
Incremental Data Distribution on Internet-Based
Distributed Systems: A Spring System Approach

by

Catalin Visinescu

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2003

c©Catalin Visinescu 2003

I hereby declare that I am the sole author of this thesis.
I authorize the University of Waterloo to lend this thesis to other institutions or individuals
for the purpose of scholarly research.

Catalin Visinescu

I authorize the University of Waterloo to reproduce this thesis by photocopying or other
means, in total or in part, at the request of other institutions or individuals for the purpose
of scholarly research.

Catalin Visinescu

ii

The University of Waterloo requires the signatures of all persons using or photocopying
this thesis. Please sign below, and give address and date.

iii

Abstract

Efficient data distribution is critical to enable cost-effective performance and high avail-
ability of data for applications or services. Many replication and allocation strategies were
proposed for data distribution in traditional distributed DBMSs, but these do not scale to
the Internet environment. In this thesis we propose an incremental and dynamic method
for replicating and reallocating fragments of database relations in a highly scalable manner.
Our algorithm can execute data redistribution without requiring prior knowledge of the
global environment, does not require redistribution from scratch when the environment
changes, considers the relationship between relations (fragments), and reacts dynamically
to changing access patterns. The algorithm simulates a “spring system” among the frag-
ment and query objects, where correlations (constraints) between objects play the role of
springs. In a real spring system, the springs pull the objects in such a way as to approach
a stable equilibrium state; similarly, the constraints cause the fragments and query objects
to be relocated until a stable equilibrium is reached. We show that the locations of the
objects at equilibrium correspond to the optimal arrangement for efficient allocation.

iv

Acknowledgements

Studying at the University of Waterloo was an enriching experience - for having the
opportunity to upgrade my knowledge, for sharing ideas with people with same interests,
for all the professional challenges.

I owe all of these to my supervisor, M. Tamer Özsu who gave me the opportunity of
joining the Masters program. Many thanks for his constant guidance and support, and
for the time he took to advise me whenever I was in doubt about the research topics. I
am grateful for his assistance through the whole process of researching and preparing this
thesis. His vast knowledge and inspiring ideas helped me overcome many obstacles, stay
focused, and gain confidence in my skills. Having him as supervisor shaped my thinking
for the years to come.

Special thanks to Ric Holt for his financial support during the last two terms of my
graduate studies and to Ken Salem and Steve MacDonald for reading the thesis.

Last but not least, I would like to thank my colleague Ning Zhang for helping me
in various situations, and also to James She and David DeHaan for being great project
partners for the courses I took at Waterloo.

v

Contents

1 Introduction 1

1.1 Why is the Allocation Problem Important? 1
1.2 Brief Overview of DDBMS . 2
1.3 Problem Scenario . 2
1.4 Problem Parameters . 4
1.5 Why is the Allocation Problem Hard? . 5
1.6 Thesis Organization . 7

2 Related Work 8

2.1 Fragmentation . 8
2.1.1 Vertical Fragmentation . 9
2.1.2 Horizontal Fragmentation . 9
2.1.3 Mixed Fragmentation . 9

2.2 Replication . 10
2.2.1 Benefits of Replication . 10
2.2.2 Replication Protocols . 11

2.3 Data Allocation . 12
2.3.1 Static Allocation Approaches . 13
2.3.2 Dynamic Allocation Problem . 14

3 The Spring Algorithm 22

3.1 Environment Description . 22
3.1.1 Sites . 22
3.1.2 Data fragments . 23
3.1.3 Network Links . 23
3.1.4 Data Access Framework . 23

3.2 Cost Constraints . 24
3.2.1 Query Access Constraints . 25

vi

3.2.2 Correlation Constraints . 27
3.2.3 Replication Constraints . 27

3.3 The Spring System Approach - An Analogy 28
3.3.1 The Objects . 28
3.3.2 The Springs . 28
3.3.3 The Sites and The Network Links 30
3.3.4 System Equilibrium . 30

3.4 The Spring Algorithm . 32
3.4.1 Graph and Placement . 32
3.4.2 Bubble Definition . 33
3.4.3 The Bubble Energy . 34
3.4.4 Replication, Move, and Delete Techniques 37
3.4.5 The Spring Algorithm - Description 39

4 Experiments 45

4.1 Experimental Setup . 45
4.1.1 Data Generator Module . 47
4.1.2 Data Cleaning Module . 50
4.1.3 Spring Algorithm Simulator Module 51
4.1.4 Experimentation Platform . 52

4.2 Experiments and Results . 54
4.2.1 Validation Experiments . 54
4.2.2 Performance Evaluation Experiments 61
4.2.3 Conclusions . 70

5 Conclusions and Future Work 72

5.1 Overview . 72
5.2 Contributions . 75
5.3 Future Work . 76

Bibliography 79

vii

List of Tables

2.1 Propagation (Eager or Lazy) vs. Ownership (Master of Group) 11
2.2 Dynamic Allocation Algorithms . 14

4.1 The Default Values in the Experiments . 53
4.2 The Validation Experiments . 55
4.3 Performance Evaluation w.r.t. Nr. of Sites 63
4.4 Performance Evaluation w.r.t. Nr. of Fragments 64
4.5 Performance Evaluation w.r.t. Nr. of Queries 65
4.6 Performance Evaluation w.r.t. to S/J, U/R, and Query Access Distrib. . . 69

viii

List of Figures

1.1 Servers’ P2P Architecture . 3
1.2 Problem Parameters . 4

3.1 Cost constraints . 26
3.2 Analogy between the distributed database system and the spring system . 29
3.3 The two layers of the problem . 30
3.4 Object connected with springs . 31
3.5 ~fr should be greater than the ~ff to move the object. 31
3.6 A reallocation affects more the closer replica objects. 33
3.7 All fragments are non-replicated and uncorrelated 34
3.8 Non-replicated but correlated fragments. 35
3.9 Replicated but non-correlated fragments 36
3.10 Replicated and correlated fragments . 37
3.11 Replication step in the Spring System . 38
3.12 After R2(F) is moved, Q2 uses R1(F). 39

4.1 Module interconnection . 46
4.2 The Spring Algorithm Simulator . 51
4.3 The heuristic rearranging algorithm analyzes one fragment at a time. . . . 56
4.4 Replica objects’ order of analysis is important. 57
4.5 In a small setting it is crucial to reconnect the springs for each simulation. 58
4.6 In large environments spring reconnection is not important. 59
4.7 The number of analyzed sites is important. 60
4.8 Randomly generated sites encourage replication. 62

ix

List of Algorithms

1 Finding the best allocation . 6
2 GetBubbleEnergy . 42
3 CheckMove . 43
4 CheckReplicate . 43
5 SpringAlgorithm . 44
6 Rearrange the springs . 50

x

Chapter 1

Introduction

1.1 Why is the Allocation Problem Important?

With the current popularity of Internet and e-business, distributed database systems
(DDBMS) are widely deployed to provide the back-end support for Web-based database
applications. Efficient data distribution (allocation) is critical to ensuring cost-effective
performance and high availability of data for applications or services [46]. The allocation
problem is important since a good data location, close to the users accessing it, can boost
the DDBMS performance and reduce access costs.

In traditional DDBMS, the allocation scheme is determined at distributed database
design time, and it usually remains fixed. However, the optimal data allocation depends
on factors that change dynamically at run-time (read/update ratio, network connectivity),
and on the optimization goal (e.g. cost, performance, availability). The various replication
and allocation strategies proposed for data distribution in traditional Distributed DBMSs
are not suitable for a system running in the Internet environment where volatility requires
adaptivity. These strategies are not able to react easily to changes in access patterns
(changes in query workload or user distribution). Also, most of them do not consider the
correlations between data fragments1, which represents a significant factor that has an
impact on how and where data should be moved or replicated.

In this thesis, our goal is to find a way to replicate and dynamically allocate the database
fragments to various sites in order to run the queries faster. Since we deal with a dynamic
environment, a static approach to the allocation problem would fail from the start. There-
fore, we propose an incremental and dynamic algorithm which can redistribute data without
knowledge of the global environment in advance, that does not run from scratch, and that

1We are not looking at parallel DBMSs.

1

2 CHAPTER 1. INTRODUCTION

reacts dynamically to changing access patterns. If the fragments have affinities between
them, not only the fragment that changed its access pattern should be redistributed, but
also others that could be influenced by the allocation. Our algorithm takes as input the
current allocation configuration and access patterns, and, based on these, it computes new
locations. For reasons which are detailed later, we call this algorithm the Spring Algorithm.

In this thesis we do not try to solve the fragmentation problem, although it is directly
related to allocation (changing the database structure directly affects the way allocation is
performed). Our algorithm assumes that fragmentation has already been completed, and
does not try to re-fragment.

1.2 Brief Overview of DDBMS

This overview aims at giving a clear picture of the environment within which our problem
is formulated.

“A distributed database is a collection of multiple, logically interrelated databases dis-
tributed over a computer network. A distributed database management system (distributed
DBMS) is defined as the software system that permits the management of the DDBS and
makes the distribution transparent to the users.” [41]

Two of the commonly used distributed database architectures are the client/server and
peer-to-peer systems:

• Client/Server Systems: Generally speaking, a client can only make requests to a
server site, which executes the queries and returns the results. The server can also be
the client of another server. More details about client/server systems can be found
in [41] and [18].

• Peer-to-Peer Systems: These are fully distributed architectures, in which each node
of the system can work as a server that stores part of the database and as a client
that runs queries. Details about P2P can be found in [6, 30, 37, 7, 38, 23, 16]. A
P2P and databases bibliography can be found at www.cs.toronto.edu/db/p2p/.

1.3 Problem Scenario

The system we consider consists of a large number of sites, each of which has full database
functionalities (Figure 1.1). The users run queries on these sites. For our purposes, the
way the users connect to sites is transparent, and the costs are not considered. A user

1.3. PROBLEM SCENARIO 3

S1 S2

S3 S4

S5

U2

U3

U9

U4
U5

U6

U7

U8

U1

Figure 1.1: Servers’ P2P Architecture

accessing some fragments should not be aware if the data are replicated or not, or where
the data are located.

The data can be fragmented and replicated, and the unit of distribution is a fragment2.
The sites cooperate to reduce the overall cost of accessing data. The change of frequency
when accessing those fragments triggers their movement, replication, or deletion.

We assume an initial distribution of fragments. When the access pattern to a fragment
(or replica) changes, the system reconfigures itself dynamically. The queries accessing the
fragments represent the factors that cause the data reallocation, as the goal is to minimize
the cost to execute them.

As the system is placed in the Internet environment, there are few characteristics as-
sociated with it:

• Scalability is the main issue. The system must be highly scalable in order to perform
well in an environment where the only constant is change, and users access the sites
at a high rate.

• The user population and the user access patterns change from time to time at each
site, since the users’ interests vary constantly.

2The fragment is defined as a part of a database relation.

4 CHAPTER 1. INTRODUCTION

1.4 Problem Parameters

Figure 1.2 describes the three types of problem parameters: sites, queries, and database
capabilities.

Queries

Database
capabilities

Sites

Ideal Sites

Real Sites:
- limited space
- changing access cost

Non-adaptive Adaptive:
- store other’s data
- allow replication
- consider affinities between
 relations
- allow fragmentation
- could create new predicates

Non-
changing

Changing:
- type
- workload

Figure 1.2: Problem Parameters

Ideal sites have an infinite storage space and always have the same access cost (including
the network transmission time). This means that delays caused by overload never happen
and the network is never a delay factor. Real sites have limited space, due to the secondary
storage (i.e. hard disk) limitations. If more space is needed, changes have to be done to
the site. Also, the access cost to a site might change due to network or server overload.
As opposed to the static approaches, the algorithm we propose (Spring Algorithm) takes
into account that, over time, the access cost to a site can change due to a network failure
or overload, and the sites have limited space.

The queries accessing the DDBMS may or may not change over time. The Spring
Algorithm deals with changing queries as well.

The database systems are of two types. A non-adaptive system is only capable of
providing data to the users, and is not capable of adapting to the changing conditions.
The adaptive system, on the other hand adapts to environmental changes to reduce the
global access cost. It is capable of storing data that may be moved to it from other sites
and allows replication if this represents an improvement in the global cost.

Each point in the three-dimensional space (Figure 1.2) is a version of the allocation
problem, which increases in complexity from the simplest case (ideal sites, non-changing

1.5. WHY IS THE ALLOCATION PROBLEM HARD? 5

queries, and non-adaptive databases) to the most complex case (real sites, changing queries,
and adaptive databases). The Spring Algorithm works with the most complex case.

1.5 Why is the Allocation Problem Hard?

The general problem of data allocation is an NP − hard problem since each site has
limited space available to store the fragments [41, 19]. We use Algorithm 1 to illustrate the
difficulties in finding the best allocation. Let us consider a set of f fragments, s sites and
q queries. In this algorithm there are three sub-tasks:

1. Finding how many copies of each fragment are to be allocated in the

best distribution. For f = 3 and s = 4, assuming that all the fragments allow
replication, here are some example of possible allocation situations: (1, 1, 1), (1, 1,
2), (1, 1, 3), (1, 1, 4), ... , (4, 4, 2), (4, 4, 3), (4, 4, 4). The pair (i1, i2, i3) represents
the number of replicas each of the three fragments have. The last pair shows that
each fragment has four copies which will obviously be located on each of the four
sites. There is no advantage in having two copies of a fragment on one site, therefore
the maximum number of replicas a fragment can have equals the number of sites.
Consequently, there are f ×s possible combinations. All of these are captured in line
2 of Algorithm 1.

2. There are f × s combinations of numbers of replicas of each fragment to be allo-
cated. If the number of fragments and sites increases, the number of combinations
“explodes”. But that’s not all. For each of the above pairs there are many possible
locations where the replicas can be allocated (sites 1 to s). Using the same
values of f and s as in the above bullet, let’s consider the pair (2, 2, 3). The first
fragment has two replicas that can be allocated to the following sites: {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {3, 4}. This is similar for the second fragment. The third
fragment’s replicas can be allocated as follows: {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3,
4}. Only for this subproblem there are 6×6×4 = 144 cases to analyze. To generalize,
if there are n1 replicas of the first fragment, n2 replicas of the second fragment and
so on until nf , then there are

f
∏

i=1

(
s
ni

)

possibilities where the replicas can be allocated. All of these are captured in line 5
of Algorithm 1.

6 CHAPTER 1. INTRODUCTION

3. After the two previous steps, a large set of fragment allocation configurations is ob-
tained. Now, for each configuration, finding whether this is the best allocation

requires checking if the overall cost of executing the queries is minimum. Regarding
the queries, it is known which fragment each query is accessing. However, which
replica of an accessed fragment should be used when running a query is still un-
known. For instance, for an allocation configuration such as { {1, 2}, {2, 3}, {1, 3,
4} }, a join between two fragments J = F2 ./ F3 can be executed using any of the
replicas of F2 located at sites 2 or 3, and any of the replicas of F3 located at sites
1, 3 or 4. Therefore, for this query there are six possibilities that have to be tried.
To generalize, for a query accessing p fragments, each having ri replicas, there are
r1 × r2 . . . rp possible ways to run the query. All of these are captured in lines 6, 9 of
Algorithm 1.

Algorithm 1 Finding the best allocation

1: {Get all sets of possible number of replicas of each fragment}
2: for all sets { (i1, i2, ... in) }, numbers of replicas of each fragment do

3: {Get the set of set of sites where the replicated fragments are placed}
4: { {S1,1, ...S1,i1} are the sites on which the i1 replicas of first fragment are placed}
5: for all sets { {S1,1, ...S1,i1} ... {Sn,1, ...Sn,in} } of different sites do

6: for all q query accessing fragments {Fk1 , ... Fkm
} do

7: { The goal is to use the closest copies of the fragments to serve the query }
8: { Assuming Fk1 has a replica stored on Sk1,p1 , Fk2 has a replica stored on Sk2,p2

and so on Fkm
has a replica stored on Skm,pm

as described above }
9: for all {Sk1,p1 , ...Skm,pm

} s.t. Ski,pi
∈ {Ski,1, ...Ski,ipi

} do

10: If is the best configuration, save it
11: end for

12: end for

13: end for

14: end for

15: Return the saved configuration

As shown in the above example, the number of cases that need to be analyzed increases
exponentially with the number of sites, fragments, and queries. The running time to place
f fragments on s sites is f×s. However, the limited space on the sites could lead to removal
of fragments to make room for others if this results in a better configuration. Therefore, the
search for the best allocation becomes difficult, making the allocation problem NP-hard.

1.6. THESIS ORGANIZATION 7

1.6 Thesis Organization

This chapter has set the general framework of the allocation problem and outlined the
strategy we propose. The rest of the thesis is organized as follows:

• Chapter 2, Related Work, is an overview of previous allocation strategies, briefly
touching two close related strategies: fragmentation and replication.

• Chapter 3, The Spring Algorithm, focuses on the spring system approach and de-
scribes the Spring Algorithm. This chapter also contains a description of the envi-
ronment in which our algorithm operates.

• Chapter 4, Experiments, presents the experimental results of the simulation model
that was implemented to analyze the performance of the Spring Algorithm. This
chapter describes the experimentation platform and the two classes of experiments:
validation and performance evaluation.

• Chapter 5, Conclusions and Future Work, gives an overview of the proposed strategy
and experimental results, presents our contribution, and outlines potential future
work.

Chapter 2

Related Work

This chapter presents an overview of previous dynamic distribution strategies, which are
of interest in this thesis, and briefly introduces static distribution strategies as well. We
also present two orthogonal strategies to the general problem of data distribution – data
fragmentation and replication – as they all combine to improve the efficiency of data
distribution.

Every distributed database system is described by a global conceptual schema, which
specifies the logical structure and information of all the data contained in the distributed
database. In the case of distributed relational database systems, the global schema contains
global relations. The relations are divided into smaller logical data units called fragments,
which helps to localize accesses and reduces the amount of irrelevant data accessed for any
transaction. The mapping between the global relations and fragments is defined in the
fragmentation schema. Similarly, there is an allocation schema which specifies the location
of each fragment (or each replica of a fragment) according to the distribution algorithm
used.

The chapter is organized as follows: Section 2.1 provides a short summary of the
fragmentation strategies, Section 2.2 gives an overview of the replication strategies, and
Section 2.3 details allocation strategies that improve the transfer costs.

2.1 Fragmentation

Fragmentation is the process of partitioning a relation into sub-relations. It is preferable
that the parts of the relation that are accessed together to be located in the same fragment.
The benefits of fragmentation are the following:

• Locality: Many queries involve only a subset of a relation. This subset of data is

8

2.1. FRAGMENTATION 9

captured in a fragment that, ideally, should be stored in a place close to the queries
accessing it. The decreased space and increased locality effect can dramatically im-
prove the access performance.

• Concurrency: The query processing is sped up when a query is translated into sub-
queries and applied to multiple fragments in parallel. This allows concurrent process-
ing of data and distributed accesses at multiple sites for higher system throughput
[39].

A fragment’s granularity should be decided in a reasonable manner. It can range from
several tuples or attributes to full relations. If the granularity is large, it will consume
excessive bandwidth for data delivery. However, if the fragments are small, this will degrade
the performance due to extra interactions and processing required to merge the fragments.

2.1.1 Vertical Fragmentation

In vertical fragmentation a relation is split vertically into a set of fragments by projecting
a relation over a subset of its attributes. Each fragment will contain a subset of attributes
as well as the primary key of the relation. The primary key is used to reconstruct the
fragments, by joining the fragments. More details about vertical fragmentation can be
found in [41].

2.1.2 Horizontal Fragmentation

In horizontal fragmentation, which is by far the most commonly used fragmentation scheme,
a relation is divided into a set of fragments by rows. Each fragment contains a subset of tu-
ples of the original relation. Horizontal fragmentation is proven to improve the performance
of database systems [5]. It is used for three reasons: it reduces the disk access required
to execute an application, by minimizing the number of irrelevant objects accessed; it re-
duces data transfer among sites; and it allows the application to be executed concurrently
for a higher degree of parallelism. In relational systems, the horizontal fragmentation is
achieved by selecting a set of tuples that satisfy a condition. More details about vertical
fragmentation can be found in [41].

2.1.3 Mixed Fragmentation

Sometimes a single strategy of horizontal or vertical fragmentation may not be optimal.
Partitioning horizontally and then vertically or vice-versa may achieve better results. It
can even be done simultaneously.

10 CHAPTER 2. RELATED WORK

2.2 Replication

This section reviews different replication strategies. First we introduce the advantages of
replication and then we briefly discuss several characteristics of replication protocols.

2.2.1 Benefits of Replication

In DBMSs replication is generally used due to three important benefits:

• High availability

• Fault tolerance and

• Performance enhancement.

For any critical system, one might want to have data replicated for high availability.
If server failures occur, a user should be able to get the data from another server. This
is an important area of interest for researchers due to the increasing popularity of mobile
computing devices. Distributed systems textbooks [18, 41, 45] talk about these issues in
detail.

Fault tolerance refers to resilience of a system to failures [32, 13]. It is important
to implement a method to check the correctness of data when this happens, as sites that
are not working properly can have adverse effects on others. A properly-running server A
that gets an update may try to propagate it to a site B that failed. A will be forced to
wait until the time-out period expires to realize that B is down, resulting in delays of an
operational site.

Many papers talk about obtaining performance enhancement in a Web environ-
ment by locating replicas on sites close to the users accessing them [28, 24, 9]. Content
Delivery Network technologies like Akamai [1], Mirror-Image [2], and SinoCDN [3] applied
this strategy with success. This strategy is similar to caching because they both place
copies close to the users. However, there are several subtle differences such as the way the
copies are removed and deployed, the update protocol, the impact on the catalog, and the
granularity. All these differences are explained in detail in [35]. Replication allows load
balancing as user requests are distributed to many servers, reducing the chances of server
bottlenecks. It also reduces the network transfer and the inherent latency to which the
users are exposed because data are always retrieved from the closest location. However,
replication has a side effect that needs to be considered – the cost to maintain the consis-
tency of copies. Since maintaining data consistency is not a trivial task, many algorithms
have been proposed to efficiently keep data consistent; they are called replication protocols.

2.2. REPLICATION 11

2.2.2 Replication Protocols

Different applications have different requirements about the quality (freshness etc) of data
they access. A replication strategy that works well with one class of applications may not
work well with others. Many replication protocols have been proposed [20, 4, 51, 10, 40]
to satisfy these requirements with minimum consistency costs.

Table 2.1 presents a taxonomy of the replication protocols based on object ownership
strategies (master or group) and propagation protocols (eager and lazy) [22].

Table 2.1: Propagation (Eager or Lazy) vs. Ownership (Master of Group)
Propagation versus
Ownership

Eager Lazy

Master N transactions,
one object owner

One transaction,
one object owner

Group N transactions,
N object owners

One transaction,
N object owners

In master replication (also called passive replication), one replica is considered the
source (primary copy). The updates are applied to the primary copy, which then forwards
them to the rest of the replicas (that are read only). Whenever the primary copy fails,
another replica is selected to take over the role of primary copy.

In group replication (also called state machine approach or active replication), each
replica has equivalent roles. The users send updates to any replica and the updates are
propagated to all the copies.

The eager schemes ensure that changes to replicated data are performed within a
transaction boundary. The transactions commit on all sites that have the same data and
all of these replicas have to be updated before the transaction commits. This is a good
approach for applications that cannot afford stale data.

The lazy replication protocols, by contrast, focus on performance and therefore al-
low some degree of inconsistency. Since it is generally considered that most applications
allow a certain level of inconsistency, many papers deal with this type of replication. Two
strategies, shadow copies [8] and bounded errors [51, 40], are commonly used to reduce
the message overhead in lazy replication. In lazy replication protocols, the level of consis-
tency can be determined by the precision of data or the freshness: (1) How precise is the
information provided?; (2) How fresh are the replicated data? The value cannot be older
than some threshold, but there is no specified information about the deviation from the
real value.

12 CHAPTER 2. RELATED WORK

2.3 Data Allocation

Data allocation deals with finding the best (or close to the best) locations to place fragments
in various environments such that specified constraints are satisfied. There are strategies
that try to minimize the storage space [34, 29], the bandwidth [47], the number of replicas
deployed [36, 42, 14], and/or the total communication cost [26, 15]. The constraints may
be defined on the average number of nodes that users have to pass to get to the closest
object they access, on the maximum wait-time of each client, etc.

There are three types of allocation alternatives: non-replicated and fully replicated
allocations, which are the two extremes, and partially replicated allocation.

Non-Replicated Allocation:

In this alternative, the fragments are not replicated. If they are updated frequently or
have a low read frequency, or if there is a security issue, it is better to have only one copy.
However, a non-replicated fragment is vulnerable if the site hosting it fails. Also, the site
might be a performance bottleneck.

Fully Replicated Allocation:

In this case, each fragment is located at every site, therefore the allocation problem is
trivial. This is feasible only if the applications are critical and if either the data requests
are generally read-only or the updates can be performed off-line and in batches. A catalog
that keeps track of the fragment’s location is not required. The limitations of this type of
allocation are: (1) utilization of the storage space is poor when replicas are rarely accessed,
and the storage cost may be high; (2) the cost to maintain consistency of a large number
of replicas can be significant since, for each update message, all sites must communicate;
and (3) as presented earlier when discussing fault tolerance, in replication algorithms like
those enforcing strict consistency, whenever a site fails all other sites must wait for the
failed site to recover.

Partially Replicated Allocation:

Since both non-replicated and fully-replicated allocation have limited utilization, it is
natural to consider partial replication. In this case, the number of replicas of each fragment
varies based on the access patterns. This is the common approach used in practice, as
spatial and temporal locality can be fully leveraged. However, for partial-replication two
issues must be addressed: (1) How many copies of a fragment should be replicated in order
to get the best performance? This is a complex task. On the one hand, the number
of updates, the cost of updates, and the storage capacity of the sites limit the number
of replicas to be deployed. On the other hand, frequent reads in clustered geographical
regions that result in high gains from reading data locally motivate an increase of the
number of replicas. Considering these conditions simultaneously, an optimal or close to
optimal number of replicas is obtained [26, 50]. (2) How should the fragments be allocated to

2.3. DATA ALLOCATION 13

the sites? There are many papers analyzing data allocation. Some of them propose static
allocation techniques, assuming that access patterns to data and network characteristics
do not change. Others analyze the allocation problem in a dynamic environment where
replicas have to be reallocated to adapt to changing conditions. We discuss this issue in
detail in the following sections.

In Internet environment, non-replicated and fully replicated techniques are not useful
due to the high read frequency and the large number of sites respectively. Also, static
allocations are not appropriate in dynamic environments, therefore, in this thesis we focus
on dynamic allocation strategies.

2.3.1 Static Allocation Approaches

Traditionally, database allocation problems have been performed by off-line analysis and
optimization. In the static allocation strategies, the access patterns are known beforehand
and the fragments are located permanently. This approach works well for static access
patterns, but in the Internet environment, which is highly dynamic, the static allocation
strategies are not adequate. Consequently, they are only briefly presented in this section.

In [42] M replicas are located on N nodes of a Content Distribution Network, and
the goal is to find the optimal location in order to reduce the cost to access the data
replicated on the servers. In [29], the goal is to minimize the number of hops a client has
to go through to get the data while satisfying the storage space constraints, whereas [26]
proposes two algorithms to minimize the total communication cost, without any constraints
on the sites’ space. Something new in data allocation is introduced in [33]. The authors
propose a new parameter, confidentiality, to be the third deciding factor on data allocation,
besides the commonly used read/write frequency. If data are replicated on many sites, the
confidentiality decreases. Some data should have a certain level of confidentiality, therefore
it will have a bound on the number of replicas. The optimal location of replicas in a
network that is using Read-One-Write-All replica consistency policy is considered in [15].
The authors show that, for a path graph with integer distances and the cost between the
nodes given by the length of the shortest path, the allocation problem can be solved in
polynomial time.

More allocation strategies are presented in [12] (network cost constraints), [34] (storage
space constraints), [36] (replication constraints). A comparison among different static
allocation algorithms can be found in [31]. We will not consider static allocation approaches
any further, as we are interested in techniques that can dynamically adapt to new network
and system conditions.

14 CHAPTER 2. RELATED WORK

2.3.2 Dynamic Allocation Problem

As mentioned, static placement of data has limitations because the allocation does not
react to changing conditions. An ideal solution is to incrementally change the allocation
schema according to new information towards the “best” allocation, requiring periodic
relocation of the fragments. Fragments that are highly read or updated should be moved
as fast as possible because, during the time they are moved, the system’s execution is
suboptimal [25]. It is not feasible to stop the access service until data migration has been
completed. If the size of the fragment is significant, the duration of the interruption is
long. [48] deals with this problem by using message forwarding. As in DDBMSs there are
correlations between fragments, a good strategy should also consider correlation.

Because the problem of fragment allocation is NP-hard, heuristic algorithms have been
proposed to get a “close to the best” allocation. We categorize them in Table 2.2, and we
refer them by the papers in which they were presented.

Table 2.2: Dynamic Allocation Algorithms
Type of Algorithm
vs. Type of Network

Distribution
Algorithms

Caching
Algorithms

Tree-Shaped Net-
works

[49] [50] [14]

General Topology
Networks

[17], [11], [27],
[43], [44] [50]

[47]

We have found several dynamic distribution algorithms [49, 50, 17, 11, 27, 43, 44]
and also two caching algorithms [14, 47] that, as a side effect, move and replicate data,
and therefore are of interest. Based on the topology of the network on which algorithms
are used, we have found that three of them only work in tree-shaped networks (tree-like
communication control) [49, 50, 14]. Notice that [50] is also placed in the general topology
network because the authors also propose a variation on the original algorithm that is
adapted to this type of network.

Distribution Algorithms in Tree-Shaped Networks

The practical Dynamic-Data-Allocation (DDA) algorithm is one of the early proposals
for dynamic allocation of replicated data [49]. This algorithm changes dynamically the
replication scheme of an object, as objects’ read/write pattern changes in the network.
The goal is to optimize the total communication cost to access an object, based on its

2.3. DATA ALLOCATION 15

current read/write pattern. Each object in the database has a primary copy. The site
that doesn’t store the object it accesses reads and updates the primary copy. If the site
stores a copy, the reads are executed locally and the updates are propagated to the primary
copy. The primary copy will then forward the updates to the other copies. As long as the
primary copy is located on an up-and-running site, the failure of a site storing a copy does
not affect other sites storing another copy. If the primary copy fails, an election protocol
is executed to select another primary.

The cost to read an object locally is 1 (processing cost), while the cost to read it from
a remote site is 1 + d, where d is the cost to retrieve the object. Considering there are c
copies, the cost for a write is c · (1 + d) − d ' c · (1 + d). Each site i performs #Wi writes
and #Ri reads in a time unit. Initially, the algorithm allocates copies of the objects on
each site where there is a read. Next, it considers the updates and, if the benefit from
reading data at each of those sites is less than the cost to maintain its consistency, the
copy is discarded. After the allocation is performed, the sites k that keep a copy are
{k|(1 + d) ·

∑

i #Wi ≤ d · #Rk}. A strategy to maintain a specified level of availability is
also proposed. If there is a constraint (i.e. “the number of copies cannot decrease below
a threshold, say t”) the primary copy refuses to drop a copy from a site even though the
update cost is higher than the read cost. The inefficient copy is removed only if a new
copy is allocated.

The approach is interesting and the algorithm is simple to implement, but there are
three drawbacks. First, the cost to move an object from one site to another is not consid-
ered, and this cost may not be negligible. The second drawback is that, in this approach,
whenever a site gets either a read or a write operation, it runs a test to check if the copy it
stores is suitable for this location. If the reads and the updates are interlaced, it could hap-
pen that a copy is dropped after each write message and brought back immediately when
a local read is issued. The most important drawback, which makes this algorithm inap-
plicable to an Internet-based DDBMS, is that the algorithm does not consider correlation
between fragments.

The other distribution algorithm that works in tree-shaped networks is the Adaptive
Data Replication (ADR) algorithm [50]. It is proposed by the same authors and has
the same goal of reducing the communication cost of accessing an object by dynamically
changing its replication scheme. Initially, there is only one copy of each object, and the
objects are replicated and/or moved according to their read/write pattern. An object is
allocated at n sites and a copy is found at every site along the path between any two
sites storing copies of that object. This means that a copy is allocated in all nodes of a
subtree of the tree shaped network, therefore each object has its own allocation subtree.
The reason behind this strategy is that, when the updates are propagated to the leaves

16 CHAPTER 2. RELATED WORK

of the allocation subtree, the copies in between can be updated at no cost. The costs are
computed from the number of local reads minus the total number of writes, just like in [49].
Periodically, at the end of a fixed time interval, each site that is a leaf of the allocation
tree for a set of objects performs tests on each of the objects in that set. These tests are
expansion, contraction, and switch. In the expansion test, a site x replicates an object at
a neighbor site y if the number of read requests coming from y in a given time interval is
greater than the total number of updates received by x from any site other than y. If the
test fails, the contraction test is conducted to verify whether or not the object on x should
be removed. Since x is a leaf of the allocation subtree, it has only one neighbor y that
stores the object. If the number of writes received from y in the last time interval is greater
than the number of reads x receives, the object is dropped. The switch test is performed
only if the expansion test fails and the object is stored at only one site (singleton). For
each neighbor node of the site storing the singleton object, the site counts the number of
accesses to the object in the last time interval. If there is a node x such that the number
of requests coming from x is greater than the sum of all requests from all other nodes, the
object is moved to x.

This algorithm can also be used in general topology networks, as the minimum spanning
tree can be computed and then the algorithm can run on it. However, there are disadvan-
tages since minimum spanning tree does not guarantee the shortest distance between two
nodes. ADR-G is a version of ADR which uses the shortest path for a general topology
network. Another issue is that, since the storage space is limited, it is not feasible to have
a large number of sites storing the same data, especially in a large environment like the
one we try to address. Also, correlation is a must but is not addressed here.

Distribution Algorithms in General Topology Networks

An original approach to the problem of distributed database allocation is presented in [17],
where a genetic algorithm1 is used to address this problem. In distributed database allo-
cation, a set of n fragments is allocated at m sites, where each fragment j is characterized
by its size sj and each site i has its own capacity ci. Each fragment is required by at
least one of the sites. The sites’ requirement for each fragment is defined in an m × n
requirement matrix, where rij ≥ 0 indicates the requirement of site i for fragment j. Also,
the transmission cost is given by an m × m transmission cost matrix, where tij indicates
the cost of site i to access a fragment located on site j. The goal is to find a placement
P = {p1, p2, ..., pn}, where pj = i indicates that fragment j is located at site i, provided

1The genetic algorithms [21] are adaptive search techniques based on the principles and mechanisms of
natural selection and “survival of the fittest” from natural evolution.

2.3. DATA ALLOCATION 17

the capacity of any site is not exceeded,

n∑

j=1

rij · sj < ci ∀i|1 ≤ i ≤ m

and the total transmission cost,
m∑

i=1

n∑

j=1

rij · tipj

is minimized.
In genetics, each chromosome is formed of genes, and the genes’ values are called alleles.

In the proposed algorithm, the genes represent the fragments, and the alleles represent the
sites on which the fragments are located. Each chromosome can be represented as a string
of integer values and is an encoding of a placement P in the distributed database allocation
problem. At each iteration, a portion of the population of chromosomes is selected and
somehow altered, then reintroduced into the population pool. Chromosomes are proba-
bilistically selected for reproduction based on the “survival of the fittest” principle. The
fittest chromosome is the one that has a low cost function (defined above). The offspring
are generated through a process called crossover [21], which can be improved by mutation
[21], and then are introduced into the pool. Using this process, chromosomes corresponding
to good allocations are the survivors in the population pool. The performance experiments
show that the genetic algorithm gives a better allocation than a greedy algorithm in which
each fragment is placed in turn in the least cost location.

The approach is interesting, but it fails to consider replicated fragments. Also, the
algorithm cannot be applied in large environments as the computation to maintain the
chromosome population is high. Also, the site capacity is not the most relevant constraint
in the Internet environment, where bandwidth is the parameter that affects the allocation
the most.

Two dynamic algorithms, Simple Counter and Load Sensitive Counter, are proposed in
[11]. The goal is to dynamically reallocate data in a partitioned distributed database, just
like in [17]. In the first algorithm, each fragment keeps a counter for each site. Whenever
the fragment is accessed from site Si, the ith counter is increased. To discount prior
samples, the algorithm uses an aging factor that ascribes high values to new entries in the
counter and low values to old ones. Every time interval, tcheck, the fragment is moved to
the site with the highest number of accesses. The value of tcheck should be low enough for
the system to respond quickly, but large enough to prevent premature signaling of change
in access patterns. The second algorithm considers load balancing, which is shown to be an

18 CHAPTER 2. RELATED WORK

important practical consideration when reallocating data. The system load and the access
frequencies are monitored. A fragment is not moved to the site with the highest number
of accesses if that site would be overloaded. There are three reasons why the algorithms
would perform poorly if used in the Internet environment. First, the algorithms do not
consider locality. If a site from Halifax accesses a fragment 101 times, and three sites
in Vancouver, Victoria, and Edmonton access it 100 times each, the fragment is located
in Halifax. Second, both replication and fragment correlation are a must but are not
considered. Third, just counting the queries that access a fragment is not sufficient, since
in the real world query selectivity is also important. This simplification could only be used
if the fragment is fully accessed, or if all queries access the same size of the fragment.

Mariposa [27] is a distributed database system based on an economic model. However,
it is relevant to this thesis because it also finds the best allocations for fragments. The
queries are executed by organizing auctions. When a client issues a query, a budget is
allocated for that execution. The budget shows the importance of the query, creating a
way to deal with priorities. A broker creates an execution order for each query operator.
Then it organizes an auction where all sites that contain full or partial data or are willing
to execute some query operators are bidding and offering their services. The broker chooses
the execution plan with the lowest cost (the paper interprets this execution plan as a broker
trying to maximize its own profit). The faster the query operators are executed, the more
money a site makes. A site S2 can buy a fragment from S1 for a period of time t in which
S1 will forward the updates. S2 pays S1 at least for the effort to propagate the updates
during t, and for the loss caused by the fact that some queries are now executed at S2

instead of S1. S2 recuperates the money spent by running the queries faster, therefore
making more money. None of the papers talking about Mariposa present how efficient the
data redistribution is.

A migration and replication protocol for Internet hosting is presented in [43]. The
goal is to place replicas of Internet objects in the vicinity of a majority of requests, while
ensuring that no server is overloaded. The protocol relies on information available from
routing databases and IP headers.

There are two pairs of tunable parameters in the protocol: low and high watermark for
the hosts (lw and hw), and deletion and replication threshold for the objects (u and m).
The watermarks add stability to the system, and reflect the system’s capacity. If the load
at a site exceeds hw, the performance degrades. The deletion and replication thresholds
determine the replica placement. The algorithm keeps an access count for each object,
similar to [11]. If the deletion and replication count of a replica drops below the deletion
threshold, the replica is removed. For a count between the two thresholds the replica

2.3. DATA ALLOCATION 19

can only migrate. Another copy is created only for counts greater than the replication
threshold. To provide stability, the constraint 4u < m must be satisfied. Intuitively, this
should be enforced such, that after replication, every replica has an access count exceeding
u, therefore no newly created replica is deleted. This avoids cycles of creations and deletions
of replicas. If a site’s load exceeds hw, it switches to off-loading mode and moves objects
to other hosts even though the performance degrades due to proximity issues. The process
stops when the low watermark, lw, for hosts is reached. A candidate accepts a replication
request if the load is below lw. To accept a migration request, a candidate site, in addition,
checks if the upper bound load would be below hw. This prevents situations in which a
single object migration would bring the recipient load from below the lw to above hw. The
replication is not so strictly conditioned, as the load when accessing the replicated object
will be shared by the two sites. The strategy proposed by [43] is based on server workload
only, because they deal with an Internet hosting service which is highly accessed. However,
in what we try to address, the server load is important but the transmission cost is the
primary metric. Also, the authors do not consider correlations between Internet objects.

A large peer-to-peer file-sharing system is described in [44]. The goal is to achieve
high availability by replicating files automatically and in a decentralized fashion. The
minimum number of file replicas required to satisfy the availability threshold is calculated
dynamically. Each of the sites has the same probability p to be up and the replica location
service has a specified accuracy RLacc. The cost function represents the availability of the
files (computed as the probability that at least one replica is available times the accuracy
of the replica location service). The number r of required file replicas is obtained from
RLacc · (1− (1− p)r) ≥ Avail, where Avail is the imposed level of availability. Once a site
knows the optimal number of replicas for a file it stores, it employs the replica location
service to discover how many replicas actually exist. If the number returned, say M , is
less than r, (r − M) copies of the file are created and distributed to remote locations.

The authors assume that the resource discovery mechanism provides a set of candidate
sites for the file, which are located in different domains (geographical area). It is assumed
that two locations within the same domain have the same storage and transfer costs. The
set of sites at which the file is replicated is selected from the candidate sites using a heuristic
algorithm that maximizes the difference between the replication benefits and replication
costs.

The availability checks are performed at a variable time interval, based on the results
of previous checks. For instance, if during the last checks more replicas are needed, the
frequency is increased.

One weakness of the algorithm is that each site makes its own replication decision when
file availability decreases. Therefore, extra replicas may be created by several sites, when

20 CHAPTER 2. RELATED WORK

only one is needed. This is a price that is paid in order to avoid centralized control. Another
drawback is that, as long as the availability conditions are met, the data reallocation is
not performed. This is an inefficient approach because the access to the files might change
over time. Also, this strategy deals with files which do not have correlations between them
as in the case of database fragments.

A Caching Algorithm in Tree-Shaped Networks

Since the caching algorithms deal with the Web objects and Web objects are considered
individually, none of the caching algorithms can be used in our case.

In [14] the authors propose a strategy in which the response time is the determining
factor for allocation. The goal is to minimize the number of replicas while meeting the
clients’ QoS (quality of service) and server capacity constraints. Each client has to maintain
an access latency that is less than a specified threshold. This approach is different from
others like [49, 50, 17], which minimize the communication cost but may fail to meet the
requirements of all clients. In the previous approaches, if a user rarely accesses a replica,
no copy is placed closer because the read gain does not cover the update cost. Users that
are clustered have a local copy and are served faster than they need to be. However, those
residing outside the clusters experience significant delays. The caching algorithm proposes
a method to satisfy every user’s QoS requirements. Replicas of objects are placed such
that each user can get a response in a bounded time interval. If a new client accesses an
object, a copy of it is placed in the client’s proximity. The clients are the leafs of the tree
and the data source is the root. The algorithm pushes the replica as high as possible in
the tree while still maintaining the QoS of the leaf nodes. This way, the maximum number
of clients can be served using the minimum number of replicas. Also, the server resources
are taken into consideration and objects are not placed on sites with low resources. The
proposed caching algorithm is good for Web content dissemination, as most Web objects
are rarely written. However, in distributed database environments, enforcing a bounded
response time for each user would be too expensive if data is updated frequently.

A Caching Algorithm in General Topology Networks

A bandwidth-constrained dynamic allocation strategy is examined in [47], with a focus
on WAN environments. The goal is to place objects at distributed hierarchical caches to
minimize the clients’ access time to those objects, subject to bandwidth constraints at
each cache. The system is modelled as a set of N distributed cache machines and a set
of S origin servers connected in a network. The clients access a set of M shared objects
maintained at any of the S servers and cached at the cache machines. The objects have

2.3. DATA ALLOCATION 21

an expiry time after which they cannot be considered useful and are removed from cache.
Each cache machine has a fixed available bandwidth bw that is used to pull objects into
its cache. A client requests an object, say α, from a caching machine i and, if α is local,
the client is served immediately at no cost. Otherwise, cache i gets the object from the
closest cache j at cost c(i, α), serves the client, and stores the object locally. c(i, α) is
defined based on the communication cost between caches i and j. In the unfortunate case
when none of the N cooperating caches has a copy, the cache machine takes the object
from the origin server with a higher cost ∆. The placement has to be completed within
a time period, tfill. It is shown that, if the value of tfill is too small, objects might be
allocated in suboptimal locations. On the other hand, if the value is too large, the system
has a high transient miss rate. The miss rate occurs because client reads are performed
in parallel with data placement. Given the probability that a site accesses an object and
the available bandwidth to push the objects into caching machines, the algorithm finds an
allocation that minimizes the access cost and is accomplished in tfill. Since the bandwidth
is the constraint, there is no guarantee that all clients receive a response to their requests
in a bounded time interval. The algorithm does its best to minimize the access time, but
it can never be as efficient in serving the users as the algorithm proposed in [14] in which
more bandwidth is consumed. It is always a trade-off: buy more bandwidth or expect a
longer wait time.

The presented strategies that deal with database environments fail to consider the rela-
tions between data fragments, although fragments may be accessed together. On the other
hand, strategies that might work well in Web dissemination cannot be used in the database
environment. To conclude, the dynamic distribution problem needs further research.

Chapter 3

The Spring Algorithm

In this chapter we propose an incremental allocation algorithm, called the Spring Algorithm
that minimizes the overall access cost to fragments. The name derives from the observation
that the DDBMS can be modelled as a system of springs where nodes corresponding to
queries and fragment replicas are connected to each other by springs (edges), and where a
spring represents the affinity of the two nodes it connects. We first describe the distributed
system environment, then introduce the spring system as an analogy to it and describe the
algorithm.

3.1 Environment Description

The distributed system we analyze has three components: (a) the sites which store data
or from which queries are executed, (b) the data (at the granularity of relation fragments)
accessed by queries, and (c) the network links which connect sites. Based on some factors
that are discussed in detail in Section 3.1.3, each network link has a cost associated to it.
We present these components next and, in the last part of the current section, we focus on
queries which make the environment dynamic.

3.1.1 Sites

The sites cooperate to improve the DDBMS’s performance by executing system tasks such
as data replication, data movement, and data deletion. The users connect to one of the
sites close to their location to execute a query. It is not necessary that this site hosts any
of the data the user has required, as it cooperates with the other sites to serve the user.
Each site has limited storage capacity. Throughout the chapter, sites are denoted with S.

22

3.1. ENVIRONMENT DESCRIPTION 23

3.1.2 Data fragments

As indicated, we work with fragment-level granularity, and use as size metric the kilobyte
(KB). Throughout the chapter we use F as notation for a fragment and Rk(Fi) for a replica
k of fragment i. For simplicity, we use replica to indicate a replica of a fragment. The site
S = site(Rk(Fi)) represents the location of Rk(Fi), and size(F) represents the size of the
fragment, in KB.

The fragments with high reads are good candidates for replication as the benefit from
reading data locally is high. On the other hand, the fragments with high updates should
be located at a single site in order to avoid paying consistency costs. In a highly dynamic
environment such as the Internet, not only does the access pattern to fragments change
over time, but the nature of access to fragments changes as well. A fragment that was
mostly read (read intensive) could change and become update intensive. Also, a part of a
fragment could change its access nature and, to deal with these situations, re-fragmentation
should be considered. However, this is a problem orthogonal to ours, and we do not study
it any further. We assume the fragmentation has already been performed.

3.1.3 Network Links

Each link between a pair of sites has a communication cost associated to it. Since in our case
communication takes place in an Internet environment, the access cost is variable. Based
on the network load and the number of nodes that are crossed to reach the destination
(the path is not always the same), the response time can vary. However, the calculation of
the access cost is outside the scope of this thesis, and we assume the cost is known. The
access cost AC(Si, Sj) between sites Si and Sj represents the “distance” between them
(the average delay of sending 1KB of data between two sites, measured in ms/KB). The
access cost could be made more comprehensive by using a more complicated function to
compute it. We consider AC(Si, Si) to be zero, and make the simplifying assumption that
the cost between two sites is symmetric.

3.1.4 Data Access Framework

We have presented the environment which defines the distributed system: the fragments
are located at sites, and sites have distances between them. In this section we introduce
the queries (denoted with Q) which access the fragments. They represent the factors that
cause fragment reallocation, as the goal is to minimize the cost of executing them. For
instance, a replica that is never accessed by queries does not move, as no constraint is
forcing it to move. Also, two replicas of a fragment are not pushed towards each other (or

24 CHAPTER 3. THE SPRING ALGORITHM

even merged) to avoid consistency costs unless they are updated.
A distributed database system is constantly accessed by queries. The access pattern

of a fragment is determined by analyzing the characteristics of the queries accessing the
fragment over a time interval. Similarly, for the whole system, we analyze only the set of
queries (denoted Q) that ran on the system in a time interval [tstart, tstop] and consider
them relevant for the general access to fragments1. Optimizing fragment allocation for
those queries would actually optimize access in general. When choosing the time interval,
there is a tradeoff between the length of the time interval and the accuracy of the captured
access pattern. If the interval is long, it will capture the access characteristics better than
a short one as the set of executed queries is larger. However, a smaller time interval means
that the allocation is performed more often, therefore the system performance is better.
Choosing the proper interval depends on the application that uses the DDBMS. If the
system is heavily accessed, the time interval should be shorter than the interval chosen
for a system accessed infrequently. We consider the set of queries Q and the sites on
which they were executed to be known. We expect the changes in the access pattern to
be incremental, therefore Q changes gradually. The allocation is performed if the access
pattern to fragments has changed in the last interval, otherwise the fragment configuration
remains unchanged.

Some of the queries may be executed more than once in the time unit, therefore they
can be found multiple times in the set Q of executed queries. We define the frequency of
the query freq(Q) as the number of times query Q is found in Q.

The goal of the allocation algorithm we propose is to minimize the overall access cost
of queries to fragments. This is accomplished by relocating fragments in order to better
serve the queries.

We define QRk(Fi) ⊆ Q, as the set of queries that access the replica Rk(Fi). Site
S = site(Q) refers to the location at which query Q runs. For a select statement, the
selectivity of a query sel(Q) is defined as the ratio between the number of tuples that
satisfy the query and the number of tuples in the fragment. These notations are used
throughout the chapter.

3.2 Cost Constraints

To get good system performance, data should be close to the points of access to reduce the
communication cost. Our interest is in the aggregate access cost, which is computed as the
sum of the costs of running all the queries in the system. We adopt the query execution
cost formula given in [41]:

1These are traces of query executions, a snapshot of the system over a time interval.

3.2. COST CONSTRAINTS 25

T ime = TCPU · #insts
︸ ︷︷ ︸

CPU cost

+ TI/O · #I/Os
︸ ︷︷ ︸

I/O cost

+ TMSG · #msgs + TTR · #bytes
︸ ︷︷ ︸

Comm. cost

The first component measures the local processing time: TCPU is the time of a CPU
instruction and TI/O is the time of a disk I/O. TMSG is the fixed time of initiating and
receiving a message, while TTR is the time it takes to transmit a unit of data from one site
to another.

In this thesis, our goal is the minimization of the overall communication cost, because,
in our case, we consider it to be the largest of the three. Because of this goal, each individual
communication cost becomes a constraint. Based on the communication characteristics,
there are three types of constraints (detailed in the next sections):

• the query access constraints force the replicas to get closer to the users accessing
them;

• the fragment correlation constraints force replicas that are accessed together to stay
close to each other;

• the replication constraints force replicas of fragments to stay close to each other (or
be removed entirely) to avoid high update costs.

These constraints determine whether replicas change their present location due to query
access. As replicas of different fragments or replicas of the same fragment interact, if some
of them move, replicate, or merge (two copies of the same fragment at the same site),
others may do the same. In order to achieve the goal of reducing the overall cost, all of
these constraints must be considered together (more details are presented in Section 3.4.3).

3.2.1 Query Access Constraints

The query access constraints are illustrated in Figure 3.1(a). Each constraint is defined as
the cost incurred by a query to access the replica it references. In order to minimize this
cost, each query pulls the replica towards its location.

The query access cost may significantly vary depending on the size of the transferred
data, and on the site from which the query accesses that data. Formally, we define the
query access constraint given by the access of Q to Rk(Fi) as

T Q
quer(Rk(Fi), Q) = AC(site(Rk(Fi)), site(Q)) · size(DRk(Fi),Q(Q)) · freq(Q)

26 CHAPTER 3. THE SPRING ALGORITHM

a) Query Access Constraints

b) Correlation Constraints c) Replication Constraints

R2(F1)

R1(F1)
R2(F1)

R3(F2)

R1(F1)

a) Query Access Constraints

b) Correlation Constraints c) Replication Constraints

R2(F1)

R1(F1)
R2(F1)

R3(F2)

R1(F1)

Figure 3.1: Cost constraints

where DRk(Fi),Q(Q) is the data transferred due to query Q between the site where Rk(Fi)
is stored and the site where Q runs. In the formula, site(Q) influences the cost by its
proximity to the data source. A longer distance intuitively means a higher cost, although
link characteristics may also influence it. The cost also depends on the size of DRk(Fi),Q(Q):
the more data, the higher the cost.

This constraint “pushes” Rk(Fi) closer to the location of Q. However, Rk(Fi) should
be placed on a site that will minimize the sum of the costs to access it, not only the cost
that Q pays.

Figure 3.1(a) shows the case of an independent fragment, which is a non-replicated
replica that has only query access constraints. If a select statement is executed, assuming
all tuples have the same size, the size of the data transferred to the site running the query is
size(DRk(Fi),Q(Q)) = size(Fi) · sel(Q), i.e. it depends on the size of the accessed fragment
Fi, and the selectivity of Q. The directions of the arrows show the way the data was
transferred when the query was executed (remember we have a snapshot of the system
over a time interval). In the figure, there are two updates and one read.

3.2. COST CONSTRAINTS 27

3.2.2 Correlation Constraints

Correlated replicas are those that belong to different fragments and that have execution
interdependencies between them (see Figure 3.1(b)) such that the movement of one replica
may affect others. This could be due to, for instance, join operations. To minimize the
network cost, the small replica could be sent to the bigger replica2 when executing the query.
The direction of data transfer when the join was executed is reflected in the direction of
the arrow.

We define the correlation constraint between two replicas that was produced by a
query Q as

T Q
corr(Rk(Fi), Rl(Fj)) = AC(site(Rk(Fi)), site(Rl(Fj))) · size(DRk(Fi),Rl(Fj)(Q)) · freq(Q)

where size(DRk(Fi),Rl(Fj)(Q)) is similar to the previous case – the size of the data transferred
due to query Q between the two sites storing the two replicas. Assuming that the small
replica is the one that is shipped,

size(DRk(Fi),Rl(Fj)(Q)) = min(size(Rk(Fi)), size(Rl(Fj))).

This constraint “pushes” two correlated replicas to the same site, to minimize the
overall cost. If replicas are located at the same site, the correlation cost is zero.

When allocating data, the correlation constraints must be considered together with the
query access constraints. The problem of cost minimization is more complicated than in
the case of independent replicas. Moving a replica Rk(F1) alone to minimize the access
cost to it could increase the access cost of another replica Rl(F2) which is correlated with
Rk(F1). If the gain from moving Rk(F1) is smaller than the depreciation from accessing
Rl(F2), the system should not change its configuration, or should consider moving Rl(F2)
as well.

3.2.3 Replication Constraints

Whenever a query is served from a nearby copy of a fragment, the cost to access it is small,
as illustrated in Figure 3.1(c). However, depending on the update frequency, having a copy
locally may not be wise if the cost of keeping it consistent is higher than the benefit of
reading it locally.

The cost of maintaining consistency of a replica depends on: (a) the replica consistency
mechanism and the way the updates are propagated (captured by the direction of the

2To improve the transmission cost, sometimes semi-join operators are used. This case overly complicates
the problem and therefore it is not analyzed. Our goal is to present a method for fragment replication and
reallocation, therefore query optimization is not a concern.

28 CHAPTER 3. THE SPRING ALGORITHM

arrows), (b) the fragment’s update frequency, and (c) the sites at which the replicas are
located. A high number of updates or sparse placement of replicas incurs a high update
cost. This constraint “pushes” two replicas to the same site.

The replication constraint between two replicas of a fragment is defined as

T Q
repl(Rk(Fi), Rl(Fi)) = AC(site(Rk(Fi)), site(Rl(Fi))) · size(DRk(Fi),Rl(Fi)(Q)) · freq(Q)

where DRk(Fi),Rl(Fi)(Q) represents the size of the update message sent due to query Q
between the two replicas.

The consistency mechanism is not an issue in this thesis, as we look at execution traces.

All cost constraints are expressed in milliseconds as the access cost was defined in
ms/KB, the data size in KB, and the frequency does not have a unit. The goal is to
minimize the sum of all these constraints, and there is no bound on the time it takes to
run any Q ∈ Q in order to obtain the overall minimum. A bound would make the problem
more difficult. For instance, replicas may still have to be created even though the fragment
is only updated.

3.3 The Spring System Approach - An Analogy

We model data replication and redistribution as a “Spring System” and we show next
that the spring system simulates the problem we want to solve. The three constraints
presented in Section 3.2 are presented as spring forces between objects. The spring system
components are presented in the following three sections.

3.3.1 The Objects

Objects are used to represent replicas and queries in the spring system. Replicas that were
defined in Section 3.1.2 are mobile objects in a spring system, whereas the queries are
fixed. The replica objects, presented in Section 3.1.2 as replicas, are pulled in different
directions by springs. The resulting combination of the forces determines the position of
the replica objects, which will create a balanced system. The query objects represent
fixed objects that pull the replica objects they access towards them. A query object is
located on the site where the query runs.

3.3.2 The Springs

The spring characteristic that interests us most is stretchability. Whenever the spring is
taken out of its usual state, there is a force that wants to pull it back. The springs are used

3.3. THE SPRING SYSTEM APPROACH - AN ANALOGY 29

to represent the constraints presented in Section 3.2. For reasons which will be presented
later, we assign directions to springs. They have the same significance as the arrows, i.e.
the direction the data is transferred when the query was executed. In Figure 3.2 we show
the springs that correspond to the constraints presented in Figure 3.1:

• The query spring – saw tooth edge in Figure 3.2(a) – connects a query object to
a replica object. It creates an energy3 that pulls the replica object towards another
location that favors the query which created the spring (because the replica object
is mobile and the query object is fixed). This energy was defined in Section 3.2.1 as
the cost T Q

quer(Rk(Fi), Q). When the replica object is located at the site on which the
query is running, the energy is zero (because the access cost component AC is zero).

• The correlation spring – square tooth edge in Figure 3.2(b) – connects two replica
objects of different fragments (for instance due to join operations). This spring creates
an energy that brings the objects closer to each other (to reduce the cost to execute
the join). This energy was defined in Section 3.2.2 as the cost T Q

corr(Rk(Fi), Rl(Fj)).
The closer the objects are, the lower the energy in the spring, due to the access cost
component. When the replica objects are at the same site, the energy is zero.

• The replication spring – sinusoidal edge in Figure 3.2(c) – connects two replica
objects of a fragment Fi. Since having replicated fragments results in a cost to
maintain the consistency, the goal of this spring is to push two replica objects of a
fragment close to each other, in order to reduce the energies in the springs. The
energy was defined in Section 3.2.3 as the cost T Q

repl(Rk(Fi), Rl(Fj)). We will later
show that when two replicas are on the same site, one is removed.

a) Query Access Constraints b) Correlation Constraints c) Replication Constraints

R2(F1)

R1(F1)

R1(F1) R2(F1)

R3(F2)

a) Query Access Constraints b) Correlation Constraints c) Replication Constraints

R2(F1)

R1(F1)

R1(F1) R2(F1)

R3(F2)

Figure 3.2: Analogy between the distributed database system and the spring system

3In physics, forces always create energies.

30 CHAPTER 3. THE SPRING ALGORITHM

3.3.3 The Sites and The Network Links

A snapshot of the dynamic processing that takes place in a DDBMS environment over a
time interval can be modelled as in Figure 3.3. The lower plane represents the physical
system depicting the sites and the network links which were presented in Sections 3.1.1
and 3.1.3. The upper plane depicts the spring system4, with objects and springs.

S1

Q3

Q2

R1(F1)

Q1

Q4

Q6

Q5

R2(F1)

R1(F2)

S2

S3

S4S5

S6
S7 S8

Rj(Fi): replica j of fragment i

Qi : query i

query spring

correlation spring

replication spring

Legend

S1

Q3

Q2

R1(F1)

Q1

Q4

Q6

Q5

R2(F1)

R1(F2)

S2

S3

S4S5

S6
S7 S8

Rj(Fi): replica j of fragment i

Qi : query i

query spring

correlation spring

replication spring

Legend

S1

Q3

Q2

R1(F1)

Q1

Q4

Q6

Q5

R2(F1)

R1(F2)

S2

S3

S4S5

S6
S7 S8

Rj(Fi): replica j of fragment i

Qi : query i

query spring

correlation spring

replication spring

Legend

S1

Q3

Q2

R1(F1)

Q1

Q4

Q6

Q5

R2(F1)

R1(F2)

S2

S3

S4S5

S6
S7 S8

Rj(Fi): replica j of fragment i

Qi : query i

query spring

correlation spring

replication spring

Legend

Figure 3.3: The two layers of the problem

The projection to the physical layer represents the implementation of function site(Rk(Fi))
or site(Q), which were previously introduced. In the figure, for example, each replica ob-
ject and query object are located at different sites, except for queries Q1 and Q2 which are
both located at site S1.

The figure presents an equilibrium state in which the objects are not moving. However,
if the access pattern has changed and, in the new set Q, queries Q1 and Q2 no longer exist,
the replication spring may move R2(F1) closer to R1(F1) by placing it at site S3 and then
S4 to reduce the overall cost5 to access the replicas. Also, if the join query Q4 no longer
runs, R1(F2) may be moved to S8 for the same reason.

3.3.4 System Equilibrium

As presented, springs create energies that may move a replica object. In Figure 3.4, a
change of the force ~f2 acting on an object hooked with springs moves the object to a new
location to balance the effect, until

∑ ~fi = 0. We call this the equilibrium state. The
total energy of the object is defined as Wt = Wc + Wp, where at equilibrium the kinetic

4Springs with the same line pattern represent one query.
5The overall cost is defined in following section as the energy of the spring system.

3.3. THE SPRING SYSTEM APPROACH - AN ANALOGY 31

energy Wc = 0 as the object does not move, and the potential energy Wp is minimal. At

equilibrium,
∑ ~fi = 0 ⇔ min(Wp). Because in the spring system the connected objects

interact, to obtain an overall stable system all of them must be in a state of equilibrium.

f2f1 f2 -f1 > 0

f2f1
f2 -f1 = 0

f2f2f1f1 f2 -f1 > 0f2 -f1 > 0

f2f2f1f1
f2 -f1 = 0f2 -f1 = 0

Figure 3.4: Object connected with springs

Because, in physics, the spring system energy at equilibrium is defined as the sum
of all energies in the springs and, in DDBMS, spring energies represent costs, minimizing
the sum of all energies in the springs corresponds to the minimum overall access cost in
the DDBMS. The locations of the replica objects at equilibrium will give the locations where
the replicas should be placed in the DDBMS.

To give a more precise picture of the equilibrium state, in the system illustrated in
Figure 3.5, only if the change of the resulting force ~fr acting on the object R1(F1) is
significant enough to beat the friction force ff , is R1(F1) redirected to a new location.
Otherwise R1(F1) must be in the optimal neighborhood, denoted with a circle in Figure
3.5(b). In the DDBMS, the replicas are pushed towards the optimal locations but they
will stop as soon as they get into the optimal neighborhood.

S1

S2

S3

S4 f1

f2

f3

Q3

Q1

Q2

R1(F1)

a)

Q3

f1

f2

f13

Q1

Q2

f3

fr

ff

b)

S1

S2

S3

S4 f1

f2f2

f3f3

Q3

Q1

Q2

R1(F1)

a)

Q3

f1

f2

f13

Q1

Q2

f3

fr

ff

b)

Q3

f1f1

f2f2

f13f13

Q1

Q2

f3f3

frfr

ffff

b)

Figure 3.5: ~fr should be greater than the ~ff to move the object.

In the figure, the performance of the replica object placement is bounded by the energy
created by the friction force6. This energy is defined in Section 3.4.5 as the cost to move

6We later show that in the DDBMS this is not the only factor influencing the performance.

32 CHAPTER 3. THE SPRING ALGORITHM

the replica. If there is a benefit from moving the replica but it does not cover the cost to
move it, the replica stays at the current location.

3.4 The Spring Algorithm

Before presenting the Spring Algorithm in detail, four concepts have to be introduced: the
spring system represented as a graph, the bubble, the cost problem, and the replicate,
move, and delete techniques. These are all used when presenting the algorithm in Section
3.4.5.

3.4.1 Graph and Placement

The spring system illustrated in the top plane in Figure 3.3 can be represented as a weighted
directed graph7 G = (V , E ,W) with two types of vertices and three types of edges. The set
of vertices V represents the union of all replica objects and all query objects. The edges
E represent all springs in the spring system. The edge directions are the direction of data
transfer, and the edge weights W as the energies in the springs, as discussed earlier.

The lower plane which contains information about network links, sites, fragments, and
query allocation is kept in a data structure referred to as placement (P). The full infor-
mation about the environment is therefore captured in the pair (G,P).

The pair (G,P) is fed into the Spring Algorithm and the output is a new graph-
placement pair (G ′,P ′). The graph G ′ could have a different number of vertices since
in the new configuration some fragments could have fewer or more replicas. Also, the num-
ber of edges could be different because, if there are more replica objects, there are more
replication springs that propagate the updates. If replica objects move or replicate, the
change in their location is reflected in the placement P ′. The way the algorithm performs
the changes on the initial pair (G,P) is presented in Section 3.4.5, where we describe the
Spring Algorithm.

We define the energy of a replica object (WRk(Fi)) as the sum of all energies in the
outward springs connected to it. We gave directions to the springs in order to avoid double
counting edges between objects. As an exceptional case, in order to give energies to replica
objects only, we count the energy of the query springs that update replica objects towards
the replica objects. The energy of the spring system, which was defined as the sum of all
energies in the springs, can now be formulated as the energy of all replica objects in the
system. Each replica object stores the value of its own energy and, unless the springs that
connect to the objects change, their energies are not recomputed.

7We model it as a graph in order to simplify the incremental computation of the energies.

3.4. THE SPRING ALGORITHM 33

To show an example of why this is useful, let’s consider the case illustrated in Figure
3.6 (for simplicity no sites are shown). Moving a replica object may cause other replica
objects connected to it to do the same. However, the farther they are from the moved
replica object, the less the shockwave (the change in energy) is felt. Only the energies
of the replica objects which have springs in common with the replica objects that were
reallocated are recomputed.

x1

x2

x3

x4

x1 > x2 > x3 > x4

x1

x2

x3

x4

x1 > x2 > x3 > x4

Figure 3.6: A reallocation affects more the closer replica objects.

3.4.2 Bubble Definition

As mentioned before, objects can be correlated. If moving a replica object Rk(Fi) decreases
its energy but increases the energy of a correlated object Rl(Fj) by a greater amount, then
Rk(Fi) should not be moved. For instance, moving a replica object Rk(Fi) closer to a set
of query objects that accesses it reduces the cost queries pay, but increases the cost the
other replica objects pay to propagate the updates and keep Rk(Fi) consistent. The replica
objects with affinities to each other should therefore be analyzed together, not individually.

We define the bubble a set of nodes from G such that (1) there is an undirected path
between each pair of nodes in the bubble, and (2) there are no paths between the nodes in
the bubble and the nodes outside the bubble8.

The bubble is the unit of information that needs to be considered when changing
any object’s allocation. As a particular case, the independent replica object is the only
object in the bubble: Bubble(R1(Fi)) = {R1(Fi)}.

Because the bubbles are independent of each other, minimizing the energy of each
bubble results in minimizing the overall energy of the spring system. The bubbles can be
analyzed in parallel, therefore from now on we only refer to one bubble.

8In this thesis we do not consider the interesting case where the bubbles are interconnected.

34 CHAPTER 3. THE SPRING ALGORITHM

3.4.3 The Bubble Energy

For easy reference, from now on we use the pair (G,P) to define only the bubble we analyze,
not the whole environment. The goal is to find the minimum overall energy of the spring
system defined by G. Also, we have shown that the unit of information that needs to be
analyzed when changing the system configuration is the bubble.

We define the total energy of a bubble (Wbubble) in the spring system as the sum
of all springs energies. We introduce them in four cases, in the increasing order of their
complexity. The easiest case is one in which the bubble is created by an independent replica
object. Here, G contains query and replica objects and query springs. In the second case
there are correlated replica objects, in which no fragments are replicated. G contains the
same components as the first case, plus correlation springs. Cases three and four allow
replication. In the third case, the bubble is composed only of replica objects of the same
fragment. G contains the same components as the first case, plus the correlation springs.
The fourth case is the most complex and the most probable to occur. It contains all five
components, the two types of nodes and the three types of springs. The following sections
analyze each of these cases, and show how the energies are computed. At the end we give
a general algorithm that incrementally computes the energy of the bubble, which is used
by the Spring Algorithm.

Case 1 - Uncorrelated Fragments, with no Replication

Q3

Q1

Q2

R1(F1)

S1

S2

S3

S4

Q3

Q1

Q2

R1(F1)

S1

S2

S3

S4

Figure 3.7: All fragments are non-replicated and uncorrelated

This case is depicted in Figure 3.7. The replica object R1(F1) located on site S1 is
independent, therefore minimizing the energy of the replica object minimizes the energy
of the bubble. Since there are only query springs hooked to the objects, the sum of all

3.4. THE SPRING ALGORITHM 35

energies created by these springs comprises the total energy. For this particular case,
Wbubble = WR1(F1). In a general case, the bubble energy given by the query springs is
defined as

W quer
bubble =

∑

∀Rk(Fi)∈bubble

∑

∀Q∈QRk(Fi)

T Q
quer(Rk(Fi), Q)

where, in Case 1, Wbubble = W quer
bubble. The notation W quer

bubble is used for further reference.
Recall that, we only gave energies to replica objects, not to query objects.

Case 2 - Correlated Fragments, with no Replication

Q4
R1(F5)

S3

S4

S1

S2

S6

Q3

Q1

Q5

Q2

R1(F6)

R1(F4)

R1(F1)

R1(F2)

R1(F3)

S5

S7

S8

S9

S10
S11

Q4
R1(F5)

S3

S4

S1

S2

S6

Q3

Q1

Q5

Q2

R1(F6)

R1(F4)

R1(F1)

R1(F2)

R1(F3)

S5

S7

S8

S9

S10
S11

Figure 3.8: Non-replicated but correlated fragments.

This case is illustrated in Figure 3.8. The energy of the bubble is given as the sum of
query springs energies and correlation springs energies. To reduce the bubble energy, both
types of springs must be considered together. In the general case, the bubble energy from
correlation springs is

W corr
bubble =

∑

∀Rk(Fi)∈bubble

∑

∀Rl(Fj)∈bubble

∑

∀Q∈QRk(Fi)
∩QRl(Fj)

T Q
corr(Rk(Fi), Rl(Fj)), i 6= j.

In Case 2, the bubble energy is computed as

Wbubble = W quer
bubble + W corr

bubble.

36 CHAPTER 3. THE SPRING ALGORITHM

Reallocating a replica object will reset the energy of others replica objects in the system
as well. For instance, in the figure, the reallocation of R1(F4) affects the energy of R1(F1).

Case 3 - Uncorrelated Fragments, with Replication

S1 S2
Q6

Q1

Q2

Q3 Q5

Q4

R2(F1)R1(F1)

S5

S3

S4

S6

S7

S8

S1 S2
Q6

Q1

Q2

Q3 Q5

Q4

R2(F1)R1(F1)

S5

S3

S4

S6

S7

S8

Figure 3.9: Replicated but non-correlated fragments

This case is illustrated in Figure 3.9 and is similar to Case 2 – instead of correlation
springs there are replication springs.

In the general case, the bubble energy from replication springs is given by

W repl
bubble =

∑

∀Rk(Fi)∈bubble

∑

∀Rl(Fj)∈bubble

∑

∀Q∈QRk(Fi)
∩QRl(Fj)

T Q
repl(Rk(Fi), Rl(Fj)), i = j.

In Case 3, the bubble energy is computed as

Wbubble = W quer
bubble + W repl

bubble.

Case 4 - Correlated Fragments, with Replication

This case is illustrated in Figure 3.10(a). The energy is computed as the sum of the
energies in all springs in the system:

Wbubble = W quer
bubble + W corr

bubble + W repl
bubble.

The bubble energy is computed incrementally, as presented in Algorithm 2 (called
GetBubbleEnergy) on page 42 of this chapter. The energy of a replica object can be at

3.4. THE SPRING ALGORITHM 37

S4 S5

S6S7

S8

S9

b)

Q6

S3

Q5

S1

R1(F2)

Q4

S2

R2(F2)

Q3

Q2
Q1

R1(F1)

S1
Q6

a)

S3

Q5

R1(F2)

S2

R2(F2)

Q6

Q2
Q1

Q4

R1(F1)

S4 S5

S6S7

S8

S9

S4 S5

S6S7

S8

S9

b)

Q6

S3

Q5

S1

R1(F2)

Q4

S2

R2(F2)

Q3

Q2
Q1

R1(F1)

S1
Q6

a)

S3

Q5

R1(F2)

S2

R2(F2)

Q6

Q2
Q1

Q4

R1(F1)

S4 S5

S6S7

S8

S9

Figure 3.10: Replicated and correlated fragments

least zero (zero if all accesses to it are from the same site that stores it, as the access cost
component is zero). However, the Spring Algorithm that uses GetBubbleEnergy, can reset
the energy of an object that changed its allocation configuration, by setting the energy of
the object to WRk(Fi) = −WRk(Fi). This way we know that the energy of the object has to
be recomputed (because it is negative), but still keep the old value of the energy.

In lines 4 to 10, we create the set C used to store the replica objects that were affected by
changes performed by the Spring Algorithm. Also, from the old bubble energy, we remove
the energies of the replica objects that no longer apply. Then, the algorithm recomputes
the bubble energy and the object energies. This is accomplished by adding the energies
in the query springs (lines 12-17), correlation springs (lines 19-24), and replication springs
(lines 26-31) that have changed. At the end, the current energy of the bubble is saved, and
the result is returned.

3.4.4 Replication, Move, and Delete Techniques

Changing access patterns may necessitate the reallocation of replica objects in order to im-
prove query performance. This section defines the techniques used in the Spring Algorithm
to simulate movement or replication of replicas in DDBMS.

The next two methods are used by the Spring Algorithm (presented in Section 3.4.5):

• SimulateMove(Rk(Fi), S
′) is used to find whether a replica object Rk(Fi) should be

38 CHAPTER 3. THE SPRING ALGORITHM

moved to S ′. This method virtually reallocates Rk(Fi) to site S ′ (remember the
projections in Figure 3.3). The Spring Algorithm then recomputes the energy of the
bubble. If the energy in the virtual configuration is lower than the initial energy, it
makes sense to move the Rk(Fi) to S ′.

• SimulateReplicate(Rk(Fi), S
′) finds if there is a site S ′ on which Rk(Fi) should be

replicated for better performance. It is similar to SimulateMove, but instead of
virtually reallocating Rk(Fi) to site S ′ it creates a copy of Rk(Fi) on site S ′.

When a fragment is replicated in the DDBMS, the corresponding replica object divides
like an organic cell creating two objects identical to the original one. Figure 3.11 shows
how an object is replicated to a neighbor site because the forces pulling from the replica
object created an energy that “broke” the object.

Q1

Q2

Q3

Q6

Q5

Q4

S3

S4

S5

S6

S7

S8

S1 S2

R2(F1)R1(F1)

S2

Q1

Q2

Q3

S1

Q6

Q5

Q4

R1(F1)

S3

S4

S5

S6

S7

S8

Q1

Q2

Q3

Q6

Q5

Q4

S3

S4

S5

S6

S7

S8

S1 S2

R2(F1)R1(F1)

S2

Q1

Q2

Q3

S1

Q6

Q5

Q4

R1(F1)

S3

S4

S5

S6

S7

S8

Figure 3.11: Replication step in the Spring System

In order to simulate the situation in Figure 3.11, after the new replica is virtually
created, the springs have to be reconnected. Otherwise, the springs remain connected
to R1(F1). Reconnecting springs after each replication simulation (and there are many)
increases the running time of the algorithm.

3.4. THE SPRING ALGORITHM 39

When a replica is moved in the DDBMS, the corresponding replica object moves to-
gether with the springs connected to it. For example, Figures 3.10(a) and (b) show how an
end of the spring connected to R1(F2) is still connected to the replica object, even though
replica object’s location has changed. However, after a replica is reallocated, all springs
connected to the fragment (not only that replica) should be reanalyzed to see if there is a
closer replica to connect to. In Figure 3.12, after R2(F1) is moved from S2 to S3, the query
object Q2 should connect to R1(F1) which is now closer.

For the move simulation, we chose not to connect the springs as the process of recon-
necting springs is extremely time demanding due to of the large number of springs. Also,
it is not critical9 to reconnect the replicas for each simulation as in the case of replication
simulation. To summarize, spring reconnections are performed when a replica object is
moved or replicated, and when the replica object is virtually replicated.

S2

Q4

Q1

Q2

Q3

R1(F1)

R2(F1)
Q5

S1

S3

S4

S5

S6

S7

S8

S2

Q4

Q1

Q2

Q3

R1(F1)

R2(F1)
Q5

S1

S3

S4

S5

S6

S7

S8

S2

Q4

Q1

Q2

Q3

R1(F1)

R2(F1)

Q5

S1

S3

S4

S5

S6

S7

S8

S2

Q4

Q1

Q2

Q3

R1(F1)

R2(F1)

Q5

S1

S3

S4

S5

S6

S7

S8

Figure 3.12: After R2(F) is moved, Q2 uses R1(F).

After the move is performed, if a replica is to be placed on a site that already has one,
that replica is deleted. All the springs that were connected to the removed replica are
now connected to the remaining one. Note that, the deletion of a replica is performed only
when a replica is actually moved to a site that already has one, not when it is virtually
allocated to that site for testing reasons.

3.4.5 The Spring Algorithm - Description

The Spring Algorithm (described in Algorithm 5) is incremental algorithm that performs
the replication and redistribution of fragments based on an initial configuration. We call
it incremental as the energy of the bubble is computed incrementally.

Before presenting the Spring Algorithm let’s describe the six helper methods it uses:

9In Chapter 4 we show that this has an impact on performance in small settings.

40 CHAPTER 3. THE SPRING ALGORITHM

• GetBubbleEnergy(bubble), as a reminder, is a method that returns the energy of the
bubble as the sum of the energies of all replica objects in the bubble (all springs in
the system), and was presented in Algorithm 2.

• GetClosestSites(x, S, size(Fi)) is a method that returns the x closest sites (in terms
of access cost) to site S. These sites are willing to store data from S and have enough
space available to accommodate a replica object of size size(Fi). In order to avoid
repetitions, we assign the size of fragments to Fi, not to each Rk(Fi).

• SimulateMove(Rk(Fi), S) was detailed in Section 3.4.4. It virtually moves Rk(Fi) to
S so that the bubble energy for the new allocation can be recomputed.

• SimulateReplicate(Rk(Fi), S) was detailed in Section 3.4.4. It virtually replicates
Rk(Fi) at S so that the bubble energy for the new allocation can recomputed.

• CheckMove(Rk(Fi), Winit), defined in Algorithm 3, finds a better location for a replica
object, based on the fixed location of the other objects in the bubble. It takes as
parameters the object Rk(Fi) that is being analyzed, and, for comparison reasons,
the initial energy of the bubble Winit. This function finds the best site among the
neighbor sites (line 3) where the object should be located. The best site found (line
8) and the bubble energy (line 9) in the simulated configuration are returned to the
SpringAlgorithm.

• CheckReplicate(Rk(Fi), Winit), presented in Algorithm 4, works as CheckMove with
the difference that it simulates that the given parameter Rk(Fi) is replicated at S and
is also kept at the present location. Note that neither CheckMove nor CheckReplicate
change the physical allocation.

The Spring Algorithm gets as input the pair (G, P) describing the system and a queue
of replica objects to be analyzed (L). A replica object is placed in L if its access pat-
tern changed. The Spring Algorithm returns another pair (G ′, P ′) such that, in the new
configuration, the bubble energy is reduced.

A replica object Rk(Fi) is extracted from the queue to be analyzed (line 1). If the
fragment allows movement (this property is associated with all replicas of a fragment),
the Spring Algorithm tries to find a better location such that the difference between the
energies in the original and the final configuration is greater than the move threshold σM .
If a location is found, Rk(Fi) is moved10 and then is reintroduced in L to be reanalyzed

10Remember, the replica is deleted if there is already another replica at that site.

3.4. THE SPRING ALGORITHM 41

(lines 3-13). Next time it is analyzed the process is repeated, but now the replica is at a
different site.

If the replica object is at the best location found by the algorithm and the fragment
allows replication (this property is associated with all replicas of a fragment), the Spring
Algorithm tries to get an even lower energy from replication. If a new replica object
is created, the algorithm reintroduces both objects in the queue to be reanalyzed (lines
15-28). Is the queue is empty, the algorithm stops (lines 30-31).

Lines 12 and 25, not only change the assignment of the replica objects to sites. The
site’s space and replica energies is considered. In line 12, the available storage space is
increased for the site which moved the replica object, and reduced for the site that receives
it with size(Fi). Also, for the moved replica object and the replica objects connected to it
the energy is reset. Similarly, in line 25, the available space of the site receiving the replica
decreases and the energies of the affected replica objects is reset.

In Chapter 4 we present how we chose the move and replication thresholds.

42 CHAPTER 3. THE SPRING ALGORITHM

Algorithm 2 GetBubbleEnergy

Input: bubble
1: Wbubble = this.BubbleEnergy {The current energy of each bubble is known}
2: C = ∅ {set C keeps the replica objects that have the energy reset}
3: {Remove the changed energies and get the reset replica objects}
4: for all Rk(Fi) ∈bubble do

5: if Rk(Fi) < 0 then

6: Wbubble += WRk(Fi)

7: WRk(Fi) = 0
8: C = C ∪ {Rk(Fi)})
9: end if

10: end for

11: {Compute the energies from the query springs}
12: for all Rk(Fi) ∈ C do

13: for all Q ∈ QRk(Fi) do

14: Wbubble += T Q
quer(Rk(Fi), Q)

15: WRk(Fi) += T Q
quer(Rk(Fi), Q)

16: end for

17: end for

18: {Add the energies from the correlation springs}
19: for all {Rk(Fi), Rl(Fj)}, Rk(Fi) ∈ C, Rl(Fj) ∈ C, i 6= j do

20: for all Q ∈ QRk(Fi) ∩QRl(Fj) do

21: Wbubble += T Q
corr(Rk(Fi), Rl(Fj))

22: WRk(Fi) += T Q
corr(Rk(Fi), Rl(Fj)) {Assuming direction Rk(Fi) → Rl(Fj)}

23: end for

24: end for

25: {Add the energies from the replication springs}
26: for all {Rk(Fi), Rl(Fj)}, Rk(Fi) ∈ C, Rl(Fj) ∈ C, i = j do

27: for all Q ∈ QRk(Fi) ∩QRl(Fj) do

28: Wbubble += T Q
repl(Rk(Fi), Rl(Fj))

29: WRk(Fi) += T Q
corr(Rk(Fi), Rl(Fj)) {Assuming direction Rk(Fi) → Rl(Fj)}

30: end for

31: end for

32: this.BubbleEnergy= Wbubble

Output: Wbubble

3.4. THE SPRING ALGORITHM 43

Algorithm 3 CheckMove

Input: Rk(Fi), Winit

1: Smove = site(Rk(Fi)) {Return the original site if no better site found}
2: Wnew = Winit

3: S = GetClosestSites(x, site(Rk(Fi)), size(Fi))
4: for all S ∈ {S} do

5: SimulateMove(Rk(Fi), S)
6: Wvirt = GetBubbleEnergy(Bubble(Rk(Fi)))
7: if Wnew > Wvirt then

8: Smove = S
9: Wnew = Wvirt

10: end if

11: end for

Output: Wnew, Smove

Algorithm 4 CheckReplicate

Input: Rk(Fi), Winit

1: Scopy = site(Rk(Fi)) {Return the original site for the copy if no other site found}
2: Wnew = Winit

3: S = GetClosestSites(x, site(Rk(Fi)), size(Fi))
4: for all S ∈ S do

5: SimulateReplicate(Rk(Fi), S)
6: Wvirt = GetBubbleEnergy(Bubble(Rk(Fi)))
7: if Wnew > Wvirt then

8: Scopy = S
9: Wnew = Wvirt

10: end if

11: end for

Output: Wnew, Scopy

44 CHAPTER 3. THE SPRING ALGORITHM

Algorithm 5 SpringAlgorithm

Input: (G, P), L
1: Rk(Fi) = Extract(L)
2: Wnow = GetBubbleEnergy(Bubble(Rk(Fi)))
3: if Fi.AllowsMovement then

4: {WM , S} = CheckMove(Rk(Fi),Wnow)
5: else

6: WM = ∞
7: end if

8: { σ is the move threshold }
9: σM = AC(site(Rk(Fi)), S) · size(Fi)

10: {Move replica}
11: if Wnow − σM > WM then

12: change P to place Rk(Fi) on site S
13: add(L,Rk(Fi))
14: else

15: if Fi.AllowsReplication then

16: {WR, S} = CheckReplicate(Rk(Fi),Wnow)
17: else

18: WR = ∞
19: end if

20: { σR is the replication threshold }
21: σR = AC(site(Rk(Fi)), S) · size(Fi) · Fi.nrReplicas
22: {Replicate}
23: if Wnow − σR > WR then

24: change G to contain a new replica Rl(Fi) of Fi

25: change P to assign Rl(Fi) to site S
26: add(L, Rk(Fi))
27: add(L, Rl(Fi))
28: end if

29: end if

30: if L 6= ∅ then

31: G = SpringAlgorithm((G, P), L)
32: end if

Output: (G, P)

Chapter 4

Experiments

This chapter presents the experimental results of the simulation model that was imple-
mented to analyze the performance of the Spring Algorithm. There are two sets of experi-
ments: first, we validate the performance of the Spring Algorithm by comparing it with an
limited exhaustive search algorithm1; second, we verify the system’s scalability by varying
several parameters.

4.1 Experimental Setup

The simulator has three components: the data generator module, the data cleaning module,
and the Spring Algorithm simulator module. The data generator modules creates a set of
fragments, a set of sites, a set of queries, an initial random allocation of replica and query
objects to sites – the pair (G,P). The queries are those that generate relationships between
replicas and are representative of the access pattern to these replicas. We assume that,
when a query accesses a fragment, it accesses the closest copy of that fragment. However,
the queries that are randomly generated by this module do not consider this aspect and
can access any replica of any fragment, which means that they do not simulate a real data
access pattern. Therefore, a data cleaning module is used to rearrange the query springs
so that they look more like real data access patterns. The Spring Algorithm simulator
module implements the Spring Algorithm.

Details of each of these modules are given in the following sections. Here we only show
how these modules interact (Figure 4.1). The data from the generator (G0, P) are cleaned
(G, P) and fed into the Spring Algorithm which returns a stabilized configuration (Gs,

1Due to running time issues, we limit the exhaustive search space to the states where there are at most
three replicas per fragment.

45

46 CHAPTER 4. EXPERIMENTS

Figure 4.1: Module interconnection

Ps). If a replica object Rk(Fi) (could be a set of replicas) changed its access pattern,
it is introduced into the queue L. The algorithm analyzes the allocation configuration
and adapts to changes. If the change in the access pattern to a replica is significant, the
allocation configuration is changed, otherwise it is kept identical. The queue is similar to a
switch for the Spring Algorithm module: when is not empty the module is on. The initial
random fragment allocation is stabilized by analyzing all the replica objects (placing them
in the queue). In Figure 4.1, this is shown as ∀R.

As mentioned when CheckMove was described, each replica object is analyzed based on
the fixed allocation of the other objects in the bubble. This means that, at some point, an
object could have been considered well allocated and eliminated from the queue based on a
bad configuration that changed later when other replica objects in the queue were analyzed.
To get a good distribution, we run the Spring Algorithm multiple times using all replicas
as input. When an iteration of the algorithm stops, all objects are reintroduced into the
queue and the algorithm is re-run. The reallocation stops when the bubble energy obtained
in the nth iteration has not sufficiently changed. We consider that a good distribution is
the one for which the bubble energy has decreased less than 1% in comparison with the
one obtained in the previous iteration2.

2In the current implementation, we do not cap the number of iterations, or the running time of the
algorithm.

4.1. EXPERIMENTAL SETUP 47

4.1.1 Data Generator Module

Given a set of parameters, the data generator creates some fictive data used to test the
Spring Algorithm. Due to the nature of the bubbles, each bubble can be analyzed in-
dependently of the other. Since describing a single bubble suffices to characterize the
environment, everything below refers to a single bubble.

The Sites

The sites are created given the total number of sites as a parameter. The available space
on each site is a random value between two thresholds, CAPMin and CAPMax, which are
set to 0MB and 10MB respectively. This simulates both sites with small capacity which
are only used to run queries, and sites where the storage space is large and can store data.
The available space is assumed to be distributed uniformly:

SITE.availSpace = Uniform(CAPMin,CAPMax)

We only test how the number of sites, not how the sites’ space availability, affects the
system’s performance. The default number of sites is 200.

The Fragments

Since the fragments in different bubbles do not interact, the fragments we generate are
within a bubble. The fragments are created based on the following parameters: the num-
ber of fragments, the size of each fragment, whether or not the fragment allows movement
and replication, and the initial number of copies.

• We want to see how increasing the number of fragments affects the system, therefore,
in one test, we vary the number of fragments. The default value is 200.

• The size is generated with Uniform(SIZEMin, SIZEMax), similar to the available space
on the sites. We choose the value of SIZEMin to be 1KB and SIZEMax to be 250KB.

• Some fragments allow replication, others don’t. The percentage of replicating frag-
ments is given by a parameter REPLICATEY es/No ∈ [0, 1], that we choose to be 0.6.
If a fragment does not allow replication it has only one replica object. Similarly, the
percentage of fragments that allow movement is MOVEY es/No ∈ [0, 1], and we choose
it to be 0.8. As mentioned in Chapter 3, allow movement and allow replication apply
to all replicas of a fragment.

48 CHAPTER 4. EXPERIMENTS

• The fragments that allow replication can initially have a randomly generated number
of replicas. This is generated with Uniform(REPLICASMin,REPLICASMax), where
REPLICASMin is 1 and REPLICASMax is 4. After creation, each of these replicas is
allocated to randomly picked sites.

The Queries

The queries are created using the following parameters: the number of queries, the update-
to-retrieval ratio, the selection-to-join ratio, the data access distribution, the query fre-
quency, and the spring characteristics. The values for the first four parameters are varied
throughout the experiments and will be presented later.

• The number of queries defines the size of the set of queries that characterize the
fragments’ access patterns. The default value is 5000.

• The update-to-retrieval ratio, QUERYU/R ∈ [0, 1], defines the proportion between the
number of updates and the number of reads. It is used when creating the update/read
queries. In the default setting we have 80% reads and 20% updates.

• Within the set of read queries, the selection-to-join ratio, QUERYS/J ∈ [0, 1], defines
the ratio between selection queries (those that have one spring) and join queries (those
formed by many springs). In the default setting we choose to have 50% selections,
50% joins.

• The data access distribution defines the query distribution to fragments. Two sets of
queries are generated based on the same site setting and fragment allocation. The
first set represents a uniform allocation, therefore each fragment has equal probability
of being accessed by a query. The second set represents an 80/20 distribution in which
80 percent of the queries access 20 percent of the data, simulating hot spot accesses.
The default distribution is 80/20.

• The frequency of the query represents the number of times the query is executed.
We chose this value to be fixed to 1 throughout the experiments, in order to generate
unique queries.

• The spring characteristics define the attributes of the springs that comprise the query,
and are fixed throughout the experiment.

1. The size of the transferred data associated with the read query springs is defined
with

Uniform(DATASIZEReadMin,DATASIZEReadMax),

4.1. EXPERIMENTAL SETUP 49

where the first is 1KB and the second is 40KB.

2. The number of springs that comprise the join queries is defined with

Uniform(NRSPRINGSMin,NRSPRINGSMax),

where the parameters have values 1 and 4. It represents the number of springs
that are created to simulate the execution of a join.

3. The size of the transferred data associated with the correlation springs is defined
with

Uniform(DATASIZECorrMin,DATASIZECorrMax),

where the parameters have the same values 1KB and 40KB.

4. The size of the data associated with the update query spring is the same as the
one associated to any of the replication springs in the same query3. The size is
defined by DATASIZEUpdMaxPer, which represents the maximum percentage of
the fragment that is updated, and we set it to 0.15. To simplify the implemen-
tation of the Spring Algorithm and the limited exhaustive search algorithm, in
our experiments the update query is composed of a query spring connecting the
query object and the updated replica object, and of other springs connecting
the updated object to each other replica object.

We want to find, in average, how many replicas-per-fragment are created. There are
40% of the fragments that do not allow replication, and 60% that do. From those that do,
in average, the number of replicas is 2.5 (minimum 1, maximum 4). Therefore, there are
0.4 × 1 + 0.6 × 2.5 = 1.9 replicas-per-fragment. Regarding the number of springs, in the
default setting there are 40% selections which have one spring, 40% joins which have on
average 3 springs (minimum 2, maximum 4), and 20% updates which connect on average
two objects (1.9 replicas/fragment). That means, in average, there are 1× 0.4 + 3× 0.4 +
2 × 0.2 = 2 springs for query.

The data set that was created with these default values creates highly replicable hot
spots as 80% of the queries access only 20% of data and 80% are read operations. Also,
the way we chose the size of the transferred data associated with query and correlation
springs also affected the data set. We assigned a value between 1 and 40KB, and did not
consider the size of the fragment actually involved in the query. Therefore, a fragment with
size 1KB can be connected with query springs that transfer 40KB. The gain from local

3A query that performs an update is represented by a query spring and one or more replication springs.

50 CHAPTER 4. EXPERIMENTS

read is high (40KB), and the cost to keep the data updated (0.15× 1KB) is low, therefore
the fragment would be highly replicable. However, this is an extreme case. We chose the
value of σM to be the cost of moving the object from the source site to the destination
site. For replication, σR was chosen as the cost to move the replica times the number of
existing replicas of that fragments (to bound the replication). The way the experiments
were influenced by σR is detailed in the scalability tests.

4.1.2 Data Cleaning Module

As previously mentioned, this module rearranges the springs that were randomly created
by the data generator. We want to simulate read accesses, therefore the springs should be
reconnected to use closer replicas. The cleaning process is given in Algorithm 6. For every
query and then for every fragment accessed by that query, this algorithm checks if there
is a closer replica that can be used. This is a heuristic algorithm that gives a reasonable
configuration. An algorithm that would find the best query configuration would have, for
each query accessing N fragments, N nested loops (each with number of replica steps),
whereas algorithm 6 performs N loops, one after another.

Algorithm 6 Rearrange the springs

1: for all Q, Q ∈ Q do

2: for all F , F accessed by Q do

3: Rbest = Rk(F), Rk(F) replica currently accessed by Q
4: Cbest = Cost(Q,Rbest), query execution cost if Rbest is used
5: for all R, R ∈ {Ri(F)} − Rk(F), i = 1, ..,M do

6: if Cost(Q,R) < Cbest then

7: Cbest = Cost(Q,R)
8: Rbest = R
9: end if

10: end for

11: if Rbest 6= Rk(F) then

12: Connect Q to Rbest

13: end if

14: end for

15: end for

When re-arranging a query, the algorithm first sums up the energies of all the springs in
the query (line 4). The result represents the cost of executing the query. Next, to improve
this cost, for each fragment involved in the query, all of its replicas are analyzed. If a lower

4.1. EXPERIMENTAL SETUP 51

cost is found using a different replica object, then the springs in the query are connected
to that replica (line 12).

Running the data cleaning module is not necessarily required as the Spring Algorithm
does the spring re-configuration anyway. However, using data that’s not cleaned increases
the running time of the algorithm – and there is no significance in that.

4.1.3 Spring Algorithm Simulator Module

As mentioned, the Spring Algorithm Simulator takes as input a (G,P), and a replica or set
of replica objects that changed their access pattern. It reallocates the replicas such that
the given set of queries is performed more efficiently. The query set (Q) changes gradually
since the last reallocation, therefore the set of queries should make minor changes to the
allocation configuration.

Spring
Algorithm

Fragments and
Queries Catalogue

Sites
Catalogue

Replica ID
Manager

Allocation
Configuration

Spring
Algorithm

Fragments and
Queries Catalogue

Sites
Catalogue

Replica ID
Manager

Allocation
Configuration

Figure 4.2: The Spring Algorithm Simulator

The Spring Algorithm simulator uses three components: the Fragments and Queries
Catalog, the Sites Catalog, and the Replica Id Manager (Figure 4.2).

• The Fragments and Queries Catalog keeps track of where the replica objects
and query object are located by implementing site(Rk(Fi)) and site(Q). Another
function of the catalog is to simulate that a replica object is reallocated on a different
site in order to verify whether or not this is a good decision (SimulateMove and
SimulateReplicate). It also checks if a replica object of a fragment already exists at
a specified site, used when removing a replica.

52 CHAPTER 4. EXPERIMENTS

• The Sites Catalog contains information about the average delay-per-kilobyte when
sending data between sites (AC(Si, Sj)). This module also gives information about
sites located in the proximity of another site (GetClosestSites(x, S, size(F))). To
simplify the implementation, this method returns the x closest sites that are willing
to store the replica object.

• Each fragment and each replica of that fragment have their own unique id. The ids
are monotonically increasing integer values. The Replica Id Manager contains the
global information about the replica ids in the system. If a replica is removed, its id
is erased from the list of those in use, and reused later when a new replica is created.

4.1.4 Experimentation Platform

The sites, the fragments, and the queries are three factors we tested to see how they
influence the system performance. In Section 4.1.1, we described the parameters that
were used when generating them. We test the system to see how it reacts when related
parameters change.

The number of sites-per-bubble, S, is a factor that needs to be considered. We want
to see if the system is scalable, therefore this parameter is varied to verify the system’s
response time. S is set to 50, 100, 200, and 1000.

We want to see if the system is scalable when the number of fragments-per-bubble,
F , is increased. We use 100, 200, 500, and 1000 as test values.

The number of queries-per-bubble, Q, influences the response time since the time
to compute the energy of a replica object depends on the number of springs connected to
that replica object. Also, since each time the replica object is moved, replicated, deleted,
or simulated for replication the springs are rearranged, an increasing number of queries
would increase the running time. We want to see whether our system scales well with
increased number of queries accessing the fragments in the bubble. We use 2000, 5000,
10000, and 50000 as test values.

Besides their number, the types of queries are also important. The update-to-retrieval

ratio, U/R, of queries can be one factor. If the number of updates is high, the number of
replicas of each fragment should decrease as the overhead of maintaining these replicas will
be high. As a result, it should take less time to stabilize the system when there are more
updates than when there are fewer. We test the system for 10%, 20%, and 30% updates.

Selection-to-join ratio, S/J , of queries is another factor. More selections should
reduce the time to stabilize the spring system for two reasons. First, there are fewer springs
in the system, therefore the time to compute the energies of replica objects is reduced.
When the reallocation is performed, there are many simulations that reset the energy of

4.1. EXPERIMENTAL SETUP 53

replica objects forcing the re-computation by summing up springs energies. Second, more
selections mean that replica objects are not as tightly connected as in the case of joins that
create correlations between replicas. Therefore, reallocating a replica object will not cause
other replica objects to reallocate, and this results in less time to stabilize the system. In
our experiments we vary the selection-to-join ratio so that we have 25%, 50% and 75%
selections.

In real environments, the data access distribution, D, of queries corresponds to the
80/20 distribution, that is 80 percent of the queries access 20 percent of the data. We want
to see the response time for an 80/20 versus an uniform distribution.

Only these six parameters are varied. When one of these parameters is varied, the
others are set to their default values (Table 4.1).

Table 4.1: The Default Values in the Experiments
Parameter Explanation Default value

S No. of sites / bubble 200
F No. of fragments / bubble 200
Q No. of queries / bubble 5000

U/R Update-to-retrieval ratio of queries 1/4
S/J Selection-to-join ratio of queries 1/1

DAD Data access distribution of queries 80/20
SmC Site minimum capacity 0MB
SMC Site maximum capacity 10MB
mSF Minimum size of fragments 1KB
MSF Maximum size of fragments 250KB
AR Percentage of fragments allowing replication 60%
AM Percentage of fragments allowing movement 80%
ImR Initial minimum number of replicas 1
IMR Initial maximum number of replicas 4

φ Query frequency 1
QmS Query spring minimum data size 1KB
QMS Query spring maximum data size 40KB
CmS Correlation spring minimum data size 1KB
CMS Correlation spring maximum data size 40KB
mSJ The minimum number of springs per join 1
MSJ The maximum number of springs per join 4
MUP Maximum update percentage 15%

54 CHAPTER 4. EXPERIMENTS

4.2 Experiments and Results

We performed two classes of experiments:

• The first set of experiments validates the simulator by comparing the results with a
limited exhaustive search algorithm.

• The second set of experiments involve scalability tests with respect to the parameters
discussed above (performance evaluation experiments).

In the performance experiments, the primary metric is the time to complete the re-
allocation. Secondary metrics are: the number of replicas in the system; the minimum,
the maximum, the mean, and the median number of replicas-per-fragment; the number of
times the objects were moved and the number of times they were tested for moving but
were not moved; the number of times the replica objects replicated and the number of
times they were tested for replication but did not replicate; and the number of times the
replica objects merged. All these are interpreted when analyzing the test results.

All of the experiments are run on a 2.2MHz Pentium 4 machine with 512MB RIMM
memory. Since the IOs are performed only at the beginning of the tests, the hard drive
speed is not relevant, but only the processor, the memory speed, and the size of the memory.
The program was written in Java.

4.2.1 Validation Experiments

As mentioned, to verify the system’s performance, we choose to compare the Spring Al-
gorithm with a limited exhaustive search. Because the running time increases explosively
we limited the maximum number of replicas that any fragment has to three. For instance,
even the limited time algorithm ran for almost 8 hours for a simple test set (Table 4.2).

The goal of this set of tests is to find out how good the heuristic used in the Spring
Algorithm is. The three parameters changed are the number of sites, the number of
fragments in the system, and the number of fragments that allow replication. Therefore,
three sets of tests are performed.

The results of our test are presented in Table 4.2. For the limited exhaustive search
algorithm we also show the number of cases that have been analyzed.

In each of the analyzed cases there were 1000 queries generated to access the fragments.
As mentioned, in average, each query has two springs. The objects were hooked with
about 2000 springs. The default values for the number of fragments, sites, and replicating
fragments are 5, 5, and 2, respectively. For easy characterization, we call this test “552”.

4.2. EXPERIMENTS AND RESULTS 55

Table 4.2: The Validation Experiments

Parameters Limited exhaustive algorithm Spring Algorithm Ratio
Fr Sites Rep Time Access Cost Cases Time Access Cost

5 4 2 0:16:09 264,766.06 15,625 00:00:04 336,804.16 0.79
5 5 2 1:07:13 272,195.12 78,125 00:00:03 272,195.12 1
5 6 2 4:51:58 318,158.88 390,625 00:00:03 332,999.84 0.95
4 5 2 0:15:23 228,579.88 15,625 00:00:05 284,305.66 0.80
5 5 2 1:07:13 272,195.12 78,125 00:00:03 272,195.12 1
6 5 2 5:18:54 193,206.16 390,625 00:00:04 188,346.80 1.02
5 5 0 0:01:53 325,421.88 3,125 00:00:01 325,421.88 1
5 5 1 0:11:24 298,938.53 15,625 00:00:04 487,775.97 0.61
5 5 2 1:07:13 272,195.12 78,125 00:00:03 272,195.12 1
5 5 3 7:41:09 233,902.75 390,625 00:00:04 243,289.72 0.97

The default test is performed only once, even though (for comparison reasons) it is shown
three times in Table 4.2.

As previously mentioned, the energy of the bubble represents the sum of the energies
of replicas within the bubble. In the analyzed cases, because there are few replicas, each
replica object has associated with it a significant amount of the total energy. As a result,
each misallocation would produce important changes in the bubble energy. However, in a
large system where there are many objects, placing an object at the optimal site or at a
site next to it would represent only a minor difference in the bubble energy.

We notice the following: (a) in four tests the Spring Algorithm gave very good results,
as measured by the closeness of the cumulative access cost of the queries in the reallocated
system, (b) one test returned a result even better than the one returned by the limited
exhaustive search algorithm, and (c) in three tests the results were far from optimal. All
of these are presented next, but we focus more on those that returned bad results and
analyze why that happened.

Tests 552, 562, 550, and 553 give very good results. The difference in the energies is
due to suboptimal spring connections. The example presented in Figure 4.3 shows that
it is possible to have a query which is not connected optimally and yet it is not detected
by the rearrange algorithm (Algorithm 6). In the initial allocation presented in Figure
4.3(a), the energy of the query is 6 ms. Figure 4.3(d) presents a case in which the spring
connection is optimal, but the rearranging algorithm fails to consider it because it only
analyzes a replica at a time. The arranging algorithm may try to use the second replica of

56 CHAPTER 4. EXPERIMENTS

b) Find better replica of F1

S5

R1(F2)

R1(F1)

R2(F1)

R2(F2)
S1

S2
S3

S4

Q1

3

4

S5

R1(F2)

R1(F1)

R2(F1)

R2(F2)
S1

S2
S3

S4

Q1

3

4

c) Find better replica of F2

S4

S5

R2(F2)
S3

R1(F2)

R1(F1)

R2(F1)

S1

S2

Q1

4

3

S4

S5

R2(F2)
S3

R1(F2)

R1(F1)

R2(F1)

S1

S2

Q1

4

3

d) Optimal configuration using
new replicas of F1 and F2

S4

S5

R1(F2)

R1(F1)

R2(F1)

R2(F2)
S1

S2

S3

Q1

3

2

S4

S5

R1(F2)

R1(F1)

R2(F1)

R2(F2)
S1

S2

S3

Q1

3

2

a) Initial spring connection

S5

R1(F2)

R1(F1)

Q1

R2(F1)

R2(F2)

3

3

S1

S2
S3

S4

S5

R1(F2)

R1(F1)

Q1

R2(F1)

R2(F2)

3

3

S1

S2
S3

S4

Figure 4.3: The heuristic rearranging algorithm analyzes one fragment at a time.

F1, but does not find a lower energy (Figure 4.3(b)). Similarly, in Figure 4.3(c), using the
other replica of F2 does not return a lower energy.

In test 550, since there is only one copy for each fragment, the returned result is identical
to the one returned by the limited exhaustive algorithm. However, in the other three cases,
even though the allocation configuration is the same, the energy that the heuristic Spring
Algorithm returns is higher due to the improper spring connections mentioned above. We
believe that in a real environment this is not likely to be an issue, since a query optimizer
will use the new allocation when optimizing the execution of new queries.

Test 652 returned a result, better than the one returned by the limited exhaustive
search algorithm. This is simply due to the fact that the Spring Algorithm placed one of
the two replicable fragments on all five sites, whereas the exhaustive search algorithm was
constrained to analyze up to three replica objects of each fragment. As a result, it failed
to analyze the allocations with four replicas or more.

4.2. EXPERIMENTS AND RESULTS 57

For three tests – 542, 452, and 551 – the best allocation our algorithm found did not
return a good score. The reasons why it did not perform so well (other than suboptimal
connection of the springs) are described next.

R1(F2)

S2S1

R1(F1)

Q1

7

5

a) Initial configuration

S3

R1(F2)

S2S1

R1(F1)

Q1

7

5

a) Initial configuration

S3

R1(F1)

8

S2S1

R1(F2)

Q1

7

d) An intermediate step between
(c) and optimal (b) is rejected

S3

R1(F1)

8

S2S1

R1(F2)

Q1

7

d) An intermediate step between
(c) and optimal (b) is rejected

S3

b) Move R1(F2) first, giving
optimal configuration

Q1

5

R1(F2)
S1

R1(F1)
0

S3

S2

b) Move R1(F2) first, giving
optimal configuration

Q1

5

R1(F2)
S1

R1(F1)
0

S3

S2

Q1

5

R1(F2)
S1

R1(F1)
0

S3

S2

S3

R1(F2)

R1(F1)

Q1

S2

8

0

c) Move R1(F1) first

S1

S3

R1(F2)

R1(F1)

Q1

S2

8

0

c) Move R1(F1) first

S1

Figure 4.4: Replica objects’ order of analysis is important.

The first issue is the order in which the replica objects are analyzed. For the
join in Figure 4.4, let us consider the size of the data transferred associated with each
spring to be 1KB so that numerically speaking the energy of the springs reflects the access
cost between sites. The average access cost between S1 and S2 is 7ms/KB, between S1 and
S3 is 5ms/KB, and between S2 and S3 is 8ms/KB.

Figures 4.4(b) and (c) illustrate how two configurations can be obtained due to dif-
ferent order of analysis of fragments. In Figure 4.4(b) we analyze R1(F2) first and we
find the optimal configuration. If R1(F1) is moved first (Figure 4.4(c)), the energy in the
new configuration is less than in the original configuration, 8ms < 12ms, therefore the
algorithm moves R1(F1). However, when R1(F2) is analyzed and virtually placed on S1

(Figure 4.4(d)), the configuration is discarded as being too expensive, even though it is
an intermediate step to the optimal configuration. As a result, the Spring Algorithm uses
Figure 4.4(c) as the new allocation even though it is suboptimal.

58 CHAPTER 4. EXPERIMENTS

The allocations presented in Figure 4.4(b) and (c) produce different results from the
same initial configuration. Figure 4.4(c) is a case of misallocation that the algorithm will
not detect. This demonstrates the importance of finding the best order to analyze the
replica objects; this is not an issue we address in this thesis.

We argue that, in a large environment, the order in which the replica objects are
analyzed is not as big an issue as in a small environment. The misallocation occurs when
the sites are neighbors, therefore having both replica objects on S1 or on S2 does not
influence (in percentage) the bubble energy as much as in a small setting. Our algorithm
may not place the objects on the optimal sites, but it keeps them within a reasonable range
of the optimal allocation.

The second issue is that the algorithm does not reconnect the springs when

simulating a move, but only when simulating a replication.
Figure 4.5(a) shows an example in which the initial allocation of three replicas (where

the energy is 11ms) is changed to a configuration in which the energy is 9ms (Figure 4.5(c)).
Even though site S2 is considered as a potential candidate, Figure 4.5(b), the fact that Q2

did not connect to R1(F1), which is now closest and where the energy of the spring is only
3ms, made the difference: S2 is not a good site to store R3(F1). Looking at Figure 4.5(b)
and (c) we notice the same allocation of the objects. However, the algorithm fails to detect
that. In Figure 4.5(c) the two replicas are placed on S2 to make the figure intuitive.

a) Initial configuration

S4

S5

R2(F1)

S1

R1(F1)

Q1

S2

2
4

3

S3

Q2

2

R3(F1)

S4

S5

R2(F1)

S1

R1(F1)

Q1

S2

2
4

3

S3

Q2

2

R3(F1)

b) Better allocation not detected
because spring to Q2 not reconnected

S4

S5

Q2

R2(F1)

S1

R1(F1)

Q1

S2

2 4

0

S3

7

R3(F1)

S4

S5

Q2

R2(F1)

S1

R1(F1)

Q1

S2

2 4

0

S3

7

R3(F1)

c) Reconnecting the springs when
simulating a move is important

S5

S4

Q2

R2(F1)

S1

R1(F1)

Q1

S2

2 4

0

S3

3

R3(F1)

S5

S4

Q2

R2(F1)

S1

R1(F1)

Q1

S2

2 4

0

S3

3

R3(F1)

Figure 4.5: In a small setting it is crucial to reconnect the springs for each simulation.

For each of the three cases that returned bad results, the initial allocation was created
with more than the optimal number of replicas. The algorithm failed to merge replicas,
hence the result. Because the energy of each replica represents a large percentage of the
bubble energy, this energy is significantly higher than optimal. As mentioned, R3(F1) is
dropped before being moved to a site that already has a copy.

4.2. EXPERIMENTS AND RESULTS 59

Reconnecting the springs for each move simulation is vital as the environment is small
and each replica has a large percentage of the bubble energy (final score). However, for
large environments this is not feasible, as for each replica object there are many simulations
to move it to various neighbor sites, and there could also be many springs connected to it.

a) Initial situation b) Reconnecting the springs is not vital
as replication spring has energy zero

S7

Q6

Q7

Q1

Q2

Q3

Q4

Q5
S3

S4

S5

S6

S8

S9

R2(F1)
S1 R1(F1)

S2

S7

Q6

Q7

Q1

Q2

Q3

Q4

Q5
S3

S4

S5

S6

S8

S9

R2(F1)
S1 R1(F1)

S2

Q6

Q7

R2(F1)

S1

R1(F1)

Q1

S2

Q2

Q3

Q4

Q5
S3

S4

S5

S6

S7

S8

S9

Q6

Q7

R2(F1)

S1

R1(F1)

Q1

S2

Q2

Q3

Q4

Q5
S3

S4

S5

S6

S7

S8

S9

Figure 4.6: In large environments spring reconnection is not important.

We argue that in large environments, not reconnecting the springs when simulating
moves is not an issue, as illustrated by Figure 4.6. The object R1(F1) is simulated to be at
S2, which is the good allocation. The springs are still connected to each individual replica.
In this case the allocation is good, since the energy of the replication spring between the
two replicas is zero (the replicas are located at the same site) and all the springs are
connected to a replica located at site S2. However, for small test cases, reconnecting the
springs makes a lot of difference.

We retested the three cases in which we got poor results and reconfigured the springs
for each move simulation. We ran the Data Cleaning Module after the object was virtually
placed at other sites. When the simulation ended, we ran the module again in order to
return to the previous spring configuration. The returned results were very good, but
the running time increased significantly. For case 542 the bubble energy was 267, 421.28
and the running time was approximately one minute and twenty seconds. For 452 the
result was 260, 101.98 and the running time about one minute and forty seconds. For 551
the result was 298, 938.44 and the running time about one minute and twenty-five seconds.
The difference between these results and the ones returned by the limited exhaustive search
algorithm is probably due to rounding issues.

We have seen that rearranging the springs for each move simulation gives much better
results. However, the running time increases significantly because rearranging the springs
(in this simple case 2000) is the most time consuming process. For example, when moving
an object to a neighbor site, first the x closest sites are analyzed, then the object is moved

60 CHAPTER 4. EXPERIMENTS

to that site. In this situation the springs are rearranged x + 1 times, whereas in our
approach the springs are rearranged only after the object has been moved. The ratio is
(x + 1)-to-1.

a) Initial configuration

S1

Q1

S2 S3

S4 R1(F1)

S5

S1

Q1

S2 S3

S4 R1(F1)

S5

b) S1-3 are the closest sites,
so S5 is not considered

S1

Q1

S2 S3

S4

R1(F1)

S5

S1

Q1

S2 S3

S4

R1(F1)

S5

Figure 4.7: The number of analyzed sites is important.

The third issue that could influence the results is the number of neighbor sites

that are analyzed. In Figure 4.7(a) a query object is connected to a replica object.
Let us consider that the site at which the query object is placed would accommodate
R1(F1). However, the object will never be allocated to the best location where the access
cost is zero because only the three closest sites S1, S2, and S3 are analyzed. As shown in
Figure 4.7(b), the simulation always finds a worse cost when moving the object, therefore
the object is kept at that site, even though this is not optimal. However, the number of
sites that are analyzed does not influence the results of the test because our algorithm
considers all the sites for simulation. However, we noticed in the performance tests that
are presented next, that this number is relevant. In a geographical setting for instance, the
number of sites should be the minimum number of sites that cover all surrounding regions.
A smaller number of analyzed sites makes the Spring Algorithm faster, as fewer simulations
are performed each time the replica objects are simulated for move or replication. However,
these simulations return worse results as they fail to analyze all relevant candidate sites.
In the spring system, a lower number of analyzed neighbor sites would translate into a
barrier that does not allow the object to move in a direction other than the direction of
the neighbor sites.

We consider the verification results to be encouraging. We discovered the weaknesses of
our algorithm, but we believe that in the Internet environment, which is much larger, these

4.2. EXPERIMENTS AND RESULTS 61

would not be major issues. In the second part of this chapter we present the performance
of the Spring Algorithm and show how the system scales to larger environments.

4.2.2 Performance Evaluation Experiments

This section analyzes the system response in larger environments, by varying related pa-
rameters. The goal is to check if the system is scalable and if the running time increases
exponentially when the values of the parameters are increased linearly.

Since the parameters were presented in Section 4.1.4 we only enumerate them here:

• number of sites-per-bubble

• number of fragments-per-bubble

• number of queries-per-bubble

• update-to-read ratio

• selection-to-join ratio

• data access distribution

We test one of these parameters at a time. The other parameters are set to their default
values as shown at page 53 in Table 4.1.

Scalability with Respect to the Number of Sites in the Bubble

We tested the system to see whether it responds well when the number of sites-per-bubble
increases. We chose to test the system with 50, 100, 200, and 1000 sites. The first four test
sets are generated randomly to see how the algorithm reacts in randomly generated network
topologies. In order to simulate a real network topology, due to the lack of publicly available
information, we used 200 node stations of the Romanian Railway System and the distance
(in kilometers) between them, and approximated the distance as the cost of transferring
1KB of data, in milliseconds.

Because the notion of locality is better defined in the realistic setting, the replica objects
move more than in the generated one. For the same reason, in the generated setting the
fragments replicate more because the gain of having data locally is high. In Figure 4.8,
two replicas are needed to serve the queries efficiently. Sites S1 and S3 are not in the same
vicinity, even though the access cost (the dotted lines) between S1 and S2 and between S2

62 CHAPTER 4. EXPERIMENTS

R1(F1)

R2(F1)
Q1

7

S4 S3

S2

S1

Q2

Q3

Q4

10

3

4

10
0

75

R1(F1)

R2(F1)
Q1

7

S4 S3

S2

S1

Q2

Q3

Q4

10

3

4

10
0

75

Figure 4.8: Randomly generated sites encourage replication.

and S3 is low. The reason why they are not in the same vicinity is because the access cost
is generated randomly. In a real site setting, the four sites would be in the same vicinity.

The number of replicas obtained after the reallocation has been performed is directly
proportional to the number of sites (Table 4.3) because now more fragments are hot spots
(20% of the total number of fragments are hot spots). As the number of replicas in the
system increases, the time required to analyze them increases as well, as presented in the
table.

When empirically choosing the number of neighbor sites to be analyzed, for the realistic
set the performance increased dramatically from 1 to 5 analyzed neighbors, then slowly
increased up to 10 neighbors, and stabilized afterwards. For the generated data set, the
increase was constant and more neighbors returned better results even after the limit of
10.

All other tests use only the realistic network topology. Since we want to see how the
algorithm reacts when different parameters change, the sites configuration is fix.

Scalability with Respect to the Number of Fragments in the Bubble

The running time is obviously influenced by the number of fragments because more frag-
ments take more time to analyze. Each fragment can have more than one copy, therefore
there may be more replica objects in the system than the actual number of fragments (we
showed that in average there are 1.9 replicas-per-fragment).

In the experiments (Table 4.4), for 200 and 500 fragments, we obtained a shorter
running time than for 100. This happens because of the following:

• In a small set of objects, since the queries access only few objects, each object is

4.2. EXPERIMENTS AND RESULTS 63

Table 4.3: Performance Evaluation w.r.t. Nr. of Sites
Test 1 2 3 4 5

Nr.Sites 50 100 200 1000 200
Nr.Replicas 382 371 370 359 370

Init. Rpl/Frg (min) 1 1 1 1 1
Conf. Rpl/Frg (max) 4 4 4 4 4

Rpl/Frg(mean) 1.91 1.86 1.85 1.78 1.85
Rpl/Frg(med) 1 1 1 1 1

Nr.Replicas 480 475 504 621 403
Final Rpl/Frg (min) 1 1 1 1 1
Conf. Rpl/Frg (max) 20 13 20 20 9

Rpl/Frg(mean) 2.4 2.38 2.52 3.11 2.02
Rpl/Frg(med) 2 2 2 3 2

Moved 96 116 139 184 375
Not Move 2122 1686 1904 2380 1405

Oper. Replicate 98 104 134 262 34
Not Replicate 1704 1306 1510 1854 1111

Merged 0 0 0 0 1
Bubble Initial 1.25E7 2.58E7 5.40E7 2.55E8 5.71E7
Energy Final 8.79E6 1.90E7 4.02E7 1.77E8 4.19E7

Running time 5:45 3:11 6:41 9:59 5:35

connected with more springs. In a large set of objects, since the same number of
queries access more objects, each object is connected with fewer springs. This means
that in the first case computing the energy of an object takes more time as each
object’s energy is the sum of more springs.

• In the spring system, when an object is moved, the objects directly connected to it
are affected. In a small set of objects, each object is connected to a larger percentage
of the total number of objects. This means that computing the energy of the bubble
takes more time.

Just to give an example, when 15 queries (30 springs) access three objects, each object
is on average connected with 10 springs. When the same number of queries accesses 5
objects, on average, 6 springs are connected to each object. It is obvious that computing
the energy of an object connected with 10 springs takes more time than for one connected
with 6 springs. As the first setting is small, moving an object affects the other two, and

64 CHAPTER 4. EXPERIMENTS

Table 4.4: Performance Evaluation w.r.t. Nr. of Fragments
Test 1 2 3 4

Nr.Fragments 100 200 500 1000
Nr.Replicas 199 358 991 1811

Init. Rpl/Frg (min) 1 1 1 1
Conf. Rpl/Frg (max) 4 4 4 4

Rpl/Frg(mean) 1.99 1.79 1.98 1.81
Rpl/Frg(med) 1 1 1 1

Nr.Replicas 221 385 1040 1890
Final Rpl/Frg (min) 1 1 1 1
Conf. Rpl/Frg (max) 7 5 7 17

Rpl/Frg(mean) 2.21 1.93 2.08 1.89
Rpl/Frg(med) 2 1 2 1

Moved 238 312 557 796
Not Move 725 1244 3400 6070

Oper. Replicate 22 28 49 79
Not Replicate 591 980 2783 4511

Merged 0 1 0 0
Bubble Initial 4.74E7 5.05E7 5.08E7 5.05E7
Energy Final 3.64E7 3.92E7 4.05E7 4.11E7

Running time 6:01 5:10 4:55 9:05

to compute the energy of the bubble all 30 springs have to be considered. As the second
setting is larger, moving an object does not affect all other objects. In this case, to compute
the energy of the bubble, less than 30 springs are considered. For simplicity, in this example
we considered uniform distribution of queries to objects.

The combination of the two factors previously presented (the two bullets) influences
the running time in opposite ways, as shown in Table 4.4. Also, notice that the number
of replicas in the system increases, but not proportional with the number of fragments.
In fact, the higher the number of fragments, the fewer replicas-per-fragments are created.
There are fewer fragments accessed by the same number of queries, therefore there are more
springs that pull from the fragments to make them replicate. In the first test, there are
22 new replicas per 100 fragments, whereas in the other cases there are 14, 10, and 8 new
replicas created per 100 fragments. Similarly, on average, in the first test each replica in
the system moves more than once, whereas in the other cases it moved less than once. The
hot spot fragments may replicate and move, but the others are not accessed sufficiently to

4.2. EXPERIMENTS AND RESULTS 65

justify the cost of moving them. For this reason, merging operations are not performed.
However, just to test our hypothesis, we changed the algorithm to allow a fragment to
move if there is a better cost, removing the threshold σM . As a result, cold replicas merged
69 times because initially the fragments had more replicas than was needed.

Scalability with Respect to the Number of Queries in the Bubble

In these tests we can see again the effect of the highly replicable data set, as the mean
number of replicas/fragment increased from 1.79 to 2.46 for 50000 queries (Table 4.5). The
hottest fragment has increasingly more replicas. However, the effect of σR and the way we
chose it for replication is reflected in the results. The greater the number of replicas in
the system, the higher the threshold that needs to be overcome in order to replicate the
fragment further.

Table 4.5: Performance Evaluation w.r.t. Nr. of Queries
Test 1 2 3 4

Nr.Queries 2000 5000 10000 50000
Nr.Replicas 358 358 358 358

Init. Rpl/Frg (min) 1 1 1 1
Conf. Rpl/Frg (max) 4 4 4 4

Rpl/Frg(mean) 1.79 1.79 1.79 1.79
Rpl/Frg(med) 1 1 1 1

Nr.Replicas 377 392 423 491
Final Rpl/Frg (min) 1 1 1 1
Conf. Rpl/Frg (max) 11 14 24 30

Rpl/Frg(mean) 1.89 1.96 2.12 2.46
Rpl/Frg(med) 1 1 2 2

Moved 163 310 501 838
Not Move 1480 1260 2060 2506

Oper. Replicate 19 35 65 134
Not Replicate 1156 981 1629 2006

Merged 0 1 0 1
Bubble Initial 2.00E7 4.99E7 1.01E8 5.05E8
Energy Final 1.69E7 3.95E7 7.71E7 3.70E8

Running time 0:48 5:10 28:12 9:30:26

Regarding the number of moves, it is interesting to see that except for the first test,

66 CHAPTER 4. EXPERIMENTS

the increase is logarithmic.
In the first test, there are 2000 queries which correspond to approximately 4000 springs.

800 (20%) of these springs are connected to 160 (80%) of the fragments. On average, each
of the 0.8 · 358 = 286 cold objects are connected with approximately 800/286 = 3 springs.
Unless the data size associated with these queries is high to create of a strong spring, the
cold objects will not move. This explains why there are fewer replica objects moved in the
first test than in the second. In the first test, the objects move closer to the optimal site,
but do not have enough energy to get in its neighborhood. As a result, the fragments do
not move many steps. In the second test, increasing the number of queries generated more
energy to move the replica objects. Due to the high number of queries that access replica
objects allocated at non-optimal sites, the algorithm was able to detect that there was a
high performance loss that overcome the cost σM of relocating the object. Therefore the
object is placed more precisely with the number of queries. For 5000 queries there are 10000
springs in the system, which means, on average, that each cold object is connected with
2000/286 = 7 springs. For 5000 queries the objects are already placed at good locations.
Increasing the number of queries increases the precision, but the object may just move
another step since it is already in the optimal neighborhood.

The increase in the number of moves between the second, third and fourth tests is
explained, as mentioned, by the number of queries which result in more precise allocation.
Another factor that influenced this increase is the number of new replicas created. The
hot fragments became even hotter creating more replicas that moved and counted in the
total number of moves.

When analyzing the obtained energies, it can be seen that the initial ones are directly
proportional to the number of queries. However, the final energies are reduced to 85%,
80%, 77%, and 74% of the initial one, as showing again that more queries represent more
energy to move the fragments towards the optimal location.

We noticed that each time the query number doubles, the running time increases signif-
icantly. Twice the time to compute would be normal, as there are twice as many springs.
However, for more randomly generated queries, each replica object is directly connected to
more objects. When simulating a move/replicate the energies of all these replica objects
are reset, and as computing the energy of a replica objects from springs is expensive, this
is reflected in the running time.

Scalability with Respect to the Selection-to-Join Ratio

The following three experiments are shown in Table 4.6. All these data sets were created at
the same time, given as parameters the selection-to-join ratio, the update-to-retrieval ratio,
and the data access distribution. Except for queries, all the obtained configurations are

4.2. EXPERIMENTS AND RESULTS 67

identical. Furthermore, even the query allocation is the same. This means that the query
objects are placed on the same sites in all configurations, even though they are actually
different otherwise.

We changed the proportion of the selection-to-join ratio to 25/75, 50/50, and 75/25
to see how the system reacts to this parameter. We noticed that the maximum number
of replicas-per-fragment decreases with the number of joins. Also, overall, there are fewer
copies created when running the algorithm on the data set with many more selections.
These two are the results of fewer correlation springs in the system. Remember that for a
query doing a join R1(F1) ./ R1(F2), such that R1(F1) is connected with a spring to R1(F2)
and R1(F2) is connected to the query object, the effect of the fixed query object is pulling
both fragments (R1(F1) indirectly) close to its location. Therefore, in the case of joins, the
query objects pull more than just one object towards them. As a result, more correlation
springs connected to objects create more pressure on the replica objects and make them
replicate.

In the results table we see another effect of fewer joins in the system. Fewer joins mean
there are fewer springs in the system, therefore the initial energy decreases when there are
50% or 75% selections. Also, as the objects become more independent, the time to stabilize
the system decreases. For the extreme case in which no replica object is connected with
another, the algorithm gets the stabile allocation in one iteration. The second time the
replica objects are reintroduced into the queue, they are already at the stable location.

Scalability with Respect to the Update-to-Read Ratio

We ran experiments to see how the system reacts when the number of updates increases.
We chose to have 10%, 20%, and 30% updates.

Even though we increased the number of updates to 30%, no merging occurred. Once
again, this shows how highly replicable the data set is. However, the effect of increasing the
number of updates is strongly felt, as in this test there are a one-third fewer new replicas
than in the test where there are only 10% updates. Also, in the case of hot spots, the
number of maximum replicas-per-fragment decreases to almost half.

Comparing these results with the ones from the previous experiment, we can see that
the effects of changing the parameters had a similar influence on the data. The maximum
number of replicas-per-fragment is almost identical with the one obtained in the previous
experiment. So is the number of new created replicas. Increasing the number of updates
from 10% to 20% gives similar results as decreasing the number of joins from 75% to 50%.
It is the same situation when we consider the change from 20% to 30% updates and 50% to
75% selections. However, they create similar effects but in different ways. As mentioned,
when increasing selectivity, fewer replica objects of different fragments are pulled towards

68 CHAPTER 4. EXPERIMENTS

query objects (directly and indirectly), whereas when increasing the number of updates, the
replica objects of the same fragment are forced to get closer to each other and eventually
merge.

Scalability with Respect to the Query Access Distribution

In this test we compare the results of the 80/20 access distribution with those of the uniform
distribution. There were more replicas created in the case of uniform distribution because
the queries are evenly distributed to fragments, and the way we selected the value of σR. In
the case of the 80/20 distribution, 80% of the queries access 20% of the data, which makes
the hot fragments replicate at a high rate. However, as the threshold σR increases with the
number of replicas, at some point not even the highly accessed fragments will replicate.
Fragments that were cold in the 80/20 distribution are no longer cold in the uniform
distribution, therefore they replicate. Since σR is gradually increasing with the number
of replicas, its value is not hindering replication of a small number of replicas. Therefore,
in the uniform distribution, more replicas are created overall (fewer replicas-per-fragment,
but more fragments replicate). The maximum number of replicas each fragment has is
smaller because the queries are now distributed and there are no hot fragments as in 80/20
distribution.

We were surprised to find that the maximum number of replicas that was generated
for the 80/20 distribution is only slightly higher than for the uniform distribution. This
was not expected, and we investigated the distribution of replicas to fragments. We have
found that, in the case of uniform distribution, 14 replicas-per-fragment is an ‘unlucky’
exception. The reason is that, the fragment size was chosen randomly to be 1KB, but the
size of the transferred data associated with the springs was much higher (1KB to 40KB
for query and correlation springs). Therefore, the threshold σR was too small to stop the
replication process. Out of the 200 fragments, one fragment had 14 copies, the second
hottest had 10, four had 8 replicas, and five had 7 replicas. The large majority had 1, 2 or
3 copies.

4
.2

.
E

X
P

E
R

IM
E

N
T

S
A

N
D

R
E

S
U

L
T

S
69

Table 4.6: Performance Evaluation w.r.t. to S/J, U/R, and Query Access Distrib.

Test 1 2 3 4 4 4 4 4
Sel-to-Join(% Sel) 25 50 75 50 50 50 50 50

Upd-to-Retr(% Upd) 20 20 20 10 20 30 20 20
Access Distr. 80/20 80/20 80/20 80/20 80/20 80/20 80/20 Unif.
Nr.Replicas 377 377 377 377 377 377 377 377

Init. Rpl/Frg (min) 1 1 1 1 1 1 1 1
Conf. Rpl/Frg (max) 4 4 4 4 4 4 4 4

Rpl/Frg(mean) 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89
Rpl/Frg(med) 1 1 1 1 1 1 1 1

Nr.Replicas 515 505 482 523 505 475 505 578
Final Rpl/Frg (min) 1 1 1 1 1 1 1 1
Conf. Rpl/Frg (max) 18 15 13 20 15 13 15 14

Rpl/Frg(mean) 2.58 2.53 2.41 2.62 2.53 2.38 2.53 2.89
Rpl/Frg(med) 2 2 2 2 2 2 2 3

Moved 141 174 175 156 174 157 174 93
Not Move 1916 2304 1760 1965 2304 1724 2304 2229

Oper. Replicate 139 128 105 146 128 98 128 201
Not Replicate 1517 1851 1395 1599 1851 1366 1851 1768

Merged 1 0 0 0 0 0 0 0
Bubble Initial 5.06E7 4.51E7 3.81E8 4.55E8 4.51E7 4.23E7 4.51E7 4.33E7
Energy Final 3.80E7 3.31E7 2.85E7 3.27E8 3.31E7 3.25E7 3.31E7 3.21E7

Running time 5:35 4:27 1:52 3:57 4:27 3:07 4:27 2:05

70 CHAPTER 4. EXPERIMENTS

4.2.3 Conclusions

We have compared the Spring Algorithm with a limited exhaustive search algorithm to
validate the proposed algorithm’s efficacy. The cases in which the algorithm performed
poorly were due to the fact that the tested environments were small. For these situations,
placing even one object next to an optimal site can return poor results as each of the
fragments in the system accounts for a significant part of the bubble energy. We showed
that the reason for this is because it did not reconnect the springs when simulating a
move. We argued that in a large scale system this would not be a problem. When running
the Spring Algorithm, there is a tradeoff between the quality of results and run-time
performance. We chose to have better run times because this algorithm should be used in
large systems.

We have also shown that, when dealing with larger data sets, the algorithm scales well
and the increase in the running time is usually logarithmic or, in the case of the number
of queries, linear.

When we tested the system’s reaction to increasing number of sites, we noticed that
the number of replicas obtained in the end increased with the number of sites because
more sites (20% of 1000) were highly accessed. This also causes the run time to increase.
We compared the results when using 200 generated sites and 200 sites in a real setting
and noticed that, because the notion of locality is better defined in the real setting, the
fragments tended to move more and replicate less than in the case of generated settings.

In the case of fragments, we noticed that the ratio between the number of newly created
replicas and the total number of fragments is indirectly proportional to the number of
fragments. This is the result of sharing the same number of queries over an increasing
number of fragments, which, on average, leads to less springs pulling from each object.
Also, we noticed that in the systems with fewer fragments, the cost to compute the bubble
energy is higher, because the energy of more fragments is recomputed when a fragment is
relocated.

We showed that the number of created replicas increases logarithmically with the num-
ber of queries. The way we chose to compute σR for replication made replicating a fragment
more and more difficult as its number of copies increased. Even though the size of the set
of queries increased and the way we chose the system parameters favored replication, σR

limited the number of performed replications.
Increasing the number of selections from 25% to 75% gives fragments more indepen-

dence from each other. As a result, reallocating one fragment does not influence others,
therefore the time to allocate a fragment decreases. Because there are more selections and
fewer joins, the number of springs accessing each of the fragments also decreases. Less
springs accessing each fragment results in fewer replicas created.

4.2. EXPERIMENTS AND RESULTS 71

Increasing the number of updates from 10% to 30% caused an expected decrease in the
number of newly created replicas. When comparing the effects of increasing the number
of updates from 10% to 30% with those of increasing the selections from 25% to 75%, we
noticed that all resulting parameters were similar. However, the processes performed to
get the results were very different.

In the case of uniform distribution of queries to fragments, the number of created
replicas increased more than in the 80/20 distribution. The fragments that were cold in
the 80/20 distribution were accessed more, therefore they replicated. In 80/20 there were
few fragments with a large number of replicas whereas the large majority of the fragments
had only few replicas. In the uniform distribution, there was no discrepancy, as most
fragments have the same number of copies.

Chapter 5

Conclusions and Future Work

5.1 Overview

Finding an efficient allocation is critical to ensuring cost-effective performance and high
availability of data for Internet-scale database applications.

As discussed, most of the previous strategies are based on static, small distributed
systems. As a result, they propose algorithms that are not able to react adaptively to
changes in access patterns and do not consider the correlations between data fragments.
None of the proposed strategies have analyzed the Internet-based data distribution problem
in detail as we did, or their goals were different from our goal which is to minimize the
overall access cost. Previous work does not consider the relations between the distributed
data and the fact that changing the location of some data may affect other data. Also,
some of the previous work tackles the distribution problem from a different perspective
such as response time [14], bandwidth [47], or availability [36].

This thesis proposes a dynamic strategy to the allocation problem, suitable for a sys-
tem running in the Internet environment that requires high adaptivity. Our algorithm is
incremental and dynamic, executing data redistribution without knowledge of the global
environment in advance, not running from scratch, and reacting dynamically to changing
access patterns.

We modelled a distributed database system placed in the Internet environment that has
three components: sites (with full DBMS functionalities), data (information requested by
users), and network links (that connect sites). Data can be fragmented and replicated, and
the unit of distribution is the fragment of a relation. Our system assumes an initial data
distribution of fragments. The change in the way those fragments are accessed triggers
their movement, replication, or deletion (the system reconfigures itself dynamically). The

72

5.1. OVERVIEW 73

sites cooperate to improve the overall cost of accessing data, and decide when and where
to move or replicate a replica object.

Each pair of sites has a communication cost associated to it. The access cost between
two sites represents the distance between them (the delay when sending 1KB of data
between two sites). To get good system performance, data should be close to the user to
allow a low communication cost. Also, to reduce the consistency costs, data should not
be kept on sites where it is not accessed by users. As our goal is to minimize the overall
access cost to fragments, all these individual costs become constraints that we have to deal
with when addressing the allocation problem.

We named our strategy the spring system approach as the dynamic system we
modelled is based on the same principles as a physical spring system – it had similar
components and interactions:

• The objects in the spring system are, in our case, relation fragments (replica objects)
that need to be redistributed, and queries (query objects) that access the replica
objects. The replica objects are mobile, whereas the query objects are fixed.

• Relationships between objects are simulated by springs connecting the two types of
objects. We use different types of springs: (a) a query spring that connects a query
object to a replica object; (b) a correlation spring that connects two replica objects
of different fragments (due to join operations); (c) a replication spring that connects
two replica objects of a fragment. These three types of springs simulate all situations
that we model.

In our system, the closer the replica objects are to the query object, the lower the
cost of executing the query, which is defined as the sum of the energies of the springs
connecting the objects it accesses.

• The spring characteristic that interests us most is stretchability. Whenever the spring
is taken out of its equilibrium state, there is a force that wants to pull it back to its
original position.

In the spring system, an object that is directly connected to an object that moves
is more affected than objects that are not directly connected. Objects stop moving
when they reach equilibrium, i.e. when the objects have the minimum energy. This
corresponds to the case in which no object has kinetic energy (they no longer move),
and the potential energy (the energy in the springs) is minimum. The equilibrium
state represents the allocation where the replica objects should be distributed in
order to get the best system performance.

74 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

• The bubble represents the part of the spring system that is not affected by the changes
that occur in another part. The spring system is composed of bubbles. There are
two edge cases here: first, the whole spring system is one big bubble. In the Internet
environment this is never the case. On the other extreme, each replica object can
represent a bubble and the spring system is made of many small bubbles.

The Spring Algorithm is a dynamic incremental algorithm that performs the repli-
cation and redistribution of fragments based on the initial configuration given by the system
we modelled. The algorithm is triggered by the change in the access pattern of an object
(change in the fragment’s update frequency; or data being more/less popular). The Spring
Algorithm checks whether the best performance is obtained by moving or replicating the
object. Since only the neighbor sites are analyzed, an object that has been moved is rean-
alyzed, as this can lead to a better location. If an object has been replicated, both objects
are reanalyzed. The new potential candidate sites are now the neighbor sites of the new
location. The object stops moving when no better local site is found. Each object has been
analyzed based on the fixed allocation of the other objects in the bubble. Since an object
could have been considered well allocated and eliminated from the queue based on a bad
configuration, one iteration of the algorithm may not give a good allocation configuration.
When an iteration of the algorithm stops, all objects are reintroduced into the queue and
the algorithm is re-run. The reallocation stops when the bubble energy obtained in the
nth iteration has decreased less than a specified threshold in comparison with previous
iteration.

To analyze the performance of the Spring Algorithm, we implemented a simulation that
performed two sets of experiments:

• The validation experiments compared the Spring Algorithm with a limited exhaustive
search algorithm.

• The performance evaluation experiments verified the system’s scalability by varying
several parameters.

When comparing the Spring Algorithm with the limited exhaustive search algorithm,
we noticed that our algorithm returned good results except for three cases. Those cases
were due to the small testing environment where each fragment had about 20% of the
allocated bubble energy. In these three cases, the cost was severely influenced by: (a)
the order in which the replica objects were analyzed; (b) the algorithm not reconnecting
the springs when simulating a move, but only when simulating a replication; and (c) the
number of neighbor sites that were analyzed. In the Internet environment those should
not be issues that will decrease performance.

5.2. CONTRIBUTIONS 75

The performance evaluation results are encouraging. We tested the algorithm to see
how it reacts when various parameters are modified. We used various number of sites,
fragments, and queries, various update-to-retrieval and selection-to-join ratios, and differ-
ent distributions of queries to data. We found that the algorithm scales well when the
number of replicas and the number of sites is increased, with the running time increasing
logarithmically. The increase in the number of queries results in a linear increase in the
running time. However, we believe that this is not an issue because the algorithm can be
distributed as presented in the next section. Regarding the update-to-retrieval ratio, the
system responded as expected by reducing the number of replicas created with an increase
of the number of updates (due to the increase in cost). The selection-to-join ratio affected
the fragments’ independence. A lower percentage of selections resulted in more correlation
springs that generated more replicas. The uniform distribution of queries to fragments
resulted in a larger number of total replicas, but the maximum number of replicas any
fragment had decreased when compared to the 80/20 distribution.

5.2 Contributions

This thesis takes into consideration that, in a DDBMS, groups of fragments have a tendency
to be accessed together by introducing the concept of a “bubble”. This is the minimum
unit of data that should be analyzed independently because the fragments it contains are
strictly related and they should be analyzed together. Since operations in a bubble do not
affect other bubbles, the bubble concept also helps when performing the allocation. The
analysis is performed only on related fragments, which reduces the time to perform the
allocation. The independence of a bubble also helps us minimize the overall energy of the
spring system by minimizing the energy of each bubble in the system.

Unlike previous works, we consider the correlations between fragments. Considering
fragment interdependencies made the problem more challenging as simple greedy-like al-
gorithms could not be applied, requiring the development of a new dynamic algorithm.

Because we address the Internet environment which is dynamic and incremental, we
specially tailored the algorithm to apply to this environment. This means that we expect
the changes to be incremental, therefore they would not affect the allocation configuration
substantially. We consider the changes to be not substantial when the objects change their
allocation but remain in the neighborhood. For this reason and in this particular situation,
the running time is much lower than everything proposed before: O(n · v), where n is the
number of fragments to be allocated and v is the number of neighbor sites (fixed to 10)
that are analyzed for move/replication.

The most substantial contribution is introducing the “spring system” analogy to per-

76 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

form data redistribution. This approach helped us visualize the distribution problem and
gave us ideas about how to create an algorithm for a dynamic environment where changes
are incremental. We have shown that the spring system interactions match the fragment
interactions in real DDBMSs and that following the way the spring system stabilizes leads
to a very good data allocation of fragments. The analogy is very natural and we have
shown that there are only three points when the Spring Algorithm did not perfectly match
the distribution problem:

• One situation was when fragment replication was performed. For that case, in the
spring system, an object and additional replication springs had to be created. Also,
the springs that were connected to the initial copy are now divided between the two
copies.

• The second situation was when two replicas of a fragment were merged. For that
case, in the spring system, one object had to be removed and the springs that were
connected to the removed object are now connected to the remaining one.

• The third situation is represented by the case in which the replica objects “jump”
between neighbor sites. In a real spring system, the objects can move everywhere
and there is no notion of site.

After any of the two operations that are unnatural for a spring system are performed,
the new and the old copies find their way to the best site where they should be placed
without further intervention.

5.3 Future Work

As future work, we identified four issues that should be further investigated.

Multi-fragment analysis

The algorithm we propose finds a better allocation of fragments by analyzing one replica
object at a time, while the rest are fixed. However, if two or more replica objects are
strongly connected, it may be difficult to move them one at once. As a short term future
work we would like to change to algorithm to detect when a set of replica objects are
strongly connected and try to move them together.

Parallelism

The weakness of the current implementation of the Spring Algorithm is that it is cen-
tralized. As a result, we have seen that, when increasing the number of queries, the running

5.3. FUTURE WORK 77

time increases linearly. As future work, we would like to focus on implementing a P2P
system on which to test the algorithm. In this environment, the workload would be dis-
tributed to multiple sites, reducing the response time. The time needed to stabilize the
system would represent the time elapsed until each site had finished running the algorithm.
If the time to stabilize the system when there are q queries is t, the time to stabilize it
when there are double the number of queries is t + q/n, where n is the number of sites in
the system and uniform distribution is assumed.

Each site would decide when to move or replicate an object it stores. Based on the
accesses to the objects it stores, the site computes the access cost if the object is to be
placed on one of the neighbor sites. This could be performed by sending representative
statistics of the object’s access pattern to all neighbor sites. Each site would return the
cost of accessing the replica object if the object is located at that site. The object would be
moved to the site that returned the lowest cost, if that cost is lower than the current one.
After that, the selected site would deal with the replica object. If the object is already
at the best location found by the algorithm and its access frequency has increased, the
object would be tested for replication. In this case, the query objects accessing the initial
object would be divided between the two objects, whichever is closer, creating new access
patterns for both of them.

Another possibility is to take advantage of the fact that each bubble is independent and
have a site responsible for reallocation. The site can be chosen using an election algorithm.

The results obtained from a simulation performed on a P2P system would better reflect
the reality. Also, due to the parallelism, the number of sites, fragments and queries can
be increased with few orders of magnitude, truly reflecting the scale of the Internet-based
applications.

Increasing Performance by Re-fragmentation

In a highly dynamic environment such as the Internet, not only do the access patterns
to fragments changes over time, but also the nature of access to fragments. Because we
deal with database fragments, both fragmentation and data allocation should be performed
together in order to get optimal results. In the spring system approach we assume that
fragmentation is already performed. Future work would focus on creating a new module
of the Spring Algorithm that would perform data re-fragmentation.

A Different Heuristic

The Spring Algorithm works by placing the moved or replicated replica objects at the
end of the the analysis queue. The replica objects that were not moved or replicated
are removed from the queue and never reanalyzed. As we mentioned, replica objects are
connected and moving one affects others. We counterbalance this issue by running multiple

78 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

iterations of the algorithm. However, with each iteration, the Spring Algorithm analyzes
the replica objects that are already at the best location, which results in higher running
times.

A short term future work would focus on developing an algorithm in which, when a
replica object is moved, the replica objects directly connected to it are also placed at the
end of the queue (if they are not in the queue already). For this case it would be enough to
run the algorithm once. On one hand, we think the new algorithm would perform better
only if there are many independent fragments. These are inserted at the end of the queue,
redistributed and then removed. Because they would be analyzed once, which will lead to
a shorter running time. On the other hand, we assume that, if the replicas are connected,
the two algorithms would have a similar performance. What the Spring Algorithm does
by running multiple times would be similar to what the second algorithm would do by
reintroducing the connected replicas into the queue.

Bibliography

[1] Akamai Technologies, http://www.akamai.com.

[2] Mirror Image Internet, http://mirror-image.com.

[3] SinoCDN, http://www.sinocdn.com.

[4] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting Atomic Broadcast in
Replicated Databases (Extended Abstract). In Euro-Par ’97 Parallel Processing, 3rd
Int. Euro-Par Conf., pages 496–503, 1997.

[5] F. Baiao, M. Mattoso, and G. Zaverucha. Horizontal Fragmentation in Object DBMS:
New Issues and Performance Evaluation. In Proc. of the 19th IEEE Int. Performance,
Computing and Communications Conf., pages 108–117, 2000.

[6] D. Barkai. Technologies for Sharing and Collaborating on the Net. In 1st Int. Conf.
on Peer-to-Peer Computing, pages 13–28, 2001.

[7] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Za-
ihrayeu. Data Management for Peer-to-Peer Computing: a Vision. In Proc. 5th Int.
Workshop on the World Wide Web and Databases (WebDB), pages 89–94, 2002.

[8] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1st edition, 1987.

[9] A. Bestavros and C. Cunha. Server-Initiated Document Dissemination for the WWW.
IEEE Data Engineering Bulletin, 19:3–11, 1996.

[10] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz. Update
Propagation Protocols for Replicated Databases. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 97–108, 1999.

79

80 BIBLIOGRAPHY

[11] A. Brunstrom, S. T. Leutenegger, and R. Simha. Experimental Evaluation of Dynamic
Data Allocation Strategies in A Distributed Database with Changing Workloads. In
Proc. 4th Int. Conf. on Information and Knowledge Management, pages 395–402,
1995.

[12] C.W. Cameron, S.H. Low, and D.X. Wei. High-Density Model for Server Allocation
and Placement. In ACM SIGMETRICS 2002, pages 152–159, 2002.

[13] T.S. Chen, C.Y. Chang, J.P. Sheu, and G.J. Yu. A Fault-Tolerant Model for Repli-
cation in Distributed File Systems. In Proc. of National Science Counc. R.O.C.,
volume 23, pages 402–410, 1999.

[14] Y. Chen, R.H. Katz, and J.D. Kubiatowicz. Dynamic Replica Placement for Scalable
Content Delivery. In 1st Int. Workshop on Peer-to-Peer Systems, pages 306–318, 2002.

[15] S.A. Cook, J.P., and I.S. Pressman. The Optimal Location of Replicas in a Network
Using a READ-ONE-WRITE-ALL Policy. Distributed Computing, 15(1):57–66, 2002.

[16] B. Cooper and H. Garcia-Molina. Peer-to-Peer Resource Trading in a Reliable Dis-
tributed System. In 1st Int. Workshop on Peer-to-Peer Systems, pages 319–327, 2002.

[17] A.L. Corcoran and J. Hale. A Genetic Algorithm for Fragment Allocation in a Dis-
tributed Database System. In Proc. 1994 Symp. on Applied Computing, pages 247–250,
1994.

[18] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and
Design. Addison Wesley, 3rd edition, 2000.

[19] K. Eswaran. Placement of Records of a File and File Allocation in Computer Networks.
In Proc. of 1974 Int. Federation for Information Processing, pages 304–307, 1974.

[20] P. Felber and A. Schiper. Optimistic Active Replication. In Proc. 21st Int. Conf. on
Distributed Computing Systems, pages 333–341, 2001.

[21] D.E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.
Addison Wesley, 1st edition, 1989.

[22] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of Replication and a
Solution. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 173–
182, 1996.

BIBLIOGRAPHY 81

[23] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What Can Databases Do
for Peer-to-Peer? In Proc. 4th Int. Workshop on the World Wide Web and Databases
(WebDB), pages 31–36, 2001.

[24] J.S. Gwertzman and M. Seltzer. The Case For Geographical Push-Caching. In Proc.
of the Workshop on Hot Topics in Operating Systems, pages 51–57, 1995.

[25] J. Hall, J. D. Hartline, A. R. Karlin, J. Saia, and J. Wilkes. On Algorithms for Efficient
Data Migration. In Proc. of the 12th ACM-SIAM Symp. on Discrete Algorithms, pages
620–629, 2001.

[26] Y.F. Huang and J.H. Chen. Fragment Allocation in Distributed Database Design.
Journal of Information Science and Engineering, 17(3):491–506, 2001.

[27] J. Sidell and P.M. Aoki and A. Sah and C. Staelin and M. Stonebraker and A. Yu.
Data Replication in Mariposa. In Proc. 12th Int. Conf. on Data Engineering, pages
485–494, 1996.

[28] J.M. Johansson, S.T. March, and J.D. Naumann. The Effects of Parallel Processing
on Update Response Time in Distributed Database Design. In Proc. of the 21st Int.
Conf. on Information systems, pages 187–196, 2000.

[29] J. Kangasharju, J. Roberts, and K. Ross. Object Replication Strategies in Content
Distribution Networks. In Computer Communications, volume 25, pages 367–383,
2002.

[30] K. Kant, R. Iyer, and V. Tewari. A Framework for Classifying Peer-to-Peer Tech-
nologies. In 2nd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, pages
368–375, 2002.

[31] M. Karlsson and M. Mahalingam. Do We Need Replica Placement Algorithms in
Content Delivery Networks? In 7th Int. Workshop on Web Content Caching and
Distribution, pages 117–128, 2002.

[32] B. Kemme and A. Bartoli. Recovering from Total Failures in Replicated Databases.
Technical report, Trieste University, 2003.

[33] M. Khair, I. Mavridis, and G. Pangalos. Design of Secure Distributed Medical
Database Systems. In Database and Expert Systems Applications, 9th Int. Conf.,
pages 492–500, 1998.

82 BIBLIOGRAPHY

[34] M.R. Korupolu, C.G. Plaxton, and R. Rajaraman. Placement Algorithms for Hier-
archical Cooperative Caching. In Proc. of the 10th ACM-SIAM Symp. on Discrete
Algorithms, pages 586–595, 1999.

[35] D. Kossmann. The State of the Art in Distributed Query Processing. ACM Computing
Surveys, 32(4):422–469, 2000.

[36] B. Li, M. Golin, G. Italiano, and X. Deng. On the Optimal Placement of Web Proxies
in the Internet. In Proc. of IEEE Infocom, pages 1282–1290, 1999.

[37] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the Evolution of Peer-
to-Peer Systems. In Proc. 21st Int. Conf. on Distributed Computing Systems, pages
233–242, 2002.

[38] W.S. Ng, B.C. Ooi, K.L. Tan, and A. Zhou. PeerDB: A P2P-based System for Dis-
tributed Data Sharing. In Proc. 19th Int. Conf. on Data Engineering, 2003.

[39] M. Noronha. An Introduction to Data Fragmentation in Informix Dynamic Server.
IBM Library, 2002.

[40] C. Olston and J. Widom. Offering a Precision-Performance Tradeoff for Aggregation
Queries over Replicated Data. In Proc. 26th Int. Conf. on Very Large Data Bases,
pages 144–155, 2000.

[41] M.T. Özsu and P. Valduriez. Principle of Distributed Database Systems. Prentice-Hall,
2nd edition, 1999.

[42] L. Qiu, V.N. Padmanabhan, and G.M. Voelker. On the Placement of Web Server
Replicas. In Proc. of IEEE Infocom, pages 1587–1596, 2001.

[43] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal. A Dynamic Object
Replication and Migration Protocol for an Internet Hosting Service. In Proc. 19th Int.
Conf. on Distributed Computing Systems, pages 101–113, 1999.

[44] K. Ranganathan, A. Iamnitchi, and I. Foster. Improving Data Availability through
Dynamic Model-Driven Replication in Large Peer-to-Peer Communities. In Global
and Peer-to-Peer Computing on Large Scale Distributed Systems Workshop, pages
376–381, 2002.

[45] A.S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
Prentice-Hall, 1st edition, 2002.

BIBLIOGRAPHY 83

[46] A. Thomasian. Performance Analysis of Database Systems, pages 305–327. Lecture
Notes in Computer Science. Springer Verlag, 2000.

[47] A. Venkataramani, M. Dahlin, and P. Weidmann. Bandwidth Constrained Placement
in a WAN. In Proc. ACM SIGACT-SIGOPS 20th Symp. on the Principles of Dist.
Comp., pages 134–143, 2001.

[48] S. Voulgaris, M. van Steen, A. Baggio, and G. Ballintijn. Transparent Data Relo-
cation in Highly Available Distributed Systems. In 6th Int. Conf. On Principles Of
Distributed Systems, 2002.

[49] O. Wolfson and S. Jajodia. An Algorithm for Dynamic Data Distribution. In IEEE
Workshop on Management of Replicated Data, pages 62–65, 1992.

[50] O. Wolfson, S. Jajodia, and Y. Huang. An Adaptive Data Replication Algorithm.
ACM Transactions on Database Systems, 22(2):255–314, 1997.

[51] H. Yu and A. Vahdat. Efficient Numerical Error Bounding for Replicated Network
Services. In The VLDB Journal, pages 123–133, 2000.

