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Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Complex COVID-19 pathways

Contact tracing

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)
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Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Self assessment by checking connections
{Place, flight, train, license plate} →
{known cases}
{Source loc, Target loc} → {“edges” that
connect them, flights, trains, vehicle license
plates}

Complex COVID-19 pathways

Contact tracing

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)
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Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Complex COVID-19 pathways

Looking at propagation in social networks
[Kempe et al., 2003]

Linear threshold model
Independent cascade model

Contact tracing

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)
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Graphs – When Relationships are Important

Recent COVID-19 pandemic

Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search

Complex COVID-19 pathways

Contact tracing

Figuring out exactly how 5 people became
infected in Tianjin
Vertices: people and places they traveled
Edges: people-people contact or travel
Paths: how infections link to known cases

Covid knowledge graph

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)

(https://covidgraph.org)
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Modern graphs are different and diverse
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Graph Usage Study [Sahu et al., 2017, 2020]

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Özsu
David R. Cheriton School of Computer Science

University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu,jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT
Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence, there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have; (ii) the graph computations users run; (iii) the types
of graph software users use; and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often very large,
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.

PVLDB Reference Format:
Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M.
Tamer Özsu. The Ubiquity of Large Graphs and Surprising Challenges of
Graph Processing. PVLDB, 11(4): xxxx-yyyy, 2017.
DOI: https://doi.org/10.1145/3164135.3164139

1. INTRODUCTION
Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [3,8,14,35,48,53], RDF engines [38,64,67], linear algebra
software [6,46], visualization software [13,16], query languages [28,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 4
Copyright 2017 VLDB Endowment 2150-8097/17/12... $ 10.00.
DOI: https://doi.org/10.1145/3164135.3164139

52, 55], and distributed graph processing systems [17, 21, 27]. In
the academic literature, a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?
(iv) What are the major challenges users face when processing their

graph data?

Our major findings are as follows:
• Variety: Graphs in practice represent a very wide variety of enti-

ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly, traditional enterprise data comprised
of products, orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

• Ubiquity of Very Large Graphs: Many graphs in practice are
very large, often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

• Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

• Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

• Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as the preva-
lence of machine learning on graph data, e.g., for clustering vertices,
predicting links, and finding influential vertices.

We further reviewed user feedback in the mailing lists, bug re-
ports, and feature requests in the source code repositories of 22
software products between January and September of 2017 with
two goals: (i) to answer several new questions that the participants’
responses raised; and (ii) to identify more specific challenges in
different classes of graph technologies than the ones we could iden-

The VLDB Journal
https://doi.org/10.1007/s00778-019-00548-x

SPEC IAL ISSUE PAPER

The ubiquity of large graphs and surprising challenges of graph
processing: extended survey

Siddhartha Sahu1 · Amine Mhedhbi1 · Semih Salihoglu1 · Jimmy Lin1 ·M. Tamer Özsu1

Received: 21 January 2019 / Revised: 9 May 2019 / Accepted: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Graph processing is becoming increasingly prevalent acrossmany application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (ii) the graph computations users run; (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey · Graph processing · Graph databases · RDF systems

1 Introduction

Graph data representing connected entities and their relation-
ships appear in many application domains, most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology, and finance, just to name
a few examples. There has been a noticeable increase in the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00778-019-00548-x) contains
supplementary material, which is available to authorized users.
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prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
bra software [17,63], visualization software [25,29], query
languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. InApril 2017,weconducted anonline survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?

123

Objectives
1 What kind of graph data, computations, software, and major challenges real users

have in practice?
2 What types of graph data, computations, software, and major challenges researchers

target in publications?

Major Findings
1 Graphs are everywhere!
2 Graphs are very large!
3 ML on graphs is very popular (> 85% of respondents have ML workloads)!
4 Scalability is the most pressing challenge (followed by visualization & query

languages)!
5 Relational DBMSs still play an important role!
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conducted an online survey across 89 users of 22 different software
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(iv) What are the major challenges users face when processing their
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Our major findings are as follows:
• Variety: Graphs in practice represent a very wide variety of enti-
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publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. InApril 2017,weconducted anonline survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?

123

Objectives
1 What kind of graph data, computations, software, and major challenges real users

have in practice?
2 What types of graph data, computations, software, and major challenges researchers

target in publications?

Major Findings
1 Graphs are everywhere!
2 Graphs are very large!
3 ML on graphs is very popular (> 85% of respondents have ML workloads)!
4 Scalability is the most pressing challenge (followed by visualization & query

languages)!
5 Relational DBMSs still play an important role!

DEBS 2020 13



Graph Usage Study [Sahu et al., 2017, 2020]
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ABSTRACT
Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence, there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have; (ii) the graph computations users run; (iii) the types
of graph software users use; and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often very large,
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.
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1. INTRODUCTION
Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [3,8,14,35,48,53], RDF engines [38,64,67], linear algebra
software [6,46], visualization software [13,16], query languages [28,
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52, 55], and distributed graph processing systems [17, 21, 27]. In
the academic literature, a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?
(iv) What are the major challenges users face when processing their

graph data?

Our major findings are as follows:
• Variety: Graphs in practice represent a very wide variety of enti-

ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly, traditional enterprise data comprised
of products, orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

• Ubiquity of Very Large Graphs: Many graphs in practice are
very large, often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

• Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

• Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

• Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as the preva-
lence of machine learning on graph data, e.g., for clustering vertices,
predicting links, and finding influential vertices.

We further reviewed user feedback in the mailing lists, bug re-
ports, and feature requests in the source code repositories of 22
software products between January and September of 2017 with
two goals: (i) to answer several new questions that the participants’
responses raised; and (ii) to identify more specific challenges in
different classes of graph technologies than the ones we could iden-
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Abstract
Graph processing is becoming increasingly prevalent acrossmany application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (ii) the graph computations users run; (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.
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1 Introduction

Graph data representing connected entities and their relation-
ships appear in many application domains, most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology, and finance, just to name
a few examples. There has been a noticeable increase in the
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prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
bra software [17,63], visualization software [25,29], query
languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. InApril 2017,weconducted anonline survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?

123

Objectives
1 What kind of graph data, computations, software, and major challenges real users

have in practice?
2 What types of graph data, computations, software, and major challenges researchers
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Major Findings
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3 ML on graphs is very popular (> 85% of respondents have ML workloads)!
4 Scalability is the most pressing challenge (followed by visualization & query

languages)!
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One particular type – streaming graphs

Streaming aspects
I Unbounded data ⇒ non-blocking algorithms & operators (one-pass)
I Usually at high speed ⇒ real-time constraints

Graph aspects
I (Typically) edges streaming
I Graph “emerges”

Use case

Alibaba

I 500M active users, 2B catalog items
I 320K transactions/second (at peak)
I Need to process PB data in real-time in hours
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Streaming Data Processing

Streaming Graph Processing

S-graffito Project

Concluding Remarks

DEBS 2020 18



Streaming Data Processing

DEBS 2020 19



Stream Systems

Inputs

One or more sources generate data continuously, in real time, and in fixed order
(by timestamp)
I Sensor networks – weather monitoring, road traffic monitoring
I Web data – financial trading, news/sports tickers
I Scientific data – experiments in particle physics
I Transaction logs – point-of-sale purchases
I Network traffic analysis – IP packet headers

Outputs

Want to collect and process data in real-time; up-to-date answers generated
continuously or periodically
I Environment monitoring
I Location monitoring
I Correlations across stock prices
I Denial-of-service attack detection
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DBMS versus DSS

Traditional DBMS:

Transient query

Persistent data

One-time result

Data Stream System (DSS):

Transient data

Persistent queries

Continuous results

Other differences of DSS
I Push-based (data-driven)

I Persistent queries

I Unbounded stream; query execution as data arrives at the system – one look

I System conditions may not be stable – arrival rates fluctuate, workload may
change
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Old vs New

Older systems: Data Stream Management Systems (DSMS) [Golab and Özsu, 2010]

Provide the functionalities of a typical DBMS
Examples: STREAM, Gigascope, TelegraphCQ, Aurora, Borealis
Mostly single machine systems
From early 2000s to late 2000s

Newer systems: Data Stream Processing Systems (DSPS)

May not have full DBMS functionality
Examples: Apache Storm, Heron, Spark Streaming, Flink, MillWheel,
TimeStream
Almost all are scale-out
From mid-2010s
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DSMS System Architecture

Working
Storage

Summary
Storage

Static
Storage

Updates to
Static Data

Query
Repository

User
Queries

Query
Processor

Input
Monitor

Output
Buffer

DEBS 2020 26



Stream Data Model

Append-only sequence of timestamped items that arrive in some order.

〈timestamp, payload〉

What is the payload?

Relational tuple

Revision tuple

Graph edge

Sequence of events (as in publish/subscribe systems)

Sequence of sets (or bags) of elements with each set storing elements that
have arrived during the same unit of time
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Streaming Graph Processing
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Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
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Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

A

B

A

B

t1
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Streaming Graphs

Time
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Streaming Graphs

Time
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Streaming Graphs

Time
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Streaming Graphs

Time
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Streaming Graphs

Time
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Streaming Graphs

Time
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Combines two difficult problems:
streaming+graphs

Unbounded ⇒ don’t see entire graph

Streaming rates can be very high



Streaming Graph Computation Models

Continuous

Process each edge as it comes ⇒ for simple transactional operations
Requires linear space ⇒ unrealistic

Many graph problems are not solvable [McGregor, 2014]

Semi-streaming model ⇒ sublinear space [Feigenbaum et al., 2005]

Sufficient to store vertices but not edges (typically |V | � |E |) ⇒ dynamic
graph model
Approximation for many graph algorithms exist
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Windowed

Use windows to batch edges
For more complex queries

Time
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Continuous Computation

Query: Vertices reachable from vertex A

A

B

t1

A

B

C

t4

A

B

C

D

t5

A

B

C

D

F

t7

A

B

C

D

F

E

t9

A

B

C

D

F

E

t12

Time Incoming edge Results

t1 〈A,B〉 {B}
t2

t3

t4 〈B,C〉 {B,C}
t5 〈A,D〉, 〈D,C〉 {B,C,D}
t6

t7 〈C,F〉, 〈D,F〉 {B,C,D,F}
t8

t9 〈D,E〉, 〈A,E〉, 〈B,E〉, 〈E,F〉 {B,C,D,F,E}
t10
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Windowed Computation

Query: Vertices reachable from vertex A
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(Window size=5)
Time Incoming edge Expired edges Results

t1 〈A,B〉 {B}
t2

t3

t4 〈B,C〉 {B,C}
t5 〈A,D〉, 〈D,C〉 {B,C,D}
t6 〈A,B〉 {B,C,D}
t7 〈C,F〉, 〈D,F〉 {C,D,F}
t8

t9 〈D,E〉, 〈A,E〉, 〈B,E〉, 〈E,F〉 〈B,C〉 {C,D,F,E}
t10 〈A,D〉, 〈D,C〉 {C,D,F,E}
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Querying Graph Streams

Graph query functionalities

Subgraph matching queries & reachability (path) queries
Doing these in the streaming context
This is querying beyond simple transactional operations on an incoming edge

Edge represents a user purchasing an item → do some operation
Edge represents events in news → send an alert

Subgraph pattern matching under stream of updates

Windowed join processing
Graphflow [Kankanamge et al., 2017], TurboFlux [Kim et al., 2018]

These are not designed to deal with unboundedness of the data graph

Path queries under stream of updates
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Analytics on Graph Streams

Many use cases

Recommender systems
Fraud detection [Qiu et al., 2018]

...

Existing relevant work
Snapshot-based systems

Aspen [Dhulipala et al., 2019], STINGER [Ediger et al., 2012]

Consistent graph views across updates

Snapshot + Incremental Computations

Kineograph [Cheng et al., 2012], GraPu [Sheng et al., 2018], GraphIn [Sengupta et al., 2016],
GraphBolt [Mariappan and Vora, 2019]

Identify and re-process subgraphs that are effected by updates

Designed to handle high velocity updates
Cannot handle unbounded streams

Similar to dynamic graph processing solutions
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S-graffito Project
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S-Graffito project

Processing of transactional (OLTP) and and analytical (OLAP) queries on high
streaming rate, very large graphs.

Working
Storage

Summary
Storage

Static
Storage

Updates to
Static Data

Query
Repository

Analytics
Primitives

User
Queries

Query
Processor

Analytics
Engine

Input
Monitor

Output
Buffer

DEBS 2020 46



S-Graffito project

Processing of transactional (OLTP) and and analytical (OLAP) queries on high
streaming rate, very large graphs.

Working
Storage

Summary
Storage

Static
Storage

Updates to
Static Data

Query
Repository

Analytics
Primitives

User
Queries

Query
Processor

Analytics
Engine

Input
Monitor

Output
Buffer

DEBS 2020 47



Working on Property Graphs

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Property Graph

A property graph is an attributed graph G = (V ,E ,Σ, ψ, φ,K,P) where V is a set of
vertices, E is a set of edges, ψ : E → V × V is a function that maps each edge to an
ordered pair of vertices, Σ is a set of labels and φ is a labelling function,
φ : (V ∪ E)→ Σ, K is a set of property keys, P is a set of values, and
ν : (V ∪ E)×K → P is a partial function assigning values for properties to objects.
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Arrivals are Streaming Graph Tuples

Time
τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13
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B C
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A

C

F

C

D

E

D

A

F

B

E

F

· · ·

X

sgt = (τ, p)

Streaming Graph Tuple

A streaming graph tuple (sgt) is a streaming tuple where is a pair (τ, p) where τ is the
event (application) timestamp of the tuple assigned by the data source, p defines the
payload of the tuple that indicates an edge e ∈ E or a vertex v ∈ V of the property
graph G , and an operation op ∈ {insert, delete, update} that defines the type of the
tuple.
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Time-based Window & Snapshot

τ p
τ1 〈(A,B), insert〉
τ4 〈(B,C), insert〉
τ5 〈(A,D), insert〉
τ5 〈(D,C), insert〉
τ7 〈(C,F), insert〉
τ7 〈(D,F), insert〉
τ9 〈(B,E), insert〉
τ9 〈(E,E), insert〉
τ9 〈(E,F), insert〉
τ12 〈(E,F), delete〉

W (τ5 − τ10]

A

B

C

D

F

E

Time-based Window

A time-based window W over a streaming graph S is a time interval (W b,W e ] where
W b and W e are the beginning and end times of window W and We −Wb = |W |. The
window contents W (c) is the multiset of sgts where the timestamp τi of each record ti
is in the window interval, i.e., W (c) = {ti |Wb < τi ≤We}. When it is clear from
context, W is used interchangeably to refer to window interval or its contents.
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W b and W e are the beginning and end times of window W and We −Wb = |W |. The
window contents W (c) is the multiset of sgts where the timestamp τi of each record ti
is in the window interval, i.e., W (c) = {ti |Wb < τi ≤We}. When it is clear from
context, W is used interchangeably to refer to window interval or its contents.

Streaming Graph Snapshot
A streaming graph snapshot GW ,τ is the graph formed by the tuples in the time-based
window W at time τ .
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Streaming Graph Querying Objectives

Persistent query processing over streaming graphs

1 Path navigation queries

Non-blocking operators for path queries
Regular path queries (RPQ)

Regular expressions that are matched against directed, labelled paths

2 A query subsystem for persistent graph queries over streaming graphs

Combining graph patterns & path navigation
Treating paths as first-class citizens

3 Querying streaming graphs with data

Attribute-based predicates for property graphs
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Persistent RPQ Evaluation [Pacaci et al., 2020]

Design space for persistent RPQ algorithms
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Beyond Path Navigation

Combining subgraph matching & path navigation

u1

c1

u2 un

cn

un+1
follows(follows ·mentions)+

worksAtwork
sA

t

(follows ·mentions)+

work
sA

t worksAt

Recursion over edges Recursion over a graph pattern

Unions of Conjunctive RPQs
(UCRPQ)

SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL [van Rest et al.,

2016]

No algebraic closure

Regular Queries (RQ) [Reutter et al., 2017]

A subset of Datalog with algebraic
closure
Computationally well-behaved

The basis of G-CORE [Angles et al., 2018]

Our work
I An algebra for RQ on streaming graphs

I Concrete implementation of this algebra
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Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability
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(follows ·mentions)+

work
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where Alice ∈ p = {u1, · · · , un+1}

Ability to store, return and compare paths

Enumerate all paths

High complexity, FPT for certain classes [Martens and Trautner, 2019]

Structural restrictions on path operations

Length predicates [Barceló et al., 2012]

Closed semi-ring aggregates [Cruz and Norvell, 1989]

Our work
I Data model and query language that treats paths as first-class citizens

I Streaming, sliding-window algorithms for common path operations
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Querying Graphs with Data

Real-world graphs have data, so as queries
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work
sA
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u1.city = un+1.city

Support for attribute-based predicates on property graphs

Regular Property Graph Queries (RPGQ) [Bonifati et al., 2018]

RQ on property graphs

Non-trivial query planning [Mulder et al., 2020]

Structure-based vs structure&attribute-based planning
Up to 30× performance differences

Our work
I Support for property graphs & attribute-based predicates

I Non-blocking implementation of RPGQ for streaming graphs
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S-graffito Project
Streaming Graph Analytics

Aida Sheshbolouki
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Streaming Graph Analytics Objectives

Building a generic analytics engine based on window semantics and vertex
embeddings

1 Exploratory analysis of real-world streaming graphs

2 Representation learning over streaming graphs

3 Prediction-based analytics over streaming graphs
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Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns

The emergence patterns of edges ⇒ attachment rules
The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 78



Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns

The emergence patterns of edges ⇒ attachment rules
The emergence patterns of key subgraphs ⇒ subgraph densification power laws
The connectivity and robustness of the graph snapshots

2 Modeling streaming graphs
Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

· · ·

Time

A

B

C

D

F

t7

G A

B

C

D

F

G

t9

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

j1 j2 j3

i1 i2 i3 i4

Merging components A giant growing component

Robust against random edge removals
Not robust against targeted removals

Robust against any edge removal

DEBS 2020 79



Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules

“Rich-get-richer” conjecture
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Exploratory Analysis of Real-world Streaming Graphs

1 Identifying streaming graph patterns
The emergence patterns of edges ⇒ attachment rules
The emergence patterns of key subgraphs ⇒ subgraph densification power laws

The number of 2,2-bicliques (butterflies) follows a power law function of the
number of the number of edges
Bursty butterfly densification – Butterflies emerge in a bursty fashion due to the
existing hubs contribution
sGrapp: Streaming Graph Approximation Framework for Butterfly Counting

The connectivity and robustness of the graph snapshots
2 Modeling streaming graphs

Synthetic graph model that preserves realistic patterns
For pinpointing the performance of processing algorithms
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Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

1 Unbounded stream management and processing

2 Addressing structural evolutions

3 Addressing streaming property graphs

4 Addressing data sparsity
5 Model optimizations

Heterogeneous embedding
Dynamic graph convolutions
Parameter training

Outcome

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.
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Prediction-based Analytics over Streaming Graphs

1 Efficient windowed analytics

2 Window semantics

3 Graph versatility

4 Accurate predictions
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Concluding Remarks
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Some Take-home Messages

Streaming graphs are real and occur in real-life applications

We have not paid nearly sufficient attention to streaming graph challenges

Streaming 6= dynamic
... most “streaming” papers are not streaming

Unboundedness in streams raises real challenges

Most graph problems are unbounded under edge insert/delete

The entire field is pretty much open...
... this area is tough and you are not likely to write as many papers

DEBS 2020 96



Thank you!

Aida
Sheshbolouki

Anil
Pacaci

Angela
Bonifati
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