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University of Waterloo

Waterloo, Ontario, Canada
{y3tao, tozsu}@cs.uwaterloo.ca

Abstract

Mining streaming data has been an active re-
search area to address requirements of appli-
cations, such as financial marketing, telecom-
munication, network monitoring, and so on.
A popular technique for mining these contin-
uous and fast-arriving data streams is decision
trees. The accuracy of decision trees can deteri-
orate if the distribution of values in the stream
changes over time. In this paper, we propose
an approach based on decision trees that can
detect distribution changes and re-align the de-
cision tree quickly to reflect the change. The
technique exploits a set of synopses on the leaf
nodes, which are also used to prune the decision
tree. Experimental results demonstrate that
the proposed approach can detect the distrib-
ution changes in real-time with high accuracy,
and re-aligning a decision tree can improve its
performance in clustering the subsequent data
stream tuples.

1 Introduction

Traditional DBMSs are successful in many real-
world applications where data are modeled as
persistent relations. However, for many re-
cent applications, data arrive in the form of
streams of elements, usually with high arrival
rate. Techniques for traditional database man-
agement and data mining are not suited for
dealing with such rapidly changing streams and
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continuous queries that run on them. Exam-
ples of such applications include financial mar-
keting, sensor networks, Internet IP monitor-
ing, and telecommunication [4, 5, 22, 23].

In the past few years, significant research
has been done in processing and mining data
streams, with the goal of extracting knowledge
from different subsets of one data set and in-
tegrating these generated knowledge structures
to gain a global model of the whole data set [8].

Clustering is an important data/stream min-
ing technique. It groups together data with
similar behavior Many applications such as net-
work intrusion detection, marketing investiga-
tion and data analysis require data to be clus-
tered.

Use of decision trees is one of the most pop-
ular clustering techniques. Compared to other
clustering techniques such as K-means [11, 15],
decision tree models are robust and flexible.
There are many decision tree construction algo-
rithms that generally construct a decision tree
using a set of data as training examples, where
leaf nodes indicate clusters, and each non-leaf
node (called a decision node) specifies the test
to be carried out on a single-attribute value.
New data can be clustered by following a path
from the root to one leaf node.

Most decision tree generation algorithms
make the assumption that the training data are
random samples drawn from a stationary dis-
tribution. However, this assumption does not
hold for many real-world data stream applica-
tions. Typically, fast data streams are created
by continuous activities over a long period of
time, usually months or years. It is natural
that the underlying processes generating them



can change over time, and thus the data dis-
tribution may show important changes during
this period. Examples include applications for
monitoring stock price, network bandwidth us-
age, foreign currency exchange rate, holiday ef-
fect, and so on. This issue is referred to as
data evolution, time-changing data, or concept-
drifting data [1, 13, 17, 26].

1.1 Motivation
The distribution change over data streams has
great impact on most stream mining algo-
rithms. A data stream mining model built pre-
viously may not be efficient or accurate when
the data evolve, and some characteristics ob-
served before may no longer hold. Hence,
techniques for detecting distribution changes in
data streams and adjusting the existing deci-
sion tree to reflect these changes are required.

A naive extension is to rebuild the decision
tree from scratch when a distribution change is
detected. Since it may take a long time to rec-
ollect training samples for rebuilding a decision
tree, this solution is not practical. An alterna-
tive solution is to reconstruct the decision tree
incrementally, so that the tree can be adap-
tive to the changes. Some previous approaches
adjust an existing decision tree when the dis-
tribution of the stream changes by replacing
the affected leaf nodes by subtrees to maintain
accuracy [10, 13, 14]. However, this type of ap-
proach may lead to serious inefficiency in clus-
tering.

Consider a simple scenario. One import com-
pany in US uses a data stream management
system to monitor all its transactions with
Canada. The company wants to monitor its
transactions and the exchange rate when each
transaction is made. Hence, the decision tree
should be built using currency exchange rate as
the criteria for each decision node in the tree.
Assume the data stream starts at a time when
the exchange rate is about 1:1.6 US dollar to
Canadian dollar. If the US dollar gets cheaper
over time, leaf nodes in the original decision
tree will be replaced by sub-trees to reflect this
change. Over time, we may have a decision tree
similar to the one shown in Figure 1.

Notice the problem here: as the data stream
continues, the most recent data will fall in the
clusters (leaf nodes) at the lowest level, i.e. the

rate > 1.6?

Y

Y Y

Y

Y

Y

N

N N

N

N

N

rate > 1.7?
rate > 1.5?

rate > 1.4?

rate > 1.3?

rate > 1.2?

Figure 1: Example of a decision tree based on
exchange rates

two leaf nodes under decision node “rate >1.2”.
As the tree gets deeper, clustering gets increas-
ingly inefficient.

In this paper, we propose a decision tree-
based approach for mining time-changing data
streams. The approach can be summarized as
follows. We continuously monitor the decision
tree, and if it becomes unacceptable (to be de-
fined later), we re-align the tree in real time to
improve its efficiency. We maintain a synop-
sis at each leaf node indicating how many data
elements fall in this cluster in certain time pe-
riods. If most of the recent data fall in certain
leaf nodes (clusters), while other leaf nodes are
barely touched, then this could imply a distri-
bution change. Hence, we re-align the tree to
reflect this change.

This approach is independent of the underly-
ing tree construction technique. Re-alignment
does not affect the accuracy of a decision tree,
since we do not modify any gain functions on
the decision nodes, while the efficiency will be
increased for concept-drifting data. The over-
head introduced in our technique is the time
to re-align the tree, and the memory used for
keeping synopsis on leaf nodes.

1.2 Summary of Contributions
The contributions of this paper are as follows:

• We propose a new method of detect-
ing distribution changes based solely on
timestamps and sliding windows; hence,
the change can be detected in real-time
with very little overhead.

• We propose a decision tree re-aligning
technique that is independent of the un-
derlying decision tree construction ap-



proach. Our technique adds adaptivity
of changes to the existing decision tree,
and can considerably improve the perfor-
mance of the decision tree when distribu-
tion changes.

• Our heuristics-based approach provides a
novel way for tree-pruning.

• We can improve any two of the three ma-
jor criteria for decision trees (accuracy, ef-
ficiency, and tree-size) with no impact on
the third one.

The rest of the paper is organized as follows.
Section 2 discusses our technique for detect-
ing distribution changes in data streams. In
Section 3, an algorithm for re-aligning a deci-
sion tree is proposed. Section 4 describes an
approach that can prune a decision tree effec-
tively. The experimental results are presented
in Section 5. In Section 6, we discuss the re-
lated work on change-detection and decision
tree construction over time-changing streams.
We conclude the paper in Section 7.

2 Detecting Changes
A data stream S is an unbounded sequence of
elements 〈s, t〉, where s is data, and t ∈ T is a
monotonically increasing timestamp indicating
the arrival time of the element. s can have dif-
ferent forms, such as a relational tuple, or a set
of items, depending on the underlying applica-
tion that generates S.

Let Ds be a decision tree for clustering S.
Let dj (j = 1, 2, ..., q) be the decision nodes in
Ds, and ci (i = 1, 2, ...,m) be the leaf nodes
representing different clusters. Each element
in S will be clustered by Ds following a certain
path constructed by a set of decision nodes and
one leaf node. For each leaf node ci in Ds, we
maintain a synopsis containing the following:

• τi - The timestamp of the last element that
falls in this node; i.e. when a new element
〈sk, tk〉 is placed in ci, set τi = tk.

• θi - Total number of elements that are
within this cluster represented by ci.

• φi - The average value of timestamps of
all elements that fall in ci. φi represents
the “time density” of ci. We will use this
value for detecting distribution changes in
the data stream.

Since data streams are unbounded, φi has
to be maintained incrementally. Every
time a new element 〈sk, tk〉 falls in ci, we
set

φ′i = φi∗θi+tk

θ′
i

where φ′i is the new time density and θ′i =
θi + 1 is the updated total number of el-
ements that are in the cluster represented
by ci.

The full algorithm for detecting distribution
changes is given in Algorithm 1.

Each time a new element 〈sk, tk〉 falls in a
leaf node ci, we calculate the timestamp dis-
tance distancei = tk − φi. This value is com-
pared to a threshold value γ. If distancei < γ,
it means that a large portion of newly arrived
elements fall in this cluster, which may imply a
distribution change. Hence, we mark this leaf
node ci for re-aligning (lines 19-25 in Algorithm
1). Threshold γ is a predefined value. The
larger the γ, the earlier a change in the stream
can be detected. However, the risk for false
alarms is also higher, that may cause more fre-
quent re-alignment, leading to a higher over-
head. In Section 5.2, we will further discuss
issues related to setting γ.

For a data stream with very high arrival rate,
calculating the timestamp distances of all leaf
nodes each time a new element arrives would be
expensive and unnecessary. Existing sampling
techniques can be adopted for this case. We do
not discuss this issue further in this paper.

For a stream that has continued over a long
period, historical data can severely affect the
accuracy and efficiency of the change detection
technique. For example, even when most of
the new elements fall in one leaf node ci, if ci

contains a large number of historical data, its
timestamp distance may still be larger than the
threshold γ. Therefore, to eliminate the effect
of historical data in a cluster, we apply a time-
based sliding window R over the data stream
S. Window R contains a substream of S that
arrives within time 〈t, t + ∆〉. Only elements
that are within this sliding window are consid-
ered in the calculation of φ for each leaf node.
When a data element 〈sk, tk〉 expires from R as
R moves forward, the synopsis for leaf node ci

that 〈sk, tk〉 belongs to isupdated. The new φ′i
is updated as φ′i = φi∗θi−tk

θ′
i

, where θ′i = θi − 1



Algorithm 1 Detecting changes in data
stream
1: INPUT: Data stream S
2: Decision tree Ds

3: Sliding window R
4: OUTPUT: Modified decision tree D′

s

5: for all new element 〈sk, tk〉 of S that will
fall in leaf node cj do

6: if cj is replaced by a subtree with leaf
nodes c′j and c′′j then

7: //Set synopsis for c′j and c′′j
8: τ ′i = τ ′′i = tk;
9: θ′i = θ′′i = 0;

10: φ′i = φ′′i = 0;
11: Set c′j and c′′j to be unmarked;
12: else
13: // Update synopsis
14: τj = tk;
15: θj + +;
16: φj = φj∗θj+tk

θj
;

17: if θj > MinClusterSize then
18: // Check distribution changes
19: distancej = tk − φj ;
20: if distancej < γ then
21: if the re-aligning mark of cj is

unmarked then
22: //Start re-aligning
23: Mark ci for re-aligning;
24: Call Algorithm 2;
25: end if
26: else if the re-aligning mark of ci is

marked then
27: Reset ci to be unmarked;
28: end if
29: end if
30: for all 〈si, ti〉 belongs to leaf node ci

that are moved out of R do
31: //Remove historical data
32: θi −− ;
33: φi = φi∗θi−ti

θi
;

34: end for
35: end if
36: end for

is the updated total number of elements that
are in the cluster of ci (lines 30-34).

The time interval ∆ of R is a pre-defined
value based on application requirements. Some
applications, such as network monitoring, may

require larger ∆, while other applications, such
as time-critical real-time ones, may prefer a
smaller ∆. Since, to detect changes, we do not
need to store the actual values of the elements
within the window, the time interval of R can
be very large if needed. We will further discuss
issues related to ∆ setting in Section 5.2.

If a cluster represented by ci contains only
historical data, i.e., none of the elements it con-
tains is within R, then this cluster will have
θi = 0 and φi = 0. Notice one problem here:
when a new element 〈sk, tk〉 falls in ci, ci’s syn-
opsis will be updated as τi = tk, θi = 1, and
φi = tk. Since distancei = φi − tk will then be
0, a distribution change will be flagged. This
problem is caused by the danger of making a
decision with very few samples. The problem
arises when a leaf node is replaced by a sub-
tree (as will be discussed later), since new leaf
nodes contain no elements yet. To solve this
problem, we use a minimum cluster size para-
meter to indicate the minimum number of data
elements that a cluster must contain in order
to trigger change detection on this cluster.

Once a leaf node ci is marked, distancei may
stay below the threshold γ for a while. After a
certain time period, there are two possibilities:

• The total number of elements that fall in
ci is very high, in which case ci will be
replaced by a subtree with one decision
node and two leaf nodes c′i and c′′i (as
in [6, 10, 14]). We then set τ ′i = τ ′′i =
tk, θ′i = θ′′i = 0, φ′i = φ′′i = 0, where tk
is the timestamp of the last element that
was placed in ci before the replacement.
Re-alignment flags for c′i and c′′i are set to
unmarked (lines 6-11).

• Distancei is no longer less than γ. This
may indicate that the distribution change
has ended, i.e., the new distribution has
stabilized. Hence, we reset the re-aligning
flags for ci to unmarked (lines 26-27).

Algorithm 1 has complexity O(m) for each
new data element, where m is the total number
of out-dated data elements (i.e., the elements
that move out of R) when a new data element
arrives. If the arrival rate of the data stream
is stable, then each time a new element arrives
only one data element will be removed from R.
For this case, the complexity of Algorithm 1 is



O(1). For a data stream with an unstable ar-
rival rate, m can be greater than 1, indicating
the arrival rate is decelerating, since there are
more out-dated data than new data. Hence,
although Algorithm 1 may take longer for this
case, it is still practical, because when the ar-
rival rate is lower, clustering process does not
need to be that efficient.

3 Tree Re-alignment
The purpose of re-aligning a decision tree Ds

is to move more frequently visited leaf nodes
higher in the tree. By doing this, the over-
all efficiency of the clustering process is im-
proved, since most recent elements need to
follow shorter paths (i.e. pass fewer decision
nodes) to be clustered. For example, for the de-
cision tree shown in Figure 1, recall that most
of the recent data elements are in clusters “rate
≤ 1.2” and “1.2 < rate ≤ 1.3 ”. Any element
that needs to reach either of the clusters needs
to pass 5 decision nodes (including root). To-
tal number of decision nodes for reaching both
leaf nodes is 10. However, if we re-align the
tree to the form shown in Figure 2, the total
number of decision nodes for reaching both of
the leaf nodes is 3, with 1 for cluster “rate ≤
1.2” and 2 for cluster “1.2 < rate ≤ 1.3”. Al-
though to reach the leaf nodes under decision
node “rate > 1.7”, 6 decision nodes need to be
passed, since these leaf nodes are barely visited
after the distribution change, the efficiency of
this decision tree improves.
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Figure 2: Re-aligned decision tree
The problem of re-aligning Ds can be trans-

formed into a problem similar to the optimal
weighted binary search tree construction prob-
lem. We can assign each leaf node a weight that

reflects the number of recent elements this node
has. The higher the weight, the more recent
elements this leaf node contains; whereas the
lower the weight, the more historical elements
are within this cluster. An optimal decision
tree with the highest weight can then be con-
structed using dynamic programming. For the
applications where efficiency is the major con-
cern, a suboptimal decision tree re-alignment
technique can be applied.

Let pi be the weight of leaf node ci (i =
1, 2, ..., m). Initialize pi = 1. If a leaf node ci

contains only historical data, i.e. all elements
within it are outside R, we reduce pi by half.
Each time R slides through a full length (i.e.,
every ∆ time period) while no new data ele-
ment arrives in ci, we continue to reduce its
weight pi by half. Therefore, the smaller is pi,
the “older” is ci. Figure 3 gives an example
of how the weight should be adjusted for an
out-dated leaf node over time.

Figure 3: Example of the weight change of one
out-dated leaf node

Every time ci is changed from unmarked to
marked, we increment pi by 1. By analyzing
these weights attached to each leaf node, we
can determine which leaf nodes have received
recent data, and which have not. Based on dif-
ferent applications, re-alignment strategy can
be either eager or lazy. For eager strategy,
every time the weight of one leaf node is in-
creased (which indicates a distribution change),
the decision tree is re-aligned. We can also
apply a lazy strategy where the decision tree
will only be re-aligned periodically, or after a
certain number of leaf nodes are changed from
unmarked to marked.

Notice that pi only changes when ci changes
from unmarked to marked. For any leaf node
cj already marked, its weight will not increase
every ∆ time period, and the re-alignment pro-
cedure will not be invoked. This is because
once a distribution change starts, it may take



a while until the new distribution stabilizes.
Hence, it takes time for distancej to become
greater than γ again, or until cj is replaced by
a subtree, as discussed in Section 2. There is
no need for re-aligning the tree before the new
distribution stabilizes. If cj is replaced by a
subtree with new leaf nodes c′j and c′′j , then we
set p′j = p′′j = pj , but do not start re-aligning
the new decision tree immediately.

Definition 1. For two decision trees Ds and
D′

s with decision nodes dj , d′j (j = 1, 2, ..., q)
and leaf nodes ci, c′i (i = 1, 2, ..., m), respec-
tively, we say Ds and D′

s are functionally equiv-
alent if and only if:

• D′
s is constructed using exactly the

same decision nodes and leaf nodes as
Ds, i.e., {d1, ..., dq} = {d′1, ..., d′q} and
{c1, ..., cm} = {c′1, ..., c′m}, and

• if a data element 〈sk, tk〉 in S, if it falls in
leaf node ci following Ds, then it will fall
in the same leaf node following D′

s.

Functionally equivalent trees have the same
number of decision nodes and leaf nodes, and
the gain functions on decision nodes are iden-
tical. They produce exactly the same results
for clustering a data stream. However, their
efficiency may be different. Our goal for tree
re-alignment is to find the most efficient func-
tionally equivalent tree to the current decision
tree Ds. To measure the efficiency of a decision
tree, we introduce the concept of the weight for
decision trees.

Definition 2. Let H be the depth of Ds

and hi be the depth of ci, i.e. the number of
decision nodes an element needs to pass before
it reaches ci. We define the weight (W ) of de-
cision tree Ds as:

W =
∑m

i=1(pi × (H − hi + 1))
H−hi +1 is the level of leaf node ci counting

bottom-up. For two leaf nodes ci and cj with
the same weight, if hi < hj (i.e. ci is at a higher
level than cj), we have (pi × (H − hi + 1)) >
(pj × (H − hj + 1)). Traditionally, the level
of a node is counted top-down. However, in
our case, because our goal is to push leaf nodes
with higher weight to a higher level, the level
is assigned in reverse.

Given two functionally equivalent trees Ds

and D′
s with weights W and W ′, respectively,

if W > W ′, it may imply that leaf nodes with

higher weights (i.e., most frequently visited)
are aligned at higher levels in Ds than in D′

s.
Hence, our goal is to find an equivalent tree of
Ds with the highest weight, i.e. the tree Dw

s

where
Ww =

∑m
i=1(pi ∗ (H − hw

i + 1)) = max(W ).
It is possible that two functionally equivalent

trees have the same weight. To break the tie,
we choose the tree with a lower depth H.

For data streams that do not have very high
arrival rate and do not require frequent re-
alignment (i.e. γ is not set to be very large),
we can apply dynamic programming to find op-
timal weighted binary trees [18, 19]. It has
been proven that this dynamic programming
approach for finding optimal weighted binary
tree has time complexity O(n2), where n is the
total number of nodes in Ds. This dynamic
programming approach has been shown to ad-
mit an implementation running in O(n log(n))
time [19].

However, for the high speed data streams
and streams that change distribution fre-
quently, the quadratic time complexity may
not be practical. Thus, we introduce a sub-
optimal decision tree re-alignment algorithm
derived from [20, 21]1. This algorithm can find
an approximat optimal weighted binary tree
with the complexity O(n log(n)).

Let ci be a leaf node of Ds, and dj and d′j
be its parent and grandparent nodes. Let c′i
be the direct child of d′j . That is, c′i is one
level higher than ci. Starting from the leaf node
on the lowest level and going bottom-up, we
apply the following heuristics to each leaf node
ci (i = 1, 2, ...m) in Ds.

Heuristics H1: If the weight of ci is greater
than the weight of c′i, i.e. pi > p′i, then ex-
change the position of dj and d′j in Ds by per-
forming a single rotation.

By applying this heuristics, ci along with its
parent dj will be moved to a higher level than
c′i and d′j , and hence, the weight of the new tree
is greater than Ds. This heuristic is repeatedly
applied until all the leaf nodes are examined.

Note that the resulting decision tree with a

1An algorithm introduced in [25] can further reduce
the time complexity to linear, i.e. O(n), however, since
the resulting tree may not be efficient in many cases,
this algorithm should only be applied when the speed
of the data stream is extremely high.



higher overall weight than the original tree may
not be a balanced one. A balanced tree may
not be a good solution for many data streams
with distribution changes. According to our
weight function, the leaf nodes on very low
levels should have low weights, meaning that
their clusters haven’t received new data for a
long time. Hence, although visiting these leaf
nodes may be inefficient, since they are barely
visited, the overall efficiency should not be af-
fected severely. Furthermore, we can apply the
pruning method (introduced in the next sec-
tion) to reduce the tree depth by removing
these historical clusters.

The full algorithm for assigning weights and
eagerly re-aligning the tree is shown in Algo-
rithm 2.

Algorithm 2 Decision tree re-aligning
1: INPUT: Decision tree Ds

2: OUTPUT: Re-aligned decision tree D′
s

3: for all leaf node ci in Ds do
4: //Initialize weights
5: pi = 1;
6: Call change detection algorithm;
7: if ci contains only historical data then
8: pi = pi/2;
9: else if the re-aligning mark of ci is set

from unmarked to marked then
10: pi = pi + 1;
11: //Start re-aligning Ds

12: for all leaf node ck in Ds starting from
the lowest level do

13: Find its parent dj and grandparent
d′j ;

14: Find d′j ’s direct child c′k
15: if pk > p′k then
16: Exchange dj and d′j with a single

rotation;
17: end if
18: Move to the leaf node at one level

higher;
19: end for
20: end if
21: end for

4 Pruning Decision Tree
There are three major criteria for evaluating
decision trees: accuracy, efficiency, and tree

size. As we mentioned in Section 1, our ap-
proach improves the efficiency of a decision tree
for concept-drifting data without affecting its
accuracy. In this section, we discuss how the
tree size can be reduced effectively by pruning
outdated nodes using the synopsis.

Most of the decision tree generation and
modification techniques over data streams pro-
posed in literature do not consider the tree size
as long as the tree can fit in main memory.
Consequently, the most popular solution is to
start pruning only when a decision tree is too
large to fit in memory. This is not necessar-
ily a good strategy. Since historical data, e.g.
data that arrived months or years ago, may no
longer be useful after the distribution of the
stream changes, we can delete clusters contain-
ing only out-dated data even when memory is
sufficient. This early-pruning can result in a
reduction in the size and the depth of the tree,
leading to lower overall cost for clustering.

Furthermore, scant attention has been paid
so far to the actual pruning algorithm. One
common approach is to remove leaf nodes that
contain few elements. This approach may not
be appropriate for data streams that change
over time. For example, assume one leaf node
c1 has more elements than c2. Based on the
common less-elements-pruned-earlier strategy,
c2 will be removed. However, for a data stream
whose distribution changes over time, it is pos-
sible that most of the elements in c1 arrive long
time ago, while new data are falling in c2. In
this case, a better solution is to prune c1, since
it is less important to the current distribution.

Based on this insight, we propose two heuris-
tics for pruning a decision tree using the syn-
opsis we presented in Section 2 and the weights
introduced in Section 3.

Heuristics H2: Prune leaf nodes with θ 6= 0
and distance greater than a certain threshold.

Recall that θ is the number of elements that
fall in the cluster represented by a leaf node.
The greater the distance, the “older” the leaf
node is. Hence, by pruning leaf nodes with
distance greater than a certain threshold, his-
torical clusters are deleted from the tree. The
appropriate threshold setting is application de-
pendent.

Heuristics H3: Prune leaf nodes with
weight p less than a certain threshold ω (0 ≤



ω ≤ 1).
The higher is ω, the more leaf nodes will be

pruned. For example, if ω is set to 1/2, then the
first time one leaf node is considered out-dated,
it will be pruned immediately. If ω is 1/4, then
it takes double the time to make this pruning
decision. Hence, when the system resources are
limited, ω should be a higher value, whereas if
resources are abundant, ω could be smaller.

H2 can be regarded as an eager pruning
strategy, and H3 is a lazy pruning strategy. For
different scenarios, these heuristics can be re-
evaluated:

1. every time a new element arrives, when
distance and p values of all leaf nodes are
recalculated, or

2. when the size, depth, or weight W for Ds

is less than a predefined threshold, or

3. at certain time intervals, or

4. when memory is insufficient.

After several leaf nodes are deleted, the de-
cision nodes connected to them will miss one
or both of their children. Usually, a decision
tree is a full binary tree, and to maintain this
property, we consider two cases:

• Case 1: one child of a decision node da is
deleted after pruning.

Let the children of da be ca and ta (ta can
be a subtree or a leaf node). Let d′a be
the parent of da. Assume ca needs to be
pruned according to H2 or H3. If da is the
root node (i.e. d′a = NULL), then remove
da and set the root of ta to be the new
root (illustrated in Figure 4(a)). Other-
wise, set the root of ta to d′a, and remove
da (illustrated in Figure 4(b)).

ca

ad (old root)

(a)

new root

ca

da

d’a

(b)
Figure 4: Case 1: one child of da is pruned

• Case 2: both children of a decision node
da are deleted after pruning.

Let the children of da be ca and c′a. If ca

and c′a are to be deleted, replace da by a
new leaf node cb. Set its synopsis as τb =
max(τa, τ ′a), θb = 0, φb = 0. The weight pb

of new leaf cb is reset to 1.

The total cost of the new decision tree may
not be optimal after pruning. However, since
pruning process only modifies historical leaf
nodes, recently visited leaf nodes remain on
their current levels. Hence, it is not necessary
to re-align the tree after pruning.

The full algorithm for pruning a decision tree
is given in Algorithm 3. Algorithm 3 has com-
plexity O(m) upon each re-evaluation, where
m is the total number of leaf nodes in Ds.

5 Experiments

In this section, we present a series of experi-
ments to evaluate the performance of the pro-
posed techniques. All experiments are con-
ducted on a PC with 3GHz Pentium 4 proces-
sor and 1GB of RAM, running Windows XP.
All algorithms are implemented in C.

For each data stream used in the experi-
ments, we generate its decision tree using the
CVFDT algorithm [13]. A decision tree gener-
ated by CVFDT algorithm is adaptive to distri-
bution changes in the stream by replacing leaf
nodes with subtrees. In [13], CVFDT is eval-
uated with categorical attributes only. Hence,
we additionally implemented the technique pre-
sented in [14], so that numerical attributes can
be used as classifiers on the decision tree.

For a decision tree using numerical attributes
as classifiers, when one leaf node contains too
many data elements and needs to be split, it is
not clear to see what the splitting point (i.e.,
the numerical value on the decision node of the
new subtree that replaces this leaf node, see
Figure 1 for example) is. In such cases, we
apply a gain function to find the best splitting
point. The gain function is constructed using
Hoeffding bound [12]. In our experiments, for
each leaf node, we start the splitting procedure
after at least 5,000 data elements fall in it. The
α value used to calculate Hoeffding bound is
set to 1 − 10−6. These two parameters are set
exactly the same as in the experiments of [14].



Algorithm 3 Pruning a decision tree
1: INPUT: Decision tree Ds

2: OUTPUT: Modified decision tree D′
s

3: if re-evaluation start then
4: for all leaf node ca in Ds do
5: if ca satisfies H2 or H3 then
6: //Depend on which heuristic is

adopted
7: //H1 and H2 cannot be used at the

same time
8: Find ca’s direct parent da;
9: end if

10: if da is the root of Ds then
11: Set da’s another child d′a as new

root;
12: Remove ca and da;
13: else if da’s another child is a leaf node

c′a then
14: Create a new leaf node cb;
15: τb = max(τa, τ ′a);
16: θb = 0;
17: φb = 0;
18: pb = 1;
19: Replace da with cb;
20: Delete ca and c′a;
21: else
22: //da’s another child is a subtree
23: Find da’s another direct child db;
24: Find da’s direct parent dc;
25: Set db’s direct parent to dc;
26: Delete da and ca;
27: end if
28: end for
29: end if

5.1 Change Detection Evaluation

To evaluate the effectiveness of our change
detection technique, we adopt the same data
streams as used in the experiments of [17], and
compared our experimental results with their
results2. Each data stream contains 2,000,000
points with only one numerical attribute for

2There are two versions of each experiment in [17],
each using a different parameter called critical region
defined in their paper. This parameter does not affect
our techniques. According to [17], the results of the
version using critical region (20k, .05) are usually the
better ones, thus, we only compare our results with
this version.

each data element. The distribution changes
occur every 20,000 points. Hence, there are 99
true changes in each data stream.

The arrival speed of this data stream is set to
be stable, with one tuple per unit time. This
is for the purpose of gaining control over the
size of the sliding window R, since a time-based
sliding window will be equal to a count-based
one if the speed of the stream is stable. How-
ever, keep in mind that our techniques do not
require the data stream to have an even speed.
In these experiments, the time interval ∆ of R
is set to 500 time units. The minimum clus-
ter size is 100 data elements. We set γ = 70
time units. The effect of ∆ and γ settings on
our proposed technique is studied in the next
section.

The experimental results are shown in Table
1. If, at the time when a change is reported,
the change point (i.e. the first element that be-
longs to the new distribution) is still in R, or it
was contained in R at most ∆ time units ago,
then this detection is considered to be on time.
Otherwise it is considered late. The results are
reported in the form a/b where a is the num-
ber of changes detected on time, and b is the
number of changes reported late.

In Table 1, “Γ” represents the results of the
proposed change detection technique. “Wil” is
the technique using Wilcoxon statistic. “KS”
is the technique with Kolmogorov-Smirnov sta-
tistic over initial segments “KS”. “KSI” is the
technique using Kolmogorov-Smirnov statistic
over intervals “KSI”. “Φ” and “Ξ” represent
the results of using φA and ΞA statistics pro-
posed in [17] (where A is the set of initial seg-
ments), respectively. For detailed description
on these techniques, the readers are referred to
[17].

S1 is a data stream whose initial distribution
is uniform. The starting distribution of stream
S2 is a mixture of a Standard Normal distribu-
tion with some Uniform noises. Streams S3, S4,
S5 and S6 contain Normal, Exponential, Bino-
mial and Poisson distributions, respectively.

These results lead to the following observa-
tions:
• The distribution changes are usually de-

tected on time using the proposed tech-
nique. For other techniques, the change
detections are more likely to be delayed



Table 1: Number of distribution changes de-
tected using different techniques

Γ Wil KS KSI Φ Ξ

S1 42/17 0/5 31/30 60/34 92/20 86/19
S2 40/9 0/2 0/15 4/32 16/33 13/36
S3 46/13 10/27 17/30 16/47 16/38 17/43
S4 73/6 12/38 11/38 7/22 7/29 11/46
S5 63/0 36/42 24/38 17/22 12/32 23/33
S6 61/2 36/35 23/30 14/25 14/21 23/22

for all testing streams except S1.

This is because other techniques need to
see the “big picture” of the stream data
distribution in order to detect changes,
while our technique can quickly locate the
clusters (leaf nodes) where changes start
without waiting until the new distribution
is fully visible.

• Our technique performs much better than
others for streams S4, S5 and S6. Fur-
thermore, for these streams, most of the
distribution changes are detected on time.

S4 has exponential distribution and S5 and
S6 have discrete distributions. In all three
cases, the distribution changes are severe,
i.e. the new distribution is considerably
different than the old one. These results
indicate that our technique performs best
for data streams that may have severe dis-
tribution changes (such as detecting fraud,
instrument failure, and virus attacks).

• For data streams S1, S2 and S3, our tech-
nique may not perform better than other
techniques on the total number of changes
detected (even slightly worse in a few
cases). This is because these three streams
have relatively slow and smooth distribu-
tion changes. For these cases, we can im-
prove the effectiveness of our technique by
increasing γ. However, this increases the
chance of false detection, as will be shown
in next section.

To evaluate the false detection rate, we run
all six techniques on five streams with 2,000,000
points each and no distribution change. The
results of total number of false detections on
all five streams are shown in Table 2. From
these results, we can see that our technique has
a lower false detection rate than most of other
techniques.We do not show experimental results for run
time comparison of these techniques. As men-
tioned in Section 2, our change detection al-

Table 2: Number of false alarms
Γ Wil KS KSI Φ Ξ

False alarms 26 40 40 49 18 36

gorithm has a worst case complexity of O(m),
where m is the number of out-dated data when
a new data arrives. Usually m is not a large
value unless there is a severe burst in the
stream. For data streams with steady arrival
rate, the time complexity of our algorithm is
O(1). KS and KSI have O(log(m1 + m2))
time complexity [17], where m1 and m2 are the
sizes of a pair of sliding windows. The com-
plexity of computing Wilcoxon is O(m1 + m2),
and the computation time for φA and ΞA is
O([m1 + m2]2). Notice that multiple pairs of
sliding windows are used in [17] with different
sizes, and some pairs may have very large win-
dow sizes in order to detect smaller changes
that last over long time. Hence, the time com-
plexity of our technique is better than these
techniques.

5.2 Varying Distance Threshold
and Sliding Window Interval

In order to analyze the effect of different ∆ and
the distance threshold γ settings on change de-
tection, we conduct a set of experiments on the
six data streams S1−S6 using various settings:

1. Keep γ = 70 time units unchanged, ad-
just ∆ from 300 time units to 800 units
by increasing ∆ 100 time units each time.
Figures 5(a) and 5(b) show the results of
the number of changes detected on time
and delayed, respectively.

2. Fix ∆ to 500 time units, and vary the value
of γ from 30 to 150 time units in increment
of 20 units. Figures 6(a) and 6(b) show the
results of the number of changes detected
on time and delayed, respectively.

From these results, we have the following ob-
servations:
• Increasing ∆ may result in a reduction in

the number of on time change detections.
This is because, as ∆ increases, more “old”
data are involved in calculating the dis-
tance. Hence, it is harder to have the dis-
tance less than threshold γ. However, be-
cause the definition of “on time” in Section



Figure 5: Performance of our change detection technique with ∆ varied

Figure 6: Performance of our change detection technique with γ varied

5.1 depends on ∆, a larger ∆ implies a
larger R, and thus, the number of changes
detected on-time may increase.

• Larger γ values may increase the number
of changes detected on time. However, no-
tice that some of the distribution changes
detected may be false.

• It is unclear how the number of delayed
change detections will vary when adjusting
∆ or γ.

We also run experiments studying how ∆
and γ can affect the false alarm rate, using the
same five data streams used in Section 5.1. The
results are shown in Tables 3 and 4. From these
results, we see that decreasing ∆ or increasing
γ may lead to a high false alarm rate.

Table 3: Number of false alarms changing ∆
∆ 300 400 500 600 700 800

False alarms 30 26 26 21 12 10

Table 4: Number of false alarms when γ varies
γ 30 50 70 90 110 130 150

False alarms 11 15 26 28 32 43 49

5.3 Efficiency Comparison of Re-
aligned Decision Tree and
Original Tree

To verify the effectiveness of the proposed deci-
sion tree re-aligning technique, we apply both
the change detection algorithm (Algorithm 1)
and the decision tree re-aligning algorithm (Al-
gorithm 2) on the six data streams S1−S6 using
the same parameter and threshold settings as
in Section 5.1. The efficiency of the original de-
cision trees Di (i = 1, ..., 6) and the re-aligned
trees D′

i is measured using the weights Wi and
W ′

i , as described in Section 3. For each data
stream Si, every time a change is detected, we
re-align the decision tree and record the ratio



rj = W ′
i/Wi, where j indicates the jth change

being detected. Notice that although the origi-
nal tree Di does not change during processing,
each time we calculate W ′

i , Wi also needs to be
updated, because the weights attached to some
leaf nodes may have changed. The average ra-
tio Avg(W ′

i/Wi) = r1+r2+...+rq

q (where q is the
total number of changes detected) is used to
estimate the overall efficiency improvement of
our decision tree re-aligning algorithm on each
data stream.

The results are shown in Table 5. We can
see that the efficiency of each decision tree is
greatly improved after re-aligning.

Table 5: Efficiency improvement of our decision
tree re-aligning algorithm

Si S1 S2 S3 S4 S5 S6

Avg(W ′
i /Wi) 4.67 3.65 7.01 8.69 7.10 4.72

5.4 Performance comparison of
Optimal and Sub-optimal
Tree Re-aligning Strategies

In Algorithm 2 for decision tree re-aligning, we
adopted an approximate algorithm that gener-
ates a sub-optimal tree. This is for the purpose
of increasing the efficiency of decision tree re-
aligning process for streams with high arrival
rates. However, as mentioned in Section 3, if
the speed of the data stream is not extremely
high and the re-aligning process is not triggered
frequently, we can apply the dynamic program-
ming approach to generate an optimal tree. To
compare the performance of both sub-optimal
and optimal re-aligning approaches, we imple-
mented the dynamic programming approach
for tree re-aligning, and applied it on streams
S1−S6. The performance and time comparison
results are shown in Tables 6 and 7.

Table 6: Efficiency improvement of the re-
aligned tree using dynamic programming

Si S1 S2 S3 S4 S5 S6

Avg(
W ′

i
Wi

) 5.29 4.13 7.66 11.00 8.83 5.56

Table 7: Time comparison of dynamic pro-
gramming (DP) and sub-optimal (Sub) ap-
proach

Data stream Si S1 S2 S3 S4 S5 S6

DP (time unit) 313 269 370 575 661 396
Sub (time unit) 14 21 32 27 30 13

By comparing tables 5 and 6, we can see that
the average performance increment of the op-
timal decision tree over the sub-optimal tree is
17%. On the other hand, the sub-optimal re-
aligning approach is 19.92 times faster than the
dynamic programming on average.

5.5 Pruning Heuristics Evalua-
tion

To evaluate the power of our pruning heuris-
tics, we generated a data stream that has only
one numerical attribute. Data arrive at a rate
of one element per time unit. The value of the
data element grows over time. Hence, the de-
cision tree will grow increasingly deeper as leaf
nodes keep splitting, and there will be a large
number of historical clusters. The pruning pro-
cedure is triggered when the height of the deci-
sion tree is greater than a threshold (set to 12
in this experiment). ∆ is set to 500 time units.
For heuristic H2, we set the distance threshold
to 1500 time units. For heuristic H3, when the
weight of one leaf node is less than 1/16, this
leaf node will be pruned. Table 8 demonstrates
the results of our pruning procedure using H2
and H3, respectively.

Table 8: Pruning results using H2 and H3
Heur- # of nodes # of nodes tree height
istic before pruning after pruning after pruning

H2 35 15 6
H3 35 21 8

From these results, we can see that the tree
size is greatly reduced after pruning. Note that
H2 (eager pruning) usually prunes more nodes
than H3 (lazy pruning). Which heuristics to
choose is an application based decision.

5.6 Running on Real Streams

All experiments we conducted so far use syn-
thetic data streams. To test the performance of
our proposed techniques in practice, we design
a set of experiments using a real data stream.

The data set we use is called Tao [16]. It is
a copyrighted data set from the Tropical At-
mosphere Ocean (TAO) project. Detailed in-
formation about this project and the Tao data
can be found in [24]. Tao data records the sea
surface temperature (SST) from past years.

Tao data contains 12218 streams each one of
length 962. Since the streams are too short to



fit our experiments, we concatenated them in
the ascending order of the time these streams
are recorded. This is a reasonable modification
because each stream represents the sea surface
temperature for a certain period, thus the con-
catenation represents a record for a longer pe-
riod.

The arrival speed of Tao is set to one tuple
per time unit. The decision tree is built using
temperature value as classifier. Minimum clus-
ter size is 100 data elements. ∆ and γ is set to
500 and 50 time units, respectively.

Experimental results show that a total of
2746 distribution changes were detected using
the proposed change detection technique, with
2173 on time and 573 delayed. The average
efficiency improvement after applying our de-
cision tree re-aligning technique is 8.68. This
result shows that our approach is effective on
real data sets.

6 Related Work
Detecting changes in data streams and adjust-
ing stream mining models accordingly is a chal-
lenging issue and has only been recognized as
an important one in the past few years.

Aggarwal addressed the data stream change
detection problem by providing a framework
that uses a concept called velocity density es-
timation [1, 2]. The idea is to estimate the
density of the data periodically using a kernel
function. Then by estimating the rate at which
the changes in the data density occur, the user
will be able to analyze the changes in the data
over different time horizons.

Kifer et al. present another approach for
change detection using two sliding windows
over a data stream [17]. They test distribu-
tions P1 and P2 for the sample data sets S1

and S2 in each window, respectively. By com-
paring P1 and P2, it is possible to tell if S1

and S2 are generated by the same distribution,
i.e. P1 = P2. If P1 6= P2, it indicates that a
distribution change has occurred. A new fam-
ily of distance measures between distributions,
and a meta-algorithm for change detection are
proposed based on this idea.

These two approaches look at the nature of
the data in the stream. They are general, and
can be applied to any stream mining model.

However, these approaches have high compu-
tational cost, and thus may not be suitable
for real-time clustering. Moreover, they do not
provide guidance for adjusting the stream min-
ing technique to reflect the changes. Our tech-
niques not only detect the distribution changes,
but also provide the ability to adjust the mining
models to reflect these changes. Furthermore,
as we have discussed in Section 5.1, a change
detected using these general techniques is more
likely to be delayed, since these techniques need
to wait until the “big picture” of the stream is
clear, while our technique usually can report
changes on time.

Aggarwal et al. introduce a change detection
approach for the stream mining models using
K-means [3]. The idea is to periodically store
summary statistics in snapshots. By analyzing
these statistics, one can have a quick under-
standing of current clusters. However, if data is
evolving, the model has to be revised off-line by
an analyst. Besides, K-means suffers from the
well-known problems such as fixed number of
clusters, high computational cost, etc. Our ap-
proach is based on a more flexible stream min-
ing model (decision trees), and the model can
be revised online automatically when a change
is detected.

For stream mining models using decision
trees, a common solution for detecting and han-
dling time-changing data is to recalculate the
gain/loss periodically for a newly arrived data
set using the existing classifier. If this gain/loss
exceeds a threshold value, it is accepted that
the distribution of the data has changed and
that the old model no longer fits the new data
[7, 9]. When a distribution change occurs, one
solution is to rebuild the tree. However, re-
building has a large overhead and for a data
stream with high arrival rate, it may not be
feasible for high speed data streams.

Hulten et al. propose the CVFTD algo-
rithm [13] based on their well-known decision
tree building algorithm VFDT [6]. CVFTD re-
flects the distribution changes in real-time by
replacing leaf nodes that seem to be out-of-
date with an alternate subtree. Gama et al.
point out [10] that CVFTD algorithm cannot
deal with numerical attributes and propose an
algorithm to extend the CVFTD system. Jin
and Agrawal present another approach for con-



structing a decision tree that can handle nu-
merical attributes [14]. In their approach, the
decision tree is also constructed by repeatedly
replacing leaf nodes with subtrees. However,
these approaches may lead to an inefficient tree
for time-varying data streams. As shown in our
experiments, the re-aligned decision tree using
our technique can be 4 or even 11 times more
efficient than the tree produced by these ap-
proaches.

7 Conclusion

In this paper, we propose a new technique for
detecting distribution changes over continuous
data streams. We use timestamps of each ar-
riving data element as guidance and maintain
a synopsis for each leaf node (cluster) in a deci-
sion tree. For each cluster, we use its synopsis
to tell if this cluster is receiving new data or it
contains only out-dated data. If we notice that
most of the recent data elements are falling in a
small number of clusters, a distribution change
is detected.

To improve the efficiency of the decision tree,
we propose a tree re-aligning algorithm. This
algorithm generates a decision tree that pro-
vides the same clustering results as the origi-
nal tree. Since the frequently visited leaf nodes
are moved closer to root, this re-aligned tree is
more efficient over the current distribution.

We further propose two heuristics for prun-
ing a decision tree. Our heuristics are based on
the common knowledge that clusters with only
out-dated data are less important, and thus can
be safely removed. This point of view is differ-
ent than the traditional pruning methods, and
serves time-changing data streams better.

Experiments verify the feasibility of our ap-
proach. According to the results, our change
detection technique can report most of the dis-
tribution changes in real time. The decision
tree re-aligning technique can improve the effi-
ciency by at least a factor of 4. It is also shown
that the proposed techniques can be applied to
real data streams with good performance.

We are currently investigating a number of
issues, including finding more efficient decision
tree re-aligning algorithms (although they may
not generate an optimal decision tree), design-
ing more useful synopsis, analyzing how the

threshold values should be set for different ap-
plications, and developing good sampling tech-
nique for stream with extremely high arrival
rate.
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