
Streaming Graph Processing & Analytics

M. Tamer Özsu

University of Waterloo
David R. Cheriton School of Computer Science

https://cs.uwaterloo.ca/~tozsu

DEBS 2020 1

https://cs.uwaterloo.ca/~tozsu

Graphs have become ubiquitous

CAGR > 20%

DEBS 2020 2

Graphs have become ubiquitous

CAGR > 20%

DEBS 2020 3

Graphs have become ubiquitous

CAGR > 20%

DEBS 2020 4

Graphs have become ubiquitous

CAGR > 20%

DEBS 2020 5

Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Complex COVID-19 pathways

Contact tracing

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)

DEBS 2020 6

https://bit.ly/2UuScbM
https://covidgraph.org

Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Self assessment by checking connections
{Place, flight, train, license plate} →
{known cases}
{Source loc, Target loc} → {“edges” that
connect them, flights, trains, vehicle license
plates}

Complex COVID-19 pathways

Contact tracing

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)

DEBS 2020 7

https://bit.ly/2UuScbM
https://covidgraph.org

Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Complex COVID-19 pathways

Looking at propagation in social networks
[Kempe et al., 2003]

Linear threshold model
Independent cascade model

Contact tracing

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)

DEBS 2020 8

https://bit.ly/2UuScbM
https://covidgraph.org

Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Complex COVID-19 pathways

Contact tracing

Figuring out exactly how 5 people became
infected in Tianjin
Vertices: people and places they traveled
Edges: people-people contact or travel
Paths: how infections link to known cases

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)

DEBS 2020 9

https://bit.ly/2UuScbM
https://covidgraph.org

Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Complex COVID-19 pathways

Contact tracing

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)
DEBS 2020 10

https://bit.ly/2UuScbM
https://covidgraph.org

Modern graphs are different and diverse

Internet Social networks
Trade volumes &

connections

Biological networks
As of September 2011

Music
Brainz

(zitgist)

P20

Turismo
de

Zaragoza

yovisto

Yahoo!
Geo

Planet

YAGO

World
Fact-
book

El
Viajero
Tourism

WordNet
(W3C)

WordNet
(VUA)

VIVO UF

VIVO
Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UniRef

UniProt

UMBEL

UK Post-
codes

legislation
data.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov.

uk

Traffic
Scotland

theses.
fr

Thesau-
rus W

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

Open
Library
(Talis)

tags2con
delicious

t4gm
info

Swedish
Open

Cultural
Heritage

Surge
Radio

Sudoc

STW

RAMEAU
SH

statistics
data.gov.

uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

SSW
Thesaur

us

Smart
Link

Slideshare
2RDF

semantic
web.org

Semantic
Tweet

Semantic
XBRL

SW
Dog
Food

Source Code
Ecosystem
Linked Data

US SEC
(rdfabout)

Sears

Scotland
Geo-

graphy

Scotland
Pupils &
Exams

Scholaro-
meter

WordNet
(RKB

Explorer)

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS
KISTI

JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints dotAC

DEPLOY

DBLP
(RKB

Explorer)

Crime
Reports

UK

Course-
ware

CORDIS
(RKB

Explorer)
CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov.

ukRen.
Energy
Genera-

tors

reference
data.gov.

uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

Rådata
nå!

PSH

Product
Types

Ontology

Product
DB

PBAC

Poké-
pédia

patents
data.go

v.uk

Ox
Points

Ord-
nance
Survey

Openly
Local

Open
Library

Open
Cyc

Open
Corpo-
rates

Open
Calais

OpenEI

Open
Election

Data
Project

Open
Data

Thesau-
rus

Ontos
News
Portal

OGOLOD

Janus
AMP

Ocean
Drilling
Codices

New
York

Times

NVD

ntnusc

NTU
Resource

Lists

Norwe-
gian

MeSH

NDL
subjects

ndlna

my
Experi-
ment

Italian
Museums

medu-
cator

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

Weather
Stations

London
Gazette

LOIUS

Linked
Open
Colors

lobid
Resources

lobid
Organi-
sations

LEM

Linked
MDB

LinkedL
CCN

Linked
GeoData

LinkedCT

Linked
User

Feedback
LOV

Linked
Open

Numbers

LODE

Eurostat
(Ontology
Central)

Linked
EDGAR

(Ontology
Central)

Linked
Crunch-

base

lingvoj

Lichfield
Spen-
ding

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Klapp-
stuhl-
club

Good-
win

Family

National
Radio-
activity

JP

Jamendo
(DBtune)

Italian
public

schools

ISTAT
Immi-
gration

iServe

IdRef
Sudoc

NSZL
Catalog

Hellenic
PD

Hellenic
FBD

Piedmont
Accomo-
dations

GovTrack

GovWILD

Google
Art

wrapper

gnoss

GESIS

GeoWord
Net

Geo
Species

Geo
Names

Geo
Linked
Data

GEMET

GTAA

STITCH

SIDER

Project
Guten-
berg

Medi
Care

Euro-
stat

(FUB)

EURES

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

CORDIS
(FUB)

Freebase

flickr
wrappr

Fishes
of Texas

Finnish
Munici-
palities

ChEMBL

FanHubz

Event
Media

EUTC
Produc-

tions

Eurostat

Europeana

EUNIS

EU
Insti-

tutions

ESD
stan-
dards

EARTh

Enipedia

Popula-
tion (En-
AKTing)

NHS
(En-

AKTing) Mortality
(En-

AKTing)

Energy
(En-

AKTing)

Crime
(En-

AKTing)

CO2
Emission

(En-
AKTing)

EEA

SISVU

educatio
n.data.g

ov.uk

ECS
South-
ampton

ECCO-
TCP

GND

Didactal
ia

DDC Deutsche
Bio-

graphie

data
dcs

Music
Brainz

(DBTune)

Magna-
tune

John
Peel

(DBTune)

Classical
(DB

Tune)

Audio
Scrobbler
(DBTune)

Last.FM
artists

(DBTune)

DB
Tropes

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

SMC
Journals

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Metoffice
Weather
Forecasts

Discogs
(Data

Incubator)

Climbing

data.gov.uk
intervals

Data
Gov.ie

data
bnf.fr

Cornetto

reegle

Chronic-
ling

America

Chem2
Bio2RDF

Calames

business
data.gov.

uk

Bricklink

Brazilian
Poli-

ticians

BNB

UniSTS

UniPath
way

UniParc

Taxono
my

UniProt
(Bio2RDF)

SGD

Reactome

PubMed
Pub

Chem

PRO-
SITE

ProDom

Pfam

PDB

OMIM
MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Com-
pound

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Affy-
metrix

bible
ontology

BibBase

FTS

BBC
Wildlife
Finder

BBC
Program

mes BBC
Music

Alpine
Ski

Austria

LOCAH

Amster-
dam

Museum

AGROV
OC

AEMET

US Census
(rdfabout)

Media

Geographic

Publications

Government

Cross-domain

Life sciences

User-generated content

Linked data
Road network

DEBS 2020 11

Graph Usage Study [Sahu et al., 2017, 2020]

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Özsu
David R. Cheriton School of Computer Science

University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu,jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT
Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence, there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have; (ii) the graph computations users run; (iii) the types
of graph software users use; and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often very large,
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.

PVLDB Reference Format:
Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M.
Tamer Özsu. The Ubiquity of Large Graphs and Surprising Challenges of
Graph Processing. PVLDB, 11(4): xxxx-yyyy, 2017.
DOI: https://doi.org/10.1145/3164135.3164139

1. INTRODUCTION
Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [3,8,14,35,48,53], RDF engines [38,64,67], linear algebra
software [6,46], visualization software [13,16], query languages [28,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 4
Copyright 2017 VLDB Endowment 2150-8097/17/12... $ 10.00.
DOI: https://doi.org/10.1145/3164135.3164139

52, 55], and distributed graph processing systems [17, 21, 27]. In
the academic literature, a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?
(iv) What are the major challenges users face when processing their

graph data?

Our major findings are as follows:
• Variety: Graphs in practice represent a very wide variety of enti-

ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly, traditional enterprise data comprised
of products, orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

• Ubiquity of Very Large Graphs: Many graphs in practice are
very large, often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

• Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

• Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

• Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as the preva-
lence of machine learning on graph data, e.g., for clustering vertices,
predicting links, and finding influential vertices.

We further reviewed user feedback in the mailing lists, bug re-
ports, and feature requests in the source code repositories of 22
software products between January and September of 2017 with
two goals: (i) to answer several new questions that the participants’
responses raised; and (ii) to identify more specific challenges in
different classes of graph technologies than the ones we could iden-

The VLDB Journal
https://doi.org/10.1007/s00778-019-00548-x

SPEC IAL ISSUE PAPER

The ubiquity of large graphs and surprising challenges of graph
processing: extended survey

Siddhartha Sahu1 · Amine Mhedhbi1 · Semih Salihoglu1 · Jimmy Lin1 ·M. Tamer Özsu1

Received: 21 January 2019 / Revised: 9 May 2019 / Accepted: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Graph processing is becoming increasingly prevalent acrossmany application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (ii) the graph computations users run; (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey · Graph processing · Graph databases · RDF systems

1 Introduction

Graph data representing connected entities and their relation-
ships appear in many application domains, most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology, and finance, just to name
a few examples. There has been a noticeable increase in the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00778-019-00548-x) contains
supplementary material, which is available to authorized users.

B Siddhartha Sahu
s3sahu@uwaterloo.ca

Amine Mhedhbi
amine.mhedhbi@uwaterloo.ca

Semih Salihoglu
semih.salihoglu@uwaterloo.ca

Jimmy Lin
jimmylin@uwaterloo.ca

M. Tamer Özsu
tamer.ozsu@uwaterloo.ca

1 University of Waterloo, Waterloo, Canada

prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
bra software [17,63], visualization software [25,29], query
languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. InApril 2017,weconducted anonline survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?

123

Objectives
1 What kind of graph data, computations, software, and major challenges real users

have in practice?
2 What types of graph data, computations, software, and major challenges researchers

target in publications?

Major Findings
1 Graphs are everywhere!
2 Graphs are very large!
3 ML on graphs is very popular (> 85% of respondents have ML workloads)!
4 Scalability is the most pressing challenge (followed by visualization & query

languages)!
5 Relational DBMSs still play an important role!

DEBS 2020 12

Graph Usage Study [Sahu et al., 2017, 2020]

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Özsu
David R. Cheriton School of Computer Science

University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu,jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT
Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence, there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have; (ii) the graph computations users run; (iii) the types
of graph software users use; and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often very large,
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.

PVLDB Reference Format:
Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M.
Tamer Özsu. The Ubiquity of Large Graphs and Surprising Challenges of
Graph Processing. PVLDB, 11(4): xxxx-yyyy, 2017.
DOI: https://doi.org/10.1145/3164135.3164139

1. INTRODUCTION
Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [3,8,14,35,48,53], RDF engines [38,64,67], linear algebra
software [6,46], visualization software [13,16], query languages [28,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 4
Copyright 2017 VLDB Endowment 2150-8097/17/12... $ 10.00.
DOI: https://doi.org/10.1145/3164135.3164139

52, 55], and distributed graph processing systems [17, 21, 27]. In
the academic literature, a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?
(iv) What are the major challenges users face when processing their

graph data?

Our major findings are as follows:
• Variety: Graphs in practice represent a very wide variety of enti-

ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly, traditional enterprise data comprised
of products, orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

• Ubiquity of Very Large Graphs: Many graphs in practice are
very large, often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

• Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

• Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

• Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as the preva-
lence of machine learning on graph data, e.g., for clustering vertices,
predicting links, and finding influential vertices.

We further reviewed user feedback in the mailing lists, bug re-
ports, and feature requests in the source code repositories of 22
software products between January and September of 2017 with
two goals: (i) to answer several new questions that the participants’
responses raised; and (ii) to identify more specific challenges in
different classes of graph technologies than the ones we could iden-

The VLDB Journal
https://doi.org/10.1007/s00778-019-00548-x

SPEC IAL ISSUE PAPER

The ubiquity of large graphs and surprising challenges of graph
processing: extended survey

Siddhartha Sahu1 · Amine Mhedhbi1 · Semih Salihoglu1 · Jimmy Lin1 ·M. Tamer Özsu1

Received: 21 January 2019 / Revised: 9 May 2019 / Accepted: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Graph processing is becoming increasingly prevalent acrossmany application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (ii) the graph computations users run; (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey · Graph processing · Graph databases · RDF systems

1 Introduction

Graph data representing connected entities and their relation-
ships appear in many application domains, most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology, and finance, just to name
a few examples. There has been a noticeable increase in the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00778-019-00548-x) contains
supplementary material, which is available to authorized users.

B Siddhartha Sahu
s3sahu@uwaterloo.ca

Amine Mhedhbi
amine.mhedhbi@uwaterloo.ca

Semih Salihoglu
semih.salihoglu@uwaterloo.ca

Jimmy Lin
jimmylin@uwaterloo.ca

M. Tamer Özsu
tamer.ozsu@uwaterloo.ca

1 University of Waterloo, Waterloo, Canada

prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
bra software [17,63], visualization software [25,29], query
languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. InApril 2017,weconducted anonline survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?

123

Objectives
1 What kind of graph data, computations, software, and major challenges real users

have in practice?
2 What types of graph data, computations, software, and major challenges researchers

target in publications?

Major Findings
1 Graphs are everywhere!
2 Graphs are very large!
3 ML on graphs is very popular (> 85% of respondents have ML workloads)!
4 Scalability is the most pressing challenge (followed by visualization & query

languages)!
5 Relational DBMSs still play an important role!

DEBS 2020 13

Graph Usage Study [Sahu et al., 2017, 2020]

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Özsu
David R. Cheriton School of Computer Science

University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu,jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT
Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence, there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have; (ii) the graph computations users run; (iii) the types
of graph software users use; and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often very large,
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.

PVLDB Reference Format:
Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M.
Tamer Özsu. The Ubiquity of Large Graphs and Surprising Challenges of
Graph Processing. PVLDB, 11(4): xxxx-yyyy, 2017.
DOI: https://doi.org/10.1145/3164135.3164139

1. INTRODUCTION
Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [3,8,14,35,48,53], RDF engines [38,64,67], linear algebra
software [6,46], visualization software [13,16], query languages [28,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 4
Copyright 2017 VLDB Endowment 2150-8097/17/12... $ 10.00.
DOI: https://doi.org/10.1145/3164135.3164139

52, 55], and distributed graph processing systems [17, 21, 27]. In
the academic literature, a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?
(iv) What are the major challenges users face when processing their

graph data?

Our major findings are as follows:
• Variety: Graphs in practice represent a very wide variety of enti-

ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly, traditional enterprise data comprised
of products, orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

• Ubiquity of Very Large Graphs: Many graphs in practice are
very large, often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

• Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

• Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

• Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as the preva-
lence of machine learning on graph data, e.g., for clustering vertices,
predicting links, and finding influential vertices.

We further reviewed user feedback in the mailing lists, bug re-
ports, and feature requests in the source code repositories of 22
software products between January and September of 2017 with
two goals: (i) to answer several new questions that the participants’
responses raised; and (ii) to identify more specific challenges in
different classes of graph technologies than the ones we could iden-

The VLDB Journal
https://doi.org/10.1007/s00778-019-00548-x

SPEC IAL ISSUE PAPER

The ubiquity of large graphs and surprising challenges of graph
processing: extended survey

Siddhartha Sahu1 · Amine Mhedhbi1 · Semih Salihoglu1 · Jimmy Lin1 ·M. Tamer Özsu1

Received: 21 January 2019 / Revised: 9 May 2019 / Accepted: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Graph processing is becoming increasingly prevalent acrossmany application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (ii) the graph computations users run; (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey · Graph processing · Graph databases · RDF systems

1 Introduction

Graph data representing connected entities and their relation-
ships appear in many application domains, most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology, and finance, just to name
a few examples. There has been a noticeable increase in the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00778-019-00548-x) contains
supplementary material, which is available to authorized users.

B Siddhartha Sahu
s3sahu@uwaterloo.ca

Amine Mhedhbi
amine.mhedhbi@uwaterloo.ca

Semih Salihoglu
semih.salihoglu@uwaterloo.ca

Jimmy Lin
jimmylin@uwaterloo.ca

M. Tamer Özsu
tamer.ozsu@uwaterloo.ca

1 University of Waterloo, Waterloo, Canada

prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
bra software [17,63], visualization software [25,29], query
languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. InApril 2017,weconducted anonline survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?

123

Objectives
1 What kind of graph data, computations, software, and major challenges real users

have in practice?
2 What types of graph data, computations, software, and major challenges researchers

target in publications?

Major Findings
1 Graphs are everywhere!
2 Graphs are very large!
3 ML on graphs is very popular (> 85% of respondents have ML workloads)!
4 Scalability is the most pressing challenge (followed by visualization & query

languages)!
5 Relational DBMSs still play an important role!

DEBS 2020 14

One particular type – streaming graphs

Streaming aspects
I Unbounded data ⇒ non-blocking algorithms & operators (one-pass)
I Usually at high speed ⇒ real-time constraints

Graph aspects
I (Typically) edges streaming
I Graph “emerges”

Use case

Alibaba

I 500M active users, 2B catalog items
I 320K transactions/second (at peak)
I Need to process PB data in real-time in hours

DEBS 2020 15

One particular type – streaming graphs

Streaming aspects
I Unbounded data ⇒ non-blocking algorithms & operators (one-pass)
I Usually at high speed ⇒ real-time constraints

Graph aspects
I (Typically) edges streaming
I Graph “emerges”

Use case

Alibaba

I 500M active users, 2B catalog items
I 320K transactions/second (at peak)
I Need to process PB data in real-time in hours

DEBS 2020 16

One particular type – streaming graphs

Streaming aspects
I Unbounded data ⇒ non-blocking algorithms & operators (one-pass)
I Usually at high speed ⇒ real-time constraints

Graph aspects
I (Typically) edges streaming
I Graph “emerges”

Use case

Alibaba

I 500M active users, 2B catalog items
I 320K transactions/second (at peak)
I Need to process PB data in real-time in hours

DEBS 2020 17

Streaming Data Processing

Streaming Graph Processing

S-graffito Project

Concluding Remarks

DEBS 2020 18

Streaming Data Processing

DEBS 2020 19

Stream Systems

Inputs

One or more sources generate data continuously, in real time, and in fixed order
(by timestamp)
I Sensor networks – weather monitoring, road traffic monitoring
I Web data – financial trading, news/sports tickers
I Scientific data – experiments in particle physics
I Transaction logs – point-of-sale purchases
I Network traffic analysis – IP packet headers

Outputs

Want to collect and process data in real-time; up-to-date answers generated
continuously or periodically
I Environment monitoring
I Location monitoring
I Correlations across stock prices
I Denial-of-service attack detection

DEBS 2020 20

Stream Systems

Inputs

One or more sources generate data continuously, in real time, and in fixed order
(by timestamp)
I Sensor networks – weather monitoring, road traffic monitoring
I Web data – financial trading, news/sports tickers
I Scientific data – experiments in particle physics
I Transaction logs – point-of-sale purchases
I Network traffic analysis – IP packet headers

Outputs

Want to collect and process data in real-time; up-to-date answers generated
continuously or periodically
I Environment monitoring
I Location monitoring
I Correlations across stock prices
I Denial-of-service attack detection

DEBS 2020 21

DBMS versus DSS

Traditional DBMS:

Transient query

Persistent data

One-time result

Data Stream System (DSS):

Transient data

Persistent queries

Continuous results

Other differences of DSS
I Push-based (data-driven)

I Persistent queries

I Unbounded stream; query execution as data arrives at the system – one look

I System conditions may not be stable – arrival rates fluctuate, workload may
change

DEBS 2020 22

DBMS versus DSS

Traditional DBMS:

Transient query

Persistent data

One-time result

Data Stream System (DSS):

Transient data

Persistent queries

Continuous results

Other differences of DSS
I Push-based (data-driven)

I Persistent queries

I Unbounded stream; query execution as data arrives at the system – one look

I System conditions may not be stable – arrival rates fluctuate, workload may
change

DEBS 2020 23

DBMS versus DSS

Traditional DBMS:

Transient query

Persistent data

One-time result

Data Stream System (DSS):

Transient data

Persistent queries

Continuous results

Other differences of DSS
I Push-based (data-driven)

I Persistent queries

I Unbounded stream; query execution as data arrives at the system – one look

I System conditions may not be stable – arrival rates fluctuate, workload may
change

DEBS 2020 24

Old vs New

Older systems: Data Stream Management Systems (DSMS) [Golab and Özsu, 2010]

Provide the functionalities of a typical DBMS
Examples: STREAM, Gigascope, TelegraphCQ, Aurora, Borealis
Mostly single machine systems
From early 2000s to late 2000s

Newer systems: Data Stream Processing Systems (DSPS)

May not have full DBMS functionality
Examples: Apache Storm, Heron, Spark Streaming, Flink, MillWheel,
TimeStream
Almost all are scale-out
From mid-2010s

DEBS 2020 25

DSMS System Architecture

Working
Storage

Summary
Storage

Static
Storage

Updates to
Static Data

Query
Repository

User
Queries

Query
Processor

Input
Monitor

Output
Buffer

DEBS 2020 26

Stream Data Model

Append-only sequence of timestamped items that arrive in some order.

〈timestamp, payload〉

What is the payload?

Relational tuple

Revision tuple

Graph edge

Sequence of events (as in publish/subscribe systems)

Sequence of sets (or bags) of elements with each set storing elements that
have arrived during the same unit of time

DEBS 2020 27

Streaming Graph Processing

DEBS 2020 28

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

DEBS 2020 29

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B

A

B

t1

DEBS 2020 30

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B

A

B

t1

DEBS 2020 31

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B

A

B

t1

DEBS 2020 32

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B C

B

A

B

t1

A

B

C

t4

DEBS 2020 33

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B C

B

D

A

C

A

B

t1

A

B

C

t4

A

B

C

D

t5

DEBS 2020 34

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B C

B

D

A

C

F

C

D

A

B

t1

A

B

C

t4

A

B

C

D

t5

A

B

C

D

F

t7

DEBS 2020 35

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B C

B

D

A

C

F

C

D

E

D

A

F

B

A

B

t1

A

B

C

t4

A

B

C

D

t5

A

B

C

D

F

t7

A

B

C

D

F

E

t9

DEBS 2020 36

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B C

B

D

A

C

F

C

D

E

D

A

F

B

E

F

X

A

B

t1

A

B

C

t4

A

B

C

D

t5

A

B

C

D

F

t7

A

B

C

D

F

E

t9

A

B

C

D

F

E

t12

DEBS 2020 37

Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B C

B

D

A

C

F

C

D

E

D

A

F

B

E

F

· · ·

X

A

B

t1

A

B

C

t4

A

B

C

D

t5

A

B

C

D

F

t7

A

B

C

D

F

E

t9

A

B

C

D

F

E

t12

DEBS 2020 38

Combines two difficult problems:
streaming+graphs

Unbounded ⇒ don’t see entire graph

Streaming rates can be very high

Streaming Graph Computation Models

Continuous

Process each edge as it comes ⇒ for simple transactional operations
Requires linear space ⇒ unrealistic

Many graph problems are not solvable [McGregor, 2014]

Semi-streaming model ⇒ sublinear space [Feigenbaum et al., 2005]

Sufficient to store vertices but not edges (typically |V | � |E |) ⇒ dynamic
graph model
Approximation for many graph algorithms exist

DEBS 2020 39

Streaming Graph Computation Models

Continuous

Process each edge as it comes ⇒ for simple transactional operations
Requires linear space ⇒ unrealistic

Many graph problems are not solvable [McGregor, 2014]

Semi-streaming model ⇒ sublinear space [Feigenbaum et al., 2005]

Sufficient to store vertices but not edges (typically |V | � |E |) ⇒ dynamic
graph model
Approximation for many graph algorithms exist

Windowed

Use windows to batch edges
For more complex queries

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B C

B

D

A

C

F

C

D

E

D

A

F

B

E

F

· · ·

X

DEBS 2020 40

Continuous Computation

Query: Vertices reachable from vertex A

A

B

t1

A

B

C

t4

A

B

C

D

t5

A

B

C

D

F

t7

A

B

C

D

F

E

t9

A

B

C

D

F

E

t12

Time Incoming edge Results

t1 〈A,B〉 {B}
t2

t3

t4 〈B,C〉 {B,C}
t5 〈A,D〉, 〈D,C〉 {B,C,D}
t6

t7 〈C,F〉, 〈D,F〉 {B,C,D,F}
t8

t9 〈D,E〉, 〈A,E〉, 〈B,E〉, 〈E,F〉 {B,C,D,F,E}
t10

DEBS 2020 41

Windowed Computation

Query: Vertices reachable from vertex A

A

B

t1

A

B

C

t4

A

B

C

D

t5

A

B

C

D

F

t7

A

B

C

D

F

E

t9

A

B

C

D

F

E

t12

(Window size=5)
Time Incoming edge Expired edges Results

t1 〈A,B〉 {B}
t2

t3

t4 〈B,C〉 {B,C}
t5 〈A,D〉, 〈D,C〉 {B,C,D}
t6 〈A,B〉 {B,C,D}
t7 〈C,F〉, 〈D,F〉 {C,D,F}
t8

t9 〈D,E〉, 〈A,E〉, 〈B,E〉, 〈E,F〉 〈B,C〉 {C,D,F,E}
t10 〈A,D〉, 〈D,C〉 {C,D,F,E}

DEBS 2020 42

Querying Graph Streams

Graph query functionalities

Subgraph matching queries & reachability (path) queries
Doing these in the streaming context
This is querying beyond simple transactional operations on an incoming edge

Edge represents a user purchasing an item → do some operation
Edge represents events in news → send an alert

Subgraph pattern matching under stream of updates

Windowed join processing
Graphflow [Kankanamge et al., 2017], TurboFlux [Kim et al., 2018]

These are not designed to deal with unboundedness of the data graph

Path queries under stream of updates

DEBS 2020 43

Analytics on Graph Streams

Many use cases

Recommender systems
Fraud detection [Qiu et al., 2018]

...

Existing relevant work
Snapshot-based systems

Aspen [Dhulipala et al., 2019], STINGER [Ediger et al., 2012]

Consistent graph views across updates

Snapshot + Incremental Computations

Kineograph [Cheng et al., 2012], GraPu [Sheng et al., 2018], GraphIn [Sengupta et al., 2016],
GraphBolt [Mariappan and Vora, 2019]

Identify and re-process subgraphs that are effected by updates

Designed to handle high velocity updates
Cannot handle unbounded streams

Similar to dynamic graph processing solutions

DEBS 2020 44

S-graffito Project

DEBS 2020 45

S-Graffito project

Processing of transactional (OLTP) and and analytical (OLAP) queries on high
streaming rate, very large graphs.

Working
Storage

Summary
Storage

Static
Storage

Updates to
Static Data

Query
Repository

Analytics
Primitives

User
Queries

Query
Processor

Analytics
Engine

Input
Monitor

Output
Buffer

DEBS 2020 46

S-Graffito project

Processing of transactional (OLTP) and and analytical (OLAP) queries on high
streaming rate, very large graphs.

Working
Storage

Summary
Storage

Static
Storage

Updates to
Static Data

Query
Repository

Analytics
Primitives

User
Queries

Query
Processor

Analytics
Engine

Input
Monitor

Output
Buffer

DEBS 2020 47

Working on Property Graphs

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Property Graph

A property graph is an attributed graph G = (V ,E ,Σ, ψ, φ,K,P) where V is a set of
vertices, E is a set of edges, ψ : E → V × V is a function that maps each edge to an
ordered pair of vertices, Σ is a set of labels and φ is a labelling function,
φ : (V ∪ E)→ Σ, K is a set of property keys, P is a set of values, and
ν : (V ∪ E)×K → P is a partial function assigning values for properties to objects.

DEBS 2020 48

Arrivals are Streaming Graph Tuples

Time
τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13

A

B C

B

D

A

C

F

C

D

E

D

A

F

B

E

F

· · ·

X

sgt = (τ, p)

Streaming Graph Tuple

A streaming graph tuple (sgt) is a streaming tuple where is a pair (τ, p) where τ is the
event (application) timestamp of the tuple assigned by the data source, p defines the
payload of the tuple that indicates an edge e ∈ E or a vertex v ∈ V of the property
graph G , and an operation op ∈ {insert, delete, update} that defines the type of the
tuple.

DEBS 2020 49

Time-based Window & Snapshot

τ p
τ1 〈(A,B), insert〉
τ4 〈(B,C), insert〉
τ5 〈(A,D), insert〉
τ5 〈(D,C), insert〉
τ7 〈(C,F), insert〉
τ7 〈(D,F), insert〉
τ9 〈(B,E), insert〉
τ9 〈(E,E), insert〉
τ9 〈(E,F), insert〉
τ12 〈(E,F), delete〉

W (τ5 − τ10]

A

B

C

D

F

E

Time-based Window

A time-based window W over a streaming graph S is a time interval (W b,W e] where
W b and W e are the beginning and end times of window W and We −Wb = |W |. The
window contents W (c) is the multiset of sgts where the timestamp τi of each record ti
is in the window interval, i.e., W (c) = {ti |Wb < τi ≤We}. When it is clear from
context, W is used interchangeably to refer to window interval or its contents.

DEBS 2020 50

Time-based Window & Snapshot

τ p
τ1 〈(A,B), insert〉
τ4 〈(B,C), insert〉
τ5 〈(A,D), insert〉
τ5 〈(D,C), insert〉
τ7 〈(C,F), insert〉
τ7 〈(D,F), insert〉
τ9 〈(B,E), insert〉
τ9 〈(E,E), insert〉
τ9 〈(E,F), insert〉
τ12 〈(E,F), delete〉

W (τ5 − τ10]
A

B

C

D

F

E

Time-based Window

A time-based window W over a streaming graph S is a time interval (W b,W e] where
W b and W e are the beginning and end times of window W and We −Wb = |W |. The
window contents W (c) is the multiset of sgts where the timestamp τi of each record ti
is in the window interval, i.e., W (c) = {ti |Wb < τi ≤We}. When it is clear from
context, W is used interchangeably to refer to window interval or its contents.

Streaming Graph Snapshot
A streaming graph snapshot GW ,τ is the graph formed by the tuples in the time-based
window W at time τ .

DEBS 2020 51

S-graffito Project
Streaming Graph Querying

Anil Pacaci

DEBS 2020 52

Streaming Graph Querying Objectives

Persistent query processing over streaming graphs

1 Path navigation queries

Non-blocking operators for path queries
Regular path queries (RPQ)

Regular expressions that are matched against directed, labelled paths

2 A query subsystem for persistent graph queries over streaming graphs

Combining graph patterns & path navigation
Treating paths as first-class citizens

3 Querying streaming graphs with data

Attribute-based predicates for property graphs

DEBS 2020 53

Persistent RPQ Evaluation [Pacaci et al., 2020]

Design space for persistent RPQ algorithms

Simple
Append-only

Simple
Explicit delete

Arbitrary
Append-only

Arbitrary
Explicit delete

Result semantics

P
at

h
se

m
an

ti
cs

Path semantics used in practice

Simple paths (no repeating vertex): navigation on road networks
Arbitrary paths: reachability on communication networks

Result semantics & stream types
Append-only streams with fast insertions
Support for explicit deletionsQ1 = (follows ·mentions)+ P1 P2

(follows ·mentions)+

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Simple paths

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Arbitrary paths

DEBS 2020 54

Persistent RPQ Evaluation [Pacaci et al., 2020]

Design space for persistent RPQ algorithms

Simple
Append-only

Simple
Explicit delete

Arbitrary
Append-only

Arbitrary
Explicit delete

Result semantics

P
at

h
se

m
an

ti
cs

Path semantics used in practice
Simple paths (no repeating vertex): navigation on road networks

Arbitrary paths: reachability on communication networks

Result semantics & stream types
Append-only streams with fast insertions
Support for explicit deletions

Q1 = (follows ·mentions)+ P1 P2

(follows ·mentions)+

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Simple paths

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Arbitrary paths

DEBS 2020 55

Persistent RPQ Evaluation [Pacaci et al., 2020]

Design space for persistent RPQ algorithms

Simple
Append-only

Simple
Explicit delete

Arbitrary
Append-only

Arbitrary
Explicit delete

Result semantics

P
at

h
se

m
an

ti
cs

Path semantics used in practice
Simple paths (no repeating vertex): navigation on road networks

Arbitrary paths: reachability on communication networks

Result semantics & stream types
Append-only streams with fast insertions
Support for explicit deletions

Q1 = (follows ·mentions)+ P1 P2

(follows ·mentions)+

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Simple paths

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Arbitrary paths

DEBS 2020 56

Persistent RPQ Evaluation [Pacaci et al., 2020]

Design space for persistent RPQ algorithms

Simple
Append-only

Simple
Explicit delete

Arbitrary
Append-only

Arbitrary
Explicit delete

Result semantics

P
at

h
se

m
an

ti
cs

Path semantics used in practice
Simple paths (no repeating vertex): navigation on road networks
Arbitrary paths: reachability on communication networks

Result semantics & stream types
Append-only streams with fast insertions
Support for explicit deletions

Q1 = (follows ·mentions)+ P1 P2

(follows ·mentions)+

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Simple paths

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Arbitrary paths
DEBS 2020 57

Persistent RPQ Evaluation [Pacaci et al., 2020]

Design space for persistent RPQ algorithms

Simple
Append-only

Simple
Explicit delete

Arbitrary
Append-only

Arbitrary
Explicit delete

Result semantics

P
at

h
se

m
an

ti
cs

Path semantics used in practice
Simple paths (no repeating vertex): navigation on road networks
Arbitrary paths: reachability on communication networks

Result semantics & stream types
Append-only streams with fast insertions
Support for explicit deletions

Q1 = (follows ·mentions)+ P1 P2

(follows ·mentions)+

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Simple paths

x y

z u v

w

fo
llo

ws

follows

m
en

tio
ns

mentions

mentions

follows

m
entions

m
entions

Arbitrary paths

DEBS 2020 58

Beyond Path Navigation

Combining subgraph matching & path navigation

u1

c1

u2 un

cn

un+1
follows(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

Recursion over edges Recursion over a graph pattern

Unions of Conjunctive RPQs
(UCRPQ)

SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL [van Rest et al.,

2016]

No algebraic closure

Regular Queries (RQ) [Reutter et al., 2017]

A subset of Datalog with algebraic
closure
Computationally well-behaved

The basis of G-CORE [Angles et al., 2018]

Our work
I An algebra for RQ on streaming graphs

I Concrete implementation of this algebra

DEBS 2020 59

Beyond Path Navigation

Combining subgraph matching & path navigation

u1

c1

u2 un

cn

un+1
follows(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

Recursion over edges Recursion over a graph pattern

Unions of Conjunctive RPQs
(UCRPQ)

SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL [van Rest et al.,

2016]

No algebraic closure

Regular Queries (RQ) [Reutter et al., 2017]

A subset of Datalog with algebraic
closure
Computationally well-behaved

The basis of G-CORE [Angles et al., 2018]

Our work
I An algebra for RQ on streaming graphs

I Concrete implementation of this algebra

DEBS 2020 60

Beyond Path Navigation

Combining subgraph matching & path navigation

u1

c1

u2 un

cn

un+1
follows(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

Recursion over edges Recursion over a graph pattern

Unions of Conjunctive RPQs
(UCRPQ)

SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL [van Rest et al.,

2016]

No algebraic closure

Regular Queries (RQ) [Reutter et al., 2017]

A subset of Datalog with algebraic
closure
Computationally well-behaved

The basis of G-CORE [Angles et al., 2018]

Our work
I An algebra for RQ on streaming graphs

I Concrete implementation of this algebra

DEBS 2020 61

Beyond Path Navigation

Combining subgraph matching & path navigation

u1

c1

u2 un

cn

un+1
follows(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

Recursion over edges Recursion over a graph pattern

Unions of Conjunctive RPQs
(UCRPQ)

SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL [van Rest et al.,

2016]

No algebraic closure

Regular Queries (RQ) [Reutter et al., 2017]

A subset of Datalog with algebraic
closure
Computationally well-behaved

The basis of G-CORE [Angles et al., 2018]

Our work
I An algebra for RQ on streaming graphs

I Concrete implementation of this algebra

DEBS 2020 62

Beyond Path Navigation

Combining subgraph matching & path navigation

u1

c1

u2 un

cn

un+1
follows(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

Recursion over edges Recursion over a graph pattern

Unions of Conjunctive RPQs
(UCRPQ)

SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL [van Rest et al.,

2016]

No algebraic closure

Regular Queries (RQ) [Reutter et al., 2017]

A subset of Datalog with algebraic
closure
Computationally well-behaved

The basis of G-CORE [Angles et al., 2018]

Our work
I An algebra for RQ on streaming graphs

I Concrete implementation of this algebra

DEBS 2020 63

Beyond Path Navigation

Combining subgraph matching & path navigation

u1

c1

u2 un

cn

un+1
follows(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

Recursion over edges Recursion over a graph pattern

Unions of Conjunctive RPQs
(UCRPQ)

SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL [van Rest et al.,

2016]

No algebraic closure

Regular Queries (RQ) [Reutter et al., 2017]

A subset of Datalog with algebraic
closure
Computationally well-behaved

The basis of G-CORE [Angles et al., 2018]

Our work
I An algebra for RQ on streaming graphs

I Concrete implementation of this algebra

DEBS 2020 64

Beyond Path Navigation

Combining subgraph matching & path navigation

u1

c1

u2 un

cn

un+1
follows(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

Recursion over edges Recursion over a graph pattern

Unions of Conjunctive RPQs
(UCRPQ)

SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL [van Rest et al.,

2016]

No algebraic closure

Regular Queries (RQ) [Reutter et al., 2017]

A subset of Datalog with algebraic
closure
Computationally well-behaved

The basis of G-CORE [Angles et al., 2018]

Our work
I An algebra for RQ on streaming graphs

I Concrete implementation of this algebra

DEBS 2020 65

Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

where Alice ∈ p = {u1, · · · , un+1}

Ability to store, return and compare paths

Enumerate all paths

High complexity, FPT for certain classes [Martens and Trautner, 2019]

Structural restrictions on path operations

Length predicates [Barceló et al., 2012]

Closed semi-ring aggregates [Cruz and Norvell, 1989]

Our work
I Data model and query language that treats paths as first-class citizens

I Streaming, sliding-window algorithms for common path operations

DEBS 2020 66

Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

where Alice ∈ p = {u1, · · · , un+1}

Ability to store, return and compare paths

Enumerate all paths

High complexity, FPT for certain classes [Martens and Trautner, 2019]

Structural restrictions on path operations

Length predicates [Barceló et al., 2012]

Closed semi-ring aggregates [Cruz and Norvell, 1989]

Our work
I Data model and query language that treats paths as first-class citizens

I Streaming, sliding-window algorithms for common path operations

DEBS 2020 67

Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

where Alice ∈ p = {u1, · · · , un+1}

Ability to store, return and compare paths

Enumerate all paths

High complexity, FPT for certain classes [Martens and Trautner, 2019]

Structural restrictions on path operations

Length predicates [Barceló et al., 2012]

Closed semi-ring aggregates [Cruz and Norvell, 1989]

Our work
I Data model and query language that treats paths as first-class citizens

I Streaming, sliding-window algorithms for common path operations

DEBS 2020 68

Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

where Alice ∈ p = {u1, · · · , un+1}

Ability to store, return and compare paths

Enumerate all paths

High complexity, FPT for certain classes [Martens and Trautner, 2019]

Structural restrictions on path operations

Length predicates [Barceló et al., 2012]

Closed semi-ring aggregates [Cruz and Norvell, 1989]

Our work
I Data model and query language that treats paths as first-class citizens

I Streaming, sliding-window algorithms for common path operations

DEBS 2020 69

Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

where Alice ∈ p = {u1, · · · , un+1}

Ability to store, return and compare paths

Enumerate all paths

High complexity, FPT for certain classes [Martens and Trautner, 2019]

Structural restrictions on path operations

Length predicates [Barceló et al., 2012]

Closed semi-ring aggregates [Cruz and Norvell, 1989]

Our work
I Data model and query language that treats paths as first-class citizens

I Streaming, sliding-window algorithms for common path operations

DEBS 2020 70

Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

where Alice ∈ p = {u1, · · · , un+1}

Ability to store, return and compare paths

Enumerate all paths

High complexity, FPT for certain classes [Martens and Trautner, 2019]

Structural restrictions on path operations

Length predicates [Barceló et al., 2012]

Closed semi-ring aggregates [Cruz and Norvell, 1989]

Our work
I Data model and query language that treats paths as first-class citizens

I Streaming, sliding-window algorithms for common path operations

DEBS 2020 71

Querying Graphs with Data

Real-world graphs have data, so as queries

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

u1.city = un+1.city

Support for attribute-based predicates on property graphs

Regular Property Graph Queries (RPGQ) [Bonifati et al., 2018]

RQ on property graphs

Non-trivial query planning [Mulder et al., 2020]

Structure-based vs structure&attribute-based planning
Up to 30× performance differences

Our work
I Support for property graphs & attribute-based predicates

I Non-blocking implementation of RPGQ for streaming graphs

DEBS 2020 72

Querying Graphs with Data

Real-world graphs have data, so as queries

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

u1.city = un+1.city

Support for attribute-based predicates on property graphs

Regular Property Graph Queries (RPGQ) [Bonifati et al., 2018]

RQ on property graphs

Non-trivial query planning [Mulder et al., 2020]

Structure-based vs structure&attribute-based planning
Up to 30× performance differences

Our work
I Support for property graphs & attribute-based predicates

I Non-blocking implementation of RPGQ for streaming graphs

DEBS 2020 73

Querying Graphs with Data

Real-world graphs have data, so as queries

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

u1.city = un+1.city

Support for attribute-based predicates on property graphs

Regular Property Graph Queries (RPGQ) [Bonifati et al., 2018]

RQ on property graphs

Non-trivial query planning [Mulder et al., 2020]

Structure-based vs structure&attribute-based planning
Up to 30× performance differences

Our work
I Support for property graphs & attribute-based predicates

I Non-blocking implementation of RPGQ for streaming graphs

DEBS 2020 74

Querying Graphs with Data

Real-world graphs have data, so as queries

u1

c1

u2 un

cn

un+1
(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

u1.city = un+1.city

Support for attribute-based predicates on property graphs

Regular Property Graph Queries (RPGQ) [Bonifati et al., 2018]

RQ on property graphs

Non-trivial query planning [Mulder et al., 2020]

Structure-based vs structure&attribute-based planning
Up to 30× performance differences

Our work
I Support for property graphs & attribute-based predicates

I Non-blocking implementation of RPGQ for streaming graphs

DEBS 2020 75

S-graffito Project
Streaming Graph Analytics

Aida Sheshbolouki

DEBS 2020 76

Streaming Graph Analytics Objectives

Building a generic analytics engine based on window semantics and vertex
embeddings

1 Exploratory analysis of real-world streaming graphs

2 Representation learning over streaming graphs

3 Prediction-based analytics over streaming graphs

DEBS 2020 77

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns

The emergence patterns of edges ⇒ attachment rules
The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 78

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns

The emergence patterns of edges ⇒ attachment rules
The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 79

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules

“Rich-get-richer” conjecture

The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 80

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules

The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 81

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules

The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 82

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules

The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 83

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules
The emergence patterns of key subgraphs ⇒ subgraph densification power laws

The number of 2,2-bicliques (butterflies) follows a power law function of the
number of the number of edges
Bursty butterfly densification – Butterflies emerge in a bursty fashion due to the
existing hubs contribution
sGrapp: Streaming Graph Approximation Framework for Butterfly Counting

The connectivity and robustness of the graph snapshots
2 Modeling streaming graphs

Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 84

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules
The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 85

Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules
The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 86

Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

1 Unbounded stream management and processing

2 Addressing structural evolutions

3 Addressing streaming property graphs

4 Addressing data sparsity
5 Model optimizations

Heterogeneous embedding
Dynamic graph convolutions
Parameter training

Outcome

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.

DEBS 2020 87

Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

1 Unbounded stream management and processing

2 Addressing structural evolutions

3 Addressing streaming property graphs

4 Addressing data sparsity
5 Model optimizations

Heterogeneous embedding
Dynamic graph convolutions
Parameter training

Outcome

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.

DEBS 2020 88

Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

1 Unbounded stream management and processing

2 Addressing structural evolutions

3 Addressing streaming property graphs

4 Addressing data sparsity
5 Model optimizations

Heterogeneous embedding
Dynamic graph convolutions
Parameter training

Outcome

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.

DEBS 2020 89

Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

1 Unbounded stream management and processing

2 Addressing structural evolutions

3 Addressing streaming property graphs

4 Addressing data sparsity
5 Model optimizations

Heterogeneous embedding
Dynamic graph convolutions
Parameter training

Outcome

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.

DEBS 2020 90

Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

1 Unbounded stream management and processing

2 Addressing structural evolutions

3 Addressing streaming property graphs

4 Addressing data sparsity

5 Model optimizations

Heterogeneous embedding
Dynamic graph convolutions
Parameter training

Outcome

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.

DEBS 2020 91

Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

1 Unbounded stream management and processing

2 Addressing structural evolutions

3 Addressing streaming property graphs

4 Addressing data sparsity
5 Model optimizations

Heterogeneous embedding
Dynamic graph convolutions
Parameter training

Outcome

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.

DEBS 2020 92

Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

1 Unbounded stream management and processing

2 Addressing structural evolutions

3 Addressing streaming property graphs

4 Addressing data sparsity
5 Model optimizations

Heterogeneous embedding
Dynamic graph convolutions
Parameter training

Outcome

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.

DEBS 2020 93

Prediction-based Analytics over Streaming Graphs

1 Efficient windowed analytics

2 Window semantics

3 Graph versatility

4 Accurate predictions

DEBS 2020 94

Concluding Remarks

DEBS 2020 95

Some Take-home Messages

Streaming graphs are real and occur in real-life applications

We have not paid nearly sufficient attention to streaming graph challenges

Streaming 6= dynamic
... most “streaming” papers are not streaming

Unboundedness in streams raises real challenges

Most graph problems are unbounded under edge insert/delete

The entire field is pretty much open...
... this area is tough and you are not likely to write as many papers

DEBS 2020 96

Thank you!

Aida
Sheshbolouki

Anil
Pacaci

Angela
Bonifati

DEBS 2020 97

DEBS 2020 98

References I

Angles, R., Arenas, M., Barceló, P., Boncz, P. A., Fletcher, G. H. L., Gutierrez, C., Lindaaker, T.,
Paradies, M., Plantikow, S., Sequeda, J. F., van Rest, O., and Voigt, H. (2018). G-CORE: A
core for future graph query languages. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 1421–1432. Available from: http://doi.acm.org/10.1145/3183713.3190654.

Barceló, P., Libkin, L., Lin, A. W., and Wood, P. T. (2012). Expressive languages for path
queries over graph-structured data. ACM Trans. Database Syst., 37(4). Available from:
https://doi.org/10.1145/2389241.2389250.

Bonifati, A., Fletcher, G., Voigt, H., and Yakovets, N. (2018). Querying Graphs. Synthesis
Lectures on Data Management. Morgan & Claypool. Available from:
https://doi.org/10.2200/S00873ED1V01Y201808DTM051.

Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L., Zhao, F., and
Chen, E. (2012). Kineograph: Taking the pulse of a fast-changing and connected world. In
Proc. 7th ACM SIGOPS/EuroSys European Conf. on Comp. Syst., pages 85–98. Available
from: http://doi.acm.org/10.1145/2168836.2168846.

DEBS 2020 99

http://doi.acm.org/10.1145/3183713.3190654
https://doi.org/10.1145/2389241.2389250
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
http://doi.acm.org/10.1145/2168836.2168846

References II

Cruz, I. F. and Norvell, T. S. (1989). Aggregative closure: An extension of transitive closure. In
Proc. 5th Int. Conf. on Data Engineering, pages 384–391. Available from:
https://doi.org/10.1109/ICDE.1989.47239.

Dhulipala, L., Blelloch, G. E., and Shun, J. (2019). Low-latency graph streaming using
compressed purely-functional trees. In Proc. ACM SIGPLAN 2019 Conf. on Programming
Language Design and Implementation, pages 918–934. Available from:
http://doi.acm.org/10.1145/3314221.3314598.

Ediger, D., McColl, R., Riedy, J., and Bader, D. A. (2012). STINGER: High performance data
structure for streaming graphs. In Proc. 2012 IEEE Conf. on High Performance Extreme
Comp., pages 1–5.

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., and Zhang, J. (2005). On graph problems in
a semi-streaming model. Theor. Comp. Sci., 348(2):207–216. Available from:
http://www.sciencedirect.com/science/article/pii/S0304397505005323.

Golab, L. and Özsu, M. T. (2010). Data Stream Systems. Synthesis Lectures on Data
Management. Morgan & Claypool.

DEBS 2020 100

https://doi.org/10.1109/ICDE.1989.47239
http://doi.acm.org/10.1145/3314221.3314598
http://www.sciencedirect.com/science/article/pii/S0304397505005323

References III

Kankanamge, C., Sahu, S., Mhedbhi, A., Chen, J., and Salihoglu, S. (2017). Graphflow: An
active graph database. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
1695–1698. Available from: http://doi.acm.org/10.1145/3035918.3056445.

Kempe, D., Kleinberg, J., and Tardos, E. (2003). Maximizing the spread of influence through a
social network. In Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 137—146. Available from: https://doi.org/10.1145/956750.956769.

Kim, K., Seo, I., Han, W., Lee, J., Hong, S., Chafi, H., Shin, H., and Jeong, G. (2018).
Turboflux: A fast continuous subgraph matching system for streaming graph data. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 411–426.

Mariappan, M. and Vora, K. (2019). GraphBolt: Dependency-driven synchronous processing of
streaming graphs. In Proc. 14th ACM SIGOPS/EuroSys European Conf. on Comp. Syst.,
pages 25:1–25:16. Available from: http://doi.acm.org/10.1145/3302424.3303974.

Martens, W. and Trautner, T. (2019). Dichotomies for evaluating simple regular path queries.
ACM Trans. Database Syst., 44(4). Available from: https://doi.org/10.1145/3331446.

McGregor, A. (2014). Graph stream algorithms: A survey. ACM SIGMOD Rec., 43(1):9–20.
Available from: http://doi.acm.org/10.1145/2627692.2627694.

DEBS 2020 101

http://doi.acm.org/10.1145/3035918.3056445
https://doi.org/10.1145/956750.956769
http://doi.acm.org/10.1145/3302424.3303974
https://doi.org/10.1145/3331446
http://doi.acm.org/10.1145/2627692.2627694

References IV

Mulder, T., Yakovets, N., and Fletcher, G. H. L. (2020). Towards planning of regular queries
with memory. In Proc. 23rd Int. Conf. on Extending Database Technology, pages 451–454.
Available from: https://doi.org/10.5441/002/edbt.2020.55.

Pacaci, A., Bonifati, A., and Özsu, M. T. (2020). Regular path query evaluation on streaming
graphs. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1415–1430.
Available from: https://doi.org/10.1145/3318464.3389733.

Qiu, X., Cen, W., Qian, Z., Peng, Y., Zhang, Y., Lin, X., and Zhou, J. (2018). Real-time
constrained cycle detection in large dynamic graphs. Proc. VLDB Endowment,
11(12):1876–1888.

Reutter, J. L., Romero, M., and Vardi, M. Y. (2017). Regular queries on graph databases.
Theory of Computing Systems, 61(1):31–83. Available from:
https://doi.org/10.1007/s00224-016-9676-2.

Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., and Özsu, M. T. (2017). The ubiquity of large
graphs and surprising challenges of graph processing. Proc. VLDB Endowment, 11(4):420–431.

DEBS 2020 102

https://doi.org/10.5441/002/edbt.2020.55
https://doi.org/10.1145/3318464.3389733
https://doi.org/10.1007/s00224-016-9676-2

References V

Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., and Özsu, M. T. (2020). The ubiquity of large
graphs and surprising challenges of graph processing. VLDB J., 29:595—618. Available from:
https://link.springer.com/article/10.1007/s00778-019-00548-x.

Sengupta, D., Sundaram, N., Zhu, X., Willke, T. L., Young, J., Wolf, M., and Schwan, K.
(2016). GraphIn: An online high performance incremental graph processing framework. In
Proc. 22nd Int. Euro-Par Conf., pages 319–333. Available from:
http://dx.doi.org/10.1007/978-3-319-43659-3_24.

Sheng, F., Cao, Q., Cai, H., Yao, J., and Xie, C. (2018). Grapu: Accelerate streaming graph
analysis through preprocessing buffered updates. In Proc. 9th ACM Symp. on Cloud
Computing, pages 301–312. Available from:
http://doi.acm.org/10.1145/3267809.3267811.

van Rest, O., Hong, S., Kim, J., Meng, X., and Chafi, H. (2016). PGQL: a property graph query
language. In Proc. 4th Int. Workshop on Graph Data Management Experiences & Systems,
page 7. Available from: https://doi.org/10.1145/2960414.2960421.

DEBS 2020 103

https://link.springer.com/article/10.1007/s00778-019-00548-x
http://dx.doi.org/10.1007/978-3-319-43659-3_24
http://doi.acm.org/10.1145/3267809.3267811
https://doi.org/10.1145/2960414.2960421

	References

