in the list that are metric, and, therefore,
computationally more efficient to compute. LCSS and EDR
are robust to noise, making them suitable for mining applica-
tions that are not sensitive to noise. L1-norm and L2-norm
are the most efficient distance functions and RD is the one
with highest time complexity. There have been individual
studies that have analyzed the accuracy of these techniques,
but the results, over a number of data sets, are inconclu-
sive. However, general patterns indicate that L1-norm and

3We use the mining results of a supervised learning task as the
ground truth. Acc(Ri) refers to the accuracy of Ri compared with
the ground truth. If Ri is later reused for another distribution
Pk that matches Pi, the accuracy of Ri over Pk is still calculated
w.r.t to the ground truth. Therefore, the error introduced by the
adopted mining technique and the error caused by the match are
both taken into account.

L2-norm are usually the least accurate, in particular when
there is noise.

A proper distance function that can be plugged into DMM
should be efficient (preferably linear or quadratic complex-
ity), with the ability of stretching (i.e., the ability of cal-
culating the distance between two substreams with differ-
ent length). The noise tolerance ability may or may not
be preferable depending on the nature of the stream. For
example, for ECG streams, outliers/noise are critical infor-
mation that must not be ignored, whereas in temperature
readings, occasional noise is usually caused by sensor mal-
function, and hence should be eliminated when detecting
distribution changes or performing distribution matching.

According to these criteria, DTW, LCSS, EDR and RD
are all reasonable distance functions to be used in the DMM
framework. To evaluate the accuracy of our technique with
these distance functions plugged in, we run a set of experi-
ments using five synthetic data streams.

Each data stream contains 1,000,000 points with only one
numerical attribute for each sample element. The distrib-
ution changes occur every 10,000 points. Hence, there are
99 actual changes in each stream. The arrival speed of the
stream is stable, with one tuple per unit time. This is for the
purpose of gaining control over the window’s length, since
a time-based sliding window will be equal to a count-based
one when the stream speed is stable. However, keep in mind
that our technique does not require the stream to have an
even speed. Stream S1 has a normal distribution, and S2 is
a mixture of normal distribution with some uniform noise.
Streams S3, S4, and S5 contain exponential, binomial and
poisson distributions, respectively.

We set the size of Wr to 500 data items, and the time
interval ∆ for Wt to 200 time units. The maximum matching
distance δ is set to 5% (impact of δ is studied in Section 5.5).
We analyzed all data sets manually and drew the curves
of the streams using Matlab to visually observe changes.
We manually determined all the changes under the given
threshold setting. This determines the ground truth. A
mismatch indicates that the compared substreams do not
have the same distribution. The recall (R) and precision
(P) of our change-detection technique using each distance
function are presented in Table 2.

Table 2: Distance function comparison
Stream DTW LCSS EDR RD

R P R P R P R P

S1 0.82 0.52 0.86 0.47 0.71 0.89 0.76 0.87
S2 0.87 0.49 0.89 0.51 0.67 0.89 0.73 0.91
S3 0.79 0.55 0.83 0.53 0.66 0.87 0.71 0.93
S4 0.88 0.50 0.84 0.46 0.72 0.83 0.77 0.86
S4 0.83 0.56 0.87 0.57 0.65 0.82 0.69 0.87

These results indicate that DTW and LCSS have high re-
call but very low precision, indicating large number of false-
alarms. The precision of EDR is satisfying, but the recall
is slightly lower than RD. RD has the best overall perfor-
mance, with the trade-off of a higher computational cost.

5. EXPERIMENTS
In this section, we present a series of experiments using

both synthetic and real data streams to evaluate the pro-
posed DMM framework. Our experiments are carried out
on a PC with 3GHz Pentium 4 processor and 1GB of RAM,
running Windows XP. All algorithms are implemented in C.

5.1 Change detection evaluation
We compare our DMM approach with two other generic

change detection techniques: the kernel density approach
(KD) [1], and another distance function-based approach (DF)
[15]. The Gaussian kernel function used in KD is based on
the authors’ recommendation [1]. Several detection strate-
gies using different statistics are discussed in [15]. According
to their experiments, the φ statistics proposed in their paper
has the overall best performance. Thus, in our experiments,
we only implement DF using φ statistics.

We use the same test data streams S1 − S5 as in Section
4. The parameter settings are also the same, i.e., |Wr| =
500 data items, ∆ = 200 time units, and δ = 5%. Any
changes reported after 200 time units (i.e., after the time
Wt tumbles), from the beginning of the change is considered
late. Since DF uses RD as its distance function, we also
adopt RD in our change detection technique. The recall (R)
and precision (P) of the three techniques are shown in Table
3. The number of on-time (O) and delayed (D) changes
detected are presented in Table 4.

Table 3: Recall and precision comparison
Stream DMM DF KD

R P R P R P

S1 0.76 0.87 0.66 0.83 0.72 0.82
S2 0.73 0.91 0.62 0.84 0.61 0.82
S3 0.71 0.93 0.54 0.80 0.38 0.50
S4 0.77 0.86 0.57 0.77 0.49 0.59
S5 0.69 0.87 0.52 0.78 0.42 0.60

Table 4: On-time and delayed comparison
Stream DMM KD DF

O D O D O D

S1 59 16 49 16 54 17
S2 55 17 43 18 46 14
S3 53 17 35 18 24 14
S4 60 16 37 19 28 21
S5 50 18 39 12 25 17

These results demonstrate that our proposed change de-
tection technique outperforms both DF and KD in terms of
precision and recall. Furthermore, DF and KD suffer from
a drop in recall, with KD’s drop more significant, when the
testing stream has a non-normal distribution. The perfor-
mance decrease in KD is caused by its assumption that the
underlying stream should have approximately normal distri-
bution. When this assumption does not hold, performance
suffers. The slight drop in DF’s recall may be due to the bad
representative set selection for complicated distributions.

5.2 Distribution drifts vs. shifts
Distribution drifts refer to the slow and gradual changes

in the stream, while distribution shifts refer to significant
sudden changes. To study the performance of the DMM,
DF, and KD change detection approaches over shifts and
drifts, we modify streams S1 and S3 to generate four new
streams. Streams S6 and S7 are the ones with normal distri-
bution, while streams S8 and S9 follow exponential distrib-
ution. In S6 and S8 there are only distribution drifts, while
in S7 and S9, only distribution shifts occur. The parame-
ter settings are the same as those reported in the previous
subsection. Table 5 displays the recall and precision of the
three techniques over these four streams, and Table 6 shows
the number of on-time and delayed detection.

These results suggest that, in general, distribution shifts
are easier to detect than distribution drifts, because the

Table 5: Recall and precision comparison for distri-

bution drifts and shifts
Stream DMM DF KD

R P R P R P

S6 0.67 0.85 0.53 0.67 0.56 0.80
S7 0.77 0.93 0.69 0.94 0.73 0.92
S8 0.65 0.86 0.42 0.71 0.31 0.71
S9 0.70 0.88 0.55 0.81 0.51 0.62

Table 6: On-time and delayed comparison for distri-

bution drifts and shifts
Stream DMM KD DF

O D O D O D

S6 54 12 33 19 38 17
S7 69 7 62 6 63 9
S8 55 9 29 13 20 11
S9 57 12 40 14 33 16

changes are more significant. Our approach greatly outper-
forms KD and DF for detecting drifts. This is because, the
process of kernel density estimation in KD and representa-
tive set selection in DF are performed immediately after a
distribution change is detected. In the case of drifts that are
slow by definition, a new distribution will take a long time
to stabilize, and, thus, kernel density estimation and repre-
sentative set used in KD and DF are highly unreliable. On
the other hand, DMM keeps updating the representative set,
and, hence, the next time a distribution change occurs, the
reference window contains a substream that can accurately
represent the current distribution for comparison.

5.3 Distribution matching evaluation
To evaluate the performance of our distribution matching

approach, we carried out a series of experiments on a real
data set that exhibits periodically changing distributions.
The data set we use is copyrighted data from the Tropical
Atmosphere Ocean (TAO) project. These streams record
the sea surface temperature from past decades. Detailed in-
formation about this project and the real-time data sets can
be found in [17]. The distribution of this stream demon-
strates both shifts and drifts. The data set contains 12,218
streams each with a length of 962. Each stream contains
readings over different time period. Since these streams are
too short, we sorted them by the time period these streams
are recorded, and concatenate them to obtain one stream
with 11,753,716 data points continuous over years. We an-
alyzed Tao manually and drew the curves of the streams
using Matlab to visually observe changes. There are a total
of 3244 distribution changes in this stream. This determines
the ground truth.

The arrival rate is set to be one tuple per unit time. Since
TAO stream consists of some rapid distribution shifts, the
efficiency requirement is high. Hence, we set the reference
set size |Wr| to 300 data items, and tumbling time interval
∆ to 100 time units. Since this stream only contains numer-
ical values, assuming each data element takes 1 byte, only
300 bytes are needed for archiving each distribution pattern.
Even if there is no periodic distribution in the TAO stream,
it only takes less than 1MB memory to store all the distri-
butions. However, considering that the mining results will
need to be stored along with each distribution, we limit the
important distribution list P to 100 distributions.

The results of change detection are shown in Table 7, and
the results for periodic distribution matching are shown in
Table 8.

Table 7: Change detection in TAO stream
Recall Precision On-time Delay

0.72 0.89 1927 418

Table 8: Distribution matching in TAO stream
Total # of Total matchings Avg. matchings

periodic distributions found per distribution

128 477 3.72

These results demonstrate that periodically changing dis-
tributions do exist in real-world data streams, and our DMM
of distribution change detection and matching performs well
on real data sets.

5.4 Efficiency with and without DMM
To demonstrate that the proposed DMM framework can

increase the overall efficiency for mining periodically chang-
ing streams, we apply a stream mining application on the
TAO stream introduced in the previous section.

For a temperature monitoring stream, a popular mining
task is to cluster the readings for further analysis and com-
parison. Hence, we adopt a popular decision tree-based clus-
tering technique, VFDT [8], to cluster the temperature read-
ings in TAO stream. VFDT is recognized as one of the best
decision tree generation technique for dynamic data streams.
Many other decision tree techniques cannot deal with the
ever-changing distributions and cannot handle continuous
numerical values. Every time a distribution changes, the
existing decision tree may not be suitable for the new dis-
tribution in terms of both accuracy and efficiency. Hence,
different decision trees are required for clustering data sets
with different distributions. Rebuilding a decision tree can
be time consuming. Many newly arrived data elements will
be missed during the reconstruction process. However, if the
decision trees for important distributions (i.e., distributions
that may occur periodically) can be stored and reused, then
the overall execution time for clustering TAO stream can be
greatly reduced.

Table 9 verifies this insight. DMM reduces total execution
time by 31.3% (including the time for updating reference
window, change-detection, matching and mining).

Table 9: Run-time with and without DMM
Total time Total time Avg. time Avg. time

without DMM with DMM without DMM with DMM

1121927 771235 346 237

We did not conduct experiments to test the accuracy of
the reused mining results. This is because the accuracy of
the reused mining results is solely determined by the accu-
racy of the mining technique and the accuracy of our match-
ing approach. Any existing mining technique can be plugged
into our framework. Therefore, since our matching tech-
nique demonstrates a promising accuracy rate, the accuracy
of the reused mining results should be close to the accuracy
of the adopted mining technique. Testing the accuracy of
reuse is not the major point of the paper; the development
of the framework and the techniques that enable the reuse
of (any) mining technique is the main focus.

5.5 Effect of maximum matching distanceδ
As discussed in Section 3.4, the choice of the maximum

matching distance δ can affect both the accuracy and effi-
ciency of DMM. To study the effect of δ, we repeat the ex-
periments of DMM on all data sets we introduced in previous
sections using different δ settings. The empirical results are
shown in Tables 10 – 13.

Table 10: Change detection in S1 to S5

Stream δ = 15% δ = 10% δ = 5% δ = 2%
R P R P R P R P

S1 0.63 1 0.71 0.92 0.76 0.87 0.86 0.74
S2 0.60 1 0.68 0.96 0.73 0.91 0.93 0.79
S3 0.57 0.99 0.69 0.92 0.71 0.93 0.88 0.84
S4 0.54 1 0.71 0.94 0.77 0.86 0.95 0.81
S5 0.55 1 0.70 0.97 0.69 0.87 0.86 0.77

Table 11: Change detection in S6 to S9

Stream δ = 15% δ = 10% δ = 5% δ = 2%
R P R P R P R P

S6 0.57 1 0.56 0.94 0.67 0.85 0.71 0.85
S7 0.54 1 0.63 0.93 0.77 0.93 0.75 0.81
S8 0.48 0.98 0.55 0.91 0.65 0.86 0.78 0.74
S9 0.51 0.99 0.56 0.93 0.70 0.88 0.74 0.77

These results indicate that with a larger δ value, fewer dis-
tribution changes will be detected. Two distributions with
85% similarity will be considered the same with δ = 15%,
whereas a distribution change will be detected if two distri-
butions have less than 98% similarity with δ = 2%. Hence,
fewer distribution changes exist in a stream with larger δ set-
tings. More distribution matches are reported with a larger
δ value, which may lead to a reduction of the overall min-
ing time, since archived mining results can be used more
frequently. However, the quality of the mining results may
drop with increasing δ values, since the matches are less
accurate.

Table 12: Change detection in TAO
Stream δ = 15% δ = 10% δ = 5% δ = 2%

R P R P R P R P

TAO 0.61 1 0.66 0.97 0.72 0.89 0.88 0.75

6. RELATED WORK
Detecting changes in data streams and adjusting stream

mining models accordingly is a challenging issue and has
only been recognized as an important one in the past few
years. A number of techniques have been proposed for solv-
ing these problem [6, 12, 14, 24], but most of them are ad-hoc
and cannot be generalized to different mining applications.
These change detection technique usually only perform well
on certain types of streams.

Aggarwal addresses the data stream change detection prob-
lem by providing a framework that uses velocity density es-
timation [1]. By estimating the rate at which the changes
in the data density occur, the user will be able to analyze
the changes in data over different time horizons. A similar
technique using density estimation is also proposed for de-
tecting outliers in sensor data [18]. However, as mentioned
in Section 3.2, without any pre-knowledge of the stream,
density estimation can be highly inaccurate, leading to a
large number of false and missed changes.

Kifer et al. present another approach to change detection
that is not restricted to certain stream mining approaches
[15]. Their idea is similar to ours in that two sliding windows
are used over a data stream to capture the previous and
current distributions. The distribution change is detected
by calculating the distances between these two distributions
using RD distance function. However, in their approach, a
fixed window is used to maintain a reference to the orig-
inal distribution (named ’baseline window’). The window
contains the first p elements of the stream that occurred im-
mediately after the last detected change. As mentioned in
Section 3.2, the first small ‘chunk’ of data observed after the
change point is usually not representative to the true distri-
bution, especially when the distribution change is slow.

Table 13: Distribution matching in TAO
δ Total # of Total matchings Avg. matchings

value periodic distr. found per distribution

15% 158 669 4.24
10% 136 541 3.98
5% 128 477 3.72
2% 76 208 2.74

Similarity matching over distributions is a novel idea that
has not been proposed previously. However, in time se-
ries analysis, similarity pattern matching is well studied.
Time sequences can be regarded as simplified data streams,
where each data s in stream S usually only contains a single
value/field. Hence, some of the strategies for subsequence
matching in time series [3, 9, 13, 16, 27] could contribute to
distribution matching in data streams.

Ge and Zdonik propose a technique for handling uncertain
data in array databases using a similar idea of partitioning
distribution [11]. Although a part of their idea is similar to
ours, their focus is entirely different. They consider the al-
ready partitioned distribution as an available input. How to
obtain the distribution of a large data set or how to partition
efficiently is not discussed. These problems are not trivial
and no existing work can be adopted directly. By contrast,
our input is the raw data observed from a continuously ar-
riving stream, and hence the problem is more complicated.

7. CONCLUSIONS
In this paper, we propose a framework, called DMM, for

mining data streams with periodically changing distribu-
tions. In this framework, we incorporate a novel method
for matching new distribution with historical patterns and
reuse existing mining results. DMM is flexible, and can be
applied to many types of data streams and mining applica-
tions. It is shown in the experiments that DMM can greatly
reduce the overall mining time over dynamic streams with
periodic distribution changes.

In order to detect and match distributions with high accu-
racy and efficiency, two tumbling windows are applied that
contain two substreams representing the current and new
distributions of the stream. An intelligent merge-and-select
sampling approach is proposed that can dynamically update
the reference window. The representative set generated by
this approach is highly representative of the true distribu-
tion. Thus, the accuracy of our change detection and match-
ing process is greatly improved.

Our work along these lines continue in a number of direc-
tions. One issue we are investigating is a method to auto-
matically determine the number of partitions k for dynamic
reference window selection rather than fixing it a priori. An-
other issue is automatically determining threshold δ and the
size of window Wr. Finally, it may be interesting to design
specific distance functions for matching distributions in spe-
cial types of streams.

8. REFERENCES
[1] C. Aggarwal. A framework for diagnosing changes in evolving

data streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 575–586, 2003.

[2] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for
clustering evolving data streams. In Proc. 29th Int. Conf. on
Very Large Data Bases, pages 81–92, 2003.

[3] R. Aggarwal, C. Faloutsos, and A. Swami. Efficient similarity
search in sequence databases. In Proc. Int . Conf. on
Foundations of Data Organization and Algorithms FODO,
pages 69–84, 1993.

[4] B. Babock, S. Babu, M. Datar, R. Motiwani, and J. Widom.
Models and issues in data stream systems. In Proc. 21st ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database
Systems, pages 1–16, 2002.

[5] H. Benoit-Cattin, B. Belaroussi, F. Bellet, and C. Odet. Simri:
A versatile and interactive 3d mri simulator.
http://www-creatis.insa-lyon.fr/menu/ivolumique
/segmentation/simri-hbc/.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent
items in data streams. In Proc. Int. Colloquium on Automata,
Languages, and Programming, pages 693–703, 2002.

[7] L. Chen, T. Ozsu, and V. Oria. Robust and fast similarity
search for moving object trajectories. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 491–502, 2005.

[8] P. Domingos and G. Hulten. Mining high-speed data streams.
In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 71–80, 2000.

[9] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 419–429,
1994.

[10] L. Gao and X. Wang. Continually evaluating similarity-based
pattern queries on a streaming time series. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 370–381,
2002.

[11] T. Ge and S. Zdonik. Handling uncertain data in array
database systems. In Proc. 24th Int. Conf. on Data
Engineering, pages 1140–1149, 2008.

[12] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining
frequent patterns in data streams and multiple time
granularities. In Proc. NSF Workshop on Next Generation
Data Mining NGDM, pages 191–212, 2003.

[13] Guralnik and Srivastava. Event detection from time series data.
In Proc. 5th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 33–42, 1999.

[14] R. Jin and G. Aggrawal. Efficient decision tree constructions on
streaming data. In Proc. 9th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 571–576, 2003.

[15] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in
data streams. In Proc. 30th Int. Conf. on Very Large Data
Bases, pages 180–191, 2004.

[16] X. Lian, L. Chen, J. Yu, G. Wang, and G. Yu. Similarity match
over high speed time-series streams. In Proc. 23rd Int. Conf.
on Data Engineering, pages 1086–1095, 2007.

[17] Pacific Marine Environmental Laboratory. Tropical
automosphere ocean project. http://www.pmel.noaa.gov/tao/.

[18] S. Subramaniam et. al. Online outlier detection in sensor data
using non-parametric models. In Proc. 32nd Int. Conf. on
Very Large Data Bases, pages 187–198, 2006.

[19] S. Muthukrishnan, R. Shah, and J. Vitter. Mining deviants in
time series data streams. In Proc. Int. Conf. on Scientific and
Statistical Database Management, pages 41–50, 2004.

[20] E. Parzen. On estimation of a probability density function and
mode. The Annals of Mathematical Statistics, (3):1065–1076,
1962.

[21] S. Salvador and P. Chan. Fastdtw: Toward accurate dynamic
time warping in linear time and space. In Proc. KDD
Workshop on Mining Temporal and Sequential Data, pages
561–580, 2004.

[22] B. Silverman. Density Estimation. Chapman & Hall, 1986.

[23] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar
multidimensional trajectories. In Proc. 18th Int. Conf. on
Data Engineering, pages 673–684, 2002.

[24] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining
concept-drifting data streams using ensemble classifiers. In
Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pages 226–235, 2003.

[25] H. Wu, B. Salzberg, and D. Zhang. Online event-driven
subsequence matching over financial data streams. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages
23–34, 2004.

[26] X. Wu. A bayesian discretizer for real-valued attributes. The
Computer Journal, (8):688–691, 1996.

[27] Zhu and Shasha. Statstream: Statistical monitoring of
thousands of data streams in real time. In Proc. 28th Int.
Conf. on Very Large Data Bases, pages 358–369, 2002.

