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Understanding the
maturing role of graph
databases in the
enterprise

Graph databases are making their way into enterprises and revealing
the value of relationships in data sets
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Graph databases are becoming the next big thing in data and analytics
technology. According to Gartner, the application of graph processing

and graph database management systems will grow at 100% annually

through 2022 to continuously accelerate data preparation and enable

more complex and adaptive data science.

Driving this growth s the belief that relationships between data should
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Graphs — When Relationships are Important

Recent COVID-19 pandemic

@ Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.1ly/2UuScbM)
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Graphs — When Relationships are Important

Recent COVID-19 pandemic
@ Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

o Epidemic search

o Self assessment by checking connections
o {Place, flight, train, license plate} —

{known cases}

o {Source loc, Target loc} — {“edges” that
connect them, flights, trains, vehicle license

plates}
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(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.1ly/2UuScbM)
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Graphs — When Relationships are Important

Recent COVID-19 pandemic
@ Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways
o Epidemic search
@ Complex COVID-19 pathways
e Looking at propagation in social networks

o Linear threshold model
e Independent cascade model

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)
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Graphs — When Relationships are Important

Recent COVID-19 pandemic

@ Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways
o Epidemic search .

@ Complex COVID-19 pathways

o Contact tracing
o Figuring out exactly how 5 people became VAN
infected in Tianjin SRS
o Vertices: people and places they traveled ]
o Edges: people-people contact or travel
e Paths: how infections link to known cases

(A. Woodie, “Tracking the Spread of Coronavirus with Graph Databases”, https://bit.ly/2UuScbM)
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Graphs — When Relationships are Important

Recent COVID-19 pandemic

@ Model how people interact and influence
each other, and how ideas and behaviours
travel along social pathways

Epidemic search
Complex COVID-19 pathways

Contact tracing

@ Covid knowledge graph

bioRyiv

(https://covidgraph.org)
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Modern graphs are different and diverse

World Trade 1994

Residuals Model 1

Trade volumes &
connections

s
Biological networks
& Road network
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Graph Usage Study

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing
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i ‘appear across a wide spe research

 epie thir prevalene,there i e resarch on how
‘graph data are actually used in practice and the major chal-
Ienges facing users of graph data. both in industry and in
rescarch. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?

(i) What computations do users run on their graph:

(il) Which software do users use to perform their computa-
tions?
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Objectives

© What kind of graph data, computations, software, and major challenges real users
have in practice?

@ What types of graph data, computations, software, and major challenges researchers
target in publications?
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Despite their prevalence, there i litle research on how
‘graph data are actually used in practice and the major chal-
Ienges facing users of graph data. both in industry and in
rescarch. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions;

(i) What types of graph data do users have?

(i) What computations do users run on their graph:

(il) Which software do users use to perform their computa-
tions?
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Objecti(v'esA

© What kind of graph data, computations, software, and major challenges real users
have in practice?

@ What types of graph data, computations, software, and major challenges researchers
target in publications?

V.

_ Findings

@ Graphs are everywhere!

@ Graphs are very large!

© ML on graphs is very popular (> 85% of respondents have ML workloads)!

@ Scalability is the most pressing challenge (followed by visualization & query
languages)!

@ Relational DBMSs still play an important role!

DEBS 2020 T 14



One particular type — streaming graphs

Streaming aspects

» Unbounded data = non-blocking algorithms & operators (one-pass)
» Usually at high speed = real-time constraints
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One particular type — streaming graphs

Streaming aspects

» Unbounded data = non-blocking algorithms & operators (one-pass)
» Usually at high speed = real-time constraints

Graph aspects

> (Typically) edges streaming
» Graph “emerges”
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One particular type — streaming graphs

Streaming aspects

» Unbounded data = non-blocking algorithms & operators (one-pass)
» Usually at high speed = real-time constraints

Graph aspects

» (Typically) edges streaming
» Graph “emerges”

Use case

Alibaba

» 500M active users, 2B catalog items
» 320K transactions/second (at peak)
» Need to process PB data in real-time in hours

DEBS 2020 17



Streaming Data Processing
Streaming Graph Processing
S-graffito Project

Concluding Remarks
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Stream Systems

One or more sources generate data continuously, in real time, and in fixed order
(by timestamp)

Sensor networks — weather monitoring, road traffic monitoring

Web data — financial trading, news/sports tickers

Scientific data — experiments in particle physics

Transaction logs — point-of-sale purchases

Network traffic analysis — IP packet headers

VYVYVYY

DEBS 2020 20



Stream Systems

One or more sources generate data continuously, in real time, and in fixed order
(by timestamp)

» Sensor networks — weather monitoring, road traffic monitoring

> Web data — financial trading, news/sports tickers

» Scientific data — experiments in particle physics

» Transaction logs — point-of-sale purchases

» Network traffic analysis — IP packet headers

|

Outputs

Want to collect and process data in real-time; up-to-date answers generated
continuously or periodically

» Environment monitoring

» Location monitoring

» Correlations across stock prices

» Denial-of-service attack detection

DEBS™2020 T



DBMS versus DSS

Traditional DBMS:

Transient query

l

l

One-time result
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DBMS versus DSS

Traditional DBMS:

DEBS 2020

Transient query

l

l

One-time result

Data Stream System (DSS):

Transient data

l

l

Continuous results ”



DBMS versus DSS

Traditional DBMS: Data Stream System (DSS):

Transient query Transient data

l l

Other differences of DSS
» Push-based (data-driven)

» Persistent queries

» Unbounded stream; query execution as data arrives at the system — one look

» System conditions may not be stable — arrival rates fluctuate, workload may
change

One-time result Continuous results
DEBS 2020 24



Old vs New

@ Older systems: Data Stream Management Systems (DSMS)
Provide the functionalities of a typical DBMS

Examples: STREAM, Gigascope, TelegraphCQ, Aurora, Borealis
Mostly single machine systems

From early 2000s to late 2000s

@ Newer systems: Data Stream Processing Systems (DSPS)
e May not have full DBMS functionality
o Examples: Apache Storm, Heron, Spark Streaming, Flink, MillWheel,
TimeStream
o Almost all are scale-out
o From mid-2010s

DEBS 2020 25



DSMS System Architecture

Working

Storage

J Query
Input Summary Processor Output
Monitor Storage Buffer

11

Query

Static Repository
Storage

Updates to User
Static Data Queries
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Stream Data Model

Append-only sequence of timestamped items that arrive in some order.
(timestamp, payload)

What is the payload?
@ Relational tuple

Revision tuple

o

@ Graph edge
@ Sequence of events (as in publish/subscribe systems)
o

Sequence of sets (or bags) of elements with each set storing elements that
have arrived during the same unit of time

DEBS 2020
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs

@ Combines two difficult problems:
streaming+graphs
@ Unbounded = don't see entire graph

@ Streaming rates can be very high

ty ta
DEBS 2020 38



Streaming Graph Computation Models

@ Continuous

e Process each edge as it comes = for simple transactional operations
e Requires linear space = unrealistic

@ Many graph problems are not solvable
e Semi-streaming model = sublinear space

e Sufficient to store vertices but not edges (typically |V| < |E|) = dynamic
graph model
@ Approximation for many graph algorithms exist

DEBS 2020
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Streaming Graph Computation Models

@ Continuous

e Process each edge as it comes = for simple transactional operations
e Requires linear space = unrealistic

DEBS 2020

@ Many graph problems are not solvable
e Semi-streaming model = sublinear space
e Sufficient to store vertices but not edges (typically |V| < |E|) = dynamic

graph model

@ Approximation for many graph algorithms exist

o Windowed

e Use windows to batch edges
e For more complex queries

Time
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Continuous Computation

Query: Vertices reachable from vertex A

DEBS 2020
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Windowed Computation

Query: Vertices reachable from vertex A
©

© ©
® ® ® ® '-e
© ©
® ® ® ®
t1 ty ty t7
(Window size=5)
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Querying Graph Streams

@ Graph query functionalities

o Subgraph matching queries & reachability (path) queries
o Doing these in the streaming context
o This is querying beyond simple transactional operations on an incoming edge

o Edge represents a user purchasing an item — do some operation
o Edge represents events in news — send an alert

@ Subgraph pattern matching under stream of updates

e Windowed join processing
o Graphflow , TurboFlux
o These are not designed to deal with unboundedness of the data graph

@ Path queries under stream of updates

DEBS 2020
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Analytics on Graph Streams

@ Many use cases

o Recommender systems
e Fraud detection
o ...

@ Existing relevant work
e Snapshot-based systems

@ Aspen , STINGER
o Consistent graph views across updates

e Snapshot + Incremental Computations

o Kineograph , GraPu , Graphln
GraphBolt
o lIdentify and re-process subgraphs that are effected by updates

e Designed to handle high velocity updates
o Cannot handle unbounded streams

e Similar to dynamic graph processing solutions

DEBS 2020
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S-graffito Project




S-Graffito project

Séaberatlito

Processing of transactional (OLTP) and and analytical (OLAP) queries on high

streaming rate, very large graphs.

Input
Monitor

21
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S-Graffito project

Séaberatlito

Processing of transactional (OLTP) and and analytical (OLAP) queries on high

streaming rate, very large graphs.

Input
Monitor
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Working on Property Graphs
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(creptor)
(relatedBook) (based near)
StephenKing
film_2014.

(initial_release_date, “1980-05-23")
(label, “The Shining")
(music_contributor, music_contributor/4110)
(language, (i50639_3/eng)

(label, “English”)
(usedin, iso3166/CA)
(usesSeript, script/latn))

actor 30013
(actor_name, “Shelley Duvall")

film_2685
(label, A Clockwork Orange”)

Property Graph

A property graph is an attributed graph G = (V, E, X, 4, ¢, K, P) where V is a set of

vertices, E is a set of edges, 1 : E — V x V is a function that maps each edge to an

ordered pair of vertices, ¥ is a set of labels and ¢ is a labelling function,

¢:(VUE) = X, K is a set of property keys, P is a set of values, and

v: (VUE) x K — P is a partial function assigning values for properties to objects.
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Arrivals are Streaming Graph Tuples

Streaming Graph Tuple

A streaming graph tuple (sgt) is a streaming tuple where is a pair (7, p) where 7 is the
event (application) timestamp of the tuple assigned by the data source, p defines the
payload of the tuple that indicates an edge e € E or a vertex v € V of the property
graph G, and an operation op € {insert, delete, update} that defines the type of the
tuple.
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Time-based Window & Snapshot

o I(?(A,B), insert)
7 | ((B.C), insert)
75 | ((AD), insert)
75 | {(D,C), insert)
77| ((CF), insert)

77 | ((D.F), insert)
79 | {(B,E), insert)
o | ((EE). insert)

7o | ((EF), insert)
712 | ((EF), delete)

Time-based Window

W (75 — 710]

A time-based window W over a streaming graph S is a time interval (W®, W¢] where
W® and W?® are the beginning and end times of window W and W. — W, = |W|. The
window contents W(c) is the multiset of sgts where the timestamp 7; of each record ¢
is in the window interval, i.e., W(c) = {tj | W» < 77 < We.}. When it is clear from
context, W is used interchangeably to refer to window interval or its contents.
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Time-based Window & Snapshot

o ZA,B), insert)
7 | ((B.C), insert)
75 | ((AD), insert)
75 | {(D,C), insert)
77| ((CF), insert)

o (B || [0
7o | {(E.E). insert)

7o | ((EF), insert)
712 | ((EF), delete)

Time-based Window

A time-based window W over a streaming graph S is a time interval (W®, W¢] where
W® and W?® are the beginning and end times of window W and W. — W, = |W|. The
window contents W/(c) is the multiset of sgts where the timestamp 7; of each record t;
is in the window interval, i.e., W(c) = {tj | W» < 77 < We.}. When it is clear from
context, W is used interchangeably to refer to window interval or its contents.

Streaming Graph Snapshot

A streaming graph snapshot Gw - is the graph formed by the tuples in the time-based
window W at time 7.
DEBS 2020
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Streaming Graph Querying Objectives

Persistent query processing over streaming graphs

© Path navigation queries

e Non-blocking operators for path queries
o Regular path queries (RPQ)
o Regular expressions that are matched against directed, labelled paths

@ A query subsystem for persistent graph queries over streaming graphs

o Combining graph patterns & path navigation
o Treating paths as first-class citizens

© Querying streaming graphs with data
o Attribute-based predicates for property graphs

DEBS 2020

53



Persistent RPQ Evaluation

@ Design space for persistent RPQ algorithms

Result semantics

Simple
Append-only

Simple
Explicit delete

Arbitrary
Append-only

Path semantics

Arbitrary
Explicit delete

DEBS 2020
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Persistent RPQ Evaluation

@ Design space for persistent RPQ algorithms

Result semantics

g Simple Simple

é Append-only Explicit delete
b Arbitrary Arbitrary

E Append-only Explicit delete

@ Path semantics used in practice
o Simple paths (no repeating vertex): navigation on road networks

(follows - mentions)™*

- N

Q1 = (follows - mentions)™ —> e

mentions

&
Lo,
's
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Persistent RPQ Evaluation

@ Design space for persistent RPQ algorithms

Result semantics

Path semantics

Simple Simple
Append-only Explicit delete
Arbitrary Arbitrary
Append-only Explicit delete

@ Path semantics used in practice
o Simple paths (no repeating vertex): navigation on road networks

DEBS 2020

Q1 = (follows - mentions)™

(follows - mentions)™*

-
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Persistent RPQ Evaluation

@ Design space for persistent RPQ algorithms

Result semantics

g Simple Simple

é Append-only Explicit delete
b Arbitrary Arbitrary

E Append-only Explicit delete

@ Path semantics used in practice
o Simple paths (no repeating vertex): navigation on road networks
o Arbitrary paths: reachability on communication networks

(follows - mentions)™*

Q1 = (follows - mentions)™ —>

Arbitrary paths 57

Simple paths
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Persistent RPQ Evaluation

@ Design space for persistent RPQ algorithms

Result semantics

Simple
Append-only

Simple
Explicit delete

Arbitrary
Append-only

Path semantics

Arbitrary
Explicit delete

@ Path semantics used in practice

o Simple paths (no repeating vertex): navigation on road networks
o Arbitrary paths: reachability on communication networks

@ Result semantics & stream types

e Append-only streams with fast insertions

e Support for explicit deletions
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Beyond Path Navigation

Combining subgraph matching & path navigation

DEBS 2020
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Beyond Path Navigation

Combining subgraph matching & path navigation

(follows - mentions)™

|

Recursion over edges

DEBS 2020

60



Beyond Path Navigation

Combining subgraph matching & path navigation

(follows - mentions)™

|

Recursion over edges

@ Unions of Conjunctive RPQs
(UCRPQ)

e SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL
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Beyond Path Navigation

Combining subgraph matching & path navigation

(follows - mentions)™

|

Recursion over edges

@ Unions of Conjunctive RPQs
(UCRPQ)

e SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL

@ No algebraic closure
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Beyond Path Navigation

Combining subgraph matching & path navigation

(follows - mentions)™

Recursion over a graph pattern

@ Unions of Conjunctive RPQs
(UCRPQ)

e SPARQL v1.1, Cypher9 (limited
form), Oracle PGQL

@ No algebraic closure

DEBS 2020
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Beyond Path Navigation

Combining subgraph matching & path navigation

(follows - mentions)™

(follows - mentions)™
| |

Recursion over a graph pattern

@ Unions of Conjunctive RPQs @ Regular Queries (RQ)
(UCRPQ) e A subset of Datalog with algebraic
e SPARQL v1.1, Cypher9 (limited closure
form), Oracle PGQL o Computationally well-behaved

@ The basis of G-CORE
@ No algebraic closure
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Beyond Path Navigation

Combining subgraph matching & path navigation

(follows - mentions)™ (follows - mentions)™

Recursion over a graph pattern

» An algebra for RQ on streaming graphs

» Concrete implementation of this algebra

@ 1 ne Dpasis OT G-LURE
@ No algebraic closure

DEBS 2020 65



Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability
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Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

(follows - mentions)*

(follows - mentions)™*

where Alice € p={u1, -+, Upt1}
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Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

(follows - mentions)*

(follows - mentions)™*

where Alice € p={u1, -+, Upt1}

@ Ability to store, return and compare paths
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Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

(follows - mentions)*

(follows - mentions)™*

where Alice € p={u1, -+, Upt1}

@ Ability to store, return and compare paths
@ Enumerate all paths
o High complexity, FPT for certain classes
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Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

(follows - mentions)*

(follows - mentions)™*

where Alice € p={u1, -, Uns1}

@ Ability to store, return and compare paths
@ Enumerate all paths

o High complexity, FPT for certain classes
@ Structural restrictions on path operations

o Length predicates
o Closed semi-ring aggregates
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Paths as First-class Citizens

So far we focused on existence of a path, i.e., reachability

(follows - mentions)™* (follows - mentions)*

» Data model and query language that treats paths as first-class citizens

» Streaming, sliding-window algorithms for common path operations

@ Structural restrictions on path operations

o Length predicates
o Closed semi-ring aggregates
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Querying Graphs with Data

Real-world graphs have data, so as queries
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Querying Graphs with Data

Real-world graphs have data, so as queries

(follows - mentions)™*

(follows - mentions)*

up.City = Upy1.City
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Querying Graphs with Data

Real-world graphs have data, so as queries

(follows - mentions)*

(follows - mentions)™*

uy.City = Upt1.City

@ Support for attribute-based predicates on property graphs
@ Regular Property Graph Queries (RPGQ)
e RQ on property graphs

@ Non-trivial query planning

e Structure-based vs structure&attribute-based planning
e Up to 30x performance differences
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Querying Graphs with Data

Real-world graphs have data, so as queries

(follows - mentions)™* (follows - mentions)*

» Support for property graphs & attribute-based predicates

» Non-blocking implementation of RPGQ for streaming graphs

@ Non-trivial query planning
e Structure-based vs structure&attribute-based planning
e Up to 30x performance differences
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Streaming Graph Analytics Objectives

Building a generic analytics engine based on window semantics and vertex
embeddings

© Exploratory analysis of real-world streaming graphs
© Representation learning over streaming graphs

© Prediction-based analytics over streaming graphs

DEBS 2020 v



Exploratory Analysis of Real-world Streaming Graphs
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Exploratory Analysis of Real-world Streaming Graphs

Q Identifying streaming graph patterns

DEBS 2020
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Exploratory Analysis of Real-world Streaming Graphs

@ lIdentifying streaming graph patterns
e The emergence patterns of edges = attachment rules
o “Rich-get-richer” conjecture

IIII%I

+ Time Time
ro r. zz !3 fa rs ts tv ta tg to t nz ti3

DEBS 2020 80



Exploratory Analysis of Real-world Streaming Graphs

Q Identifying streaming graph patterns
o The emergence patterns of edges = attachment rules
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Exploratory Analysis of Real-world Streaming Graphs

Q Identifying streaming graph patterns
o The emergence patterns of edges = attachment rules

I y y y y y y y y y y y
r T T T T T T T T T

——+—+ Time + Time
ty b ot ty s te t7 tg to  to tun tie t3 tr
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Exploratory Analysis of Real-world Streaming Graphs

Q Identifying streaming graph patterns
o The emergence patterns of edges = attachment rules

I y y y y y y y y y y y
r T T T T T T T T T

——+—+ Time + Time
t b b 3t &5ttt tp to tn tp t3 to
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Exploratory Analysis of Real-world Streaming Graphs

@ lIdentifying streaming graph patterns
e The emergence patterns of edges = attachment rules
e The emergence patterns of key subgraphs = subgraph densification power laws
@ The number of 2,2-bicliques (butterflies) follows a power law function of the
number of the number of edges
o Bursty butterfly densification — Butterflies emerge in a bursty fashion due to the
existing hubs contribution
o sGrapp: Streaming Graph Approximation Framework for Butterfly Counting
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Exploratory Analysis of Real-world Streaming Graphs

Q Identifying streaming graph patterns
o The emergence patterns of edges = attachment rules
o The emergence patterns of key subgraphs = subgraph densification power laws
e The connectivity and robustness of the graph snapshots

Merging components A giant growing component

Robust against random edge removals Robust against any edge removal
Not robust against targeted removals
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Exploratory Analysis of Real-world Streaming Graphs

© Identifying streaming graph patterns
o The emergence patterns of edges = attachment rules
o The emergence patterns of key subgraphs = subgraph densification power laws
e The connectivity and robustness of the graph snapshots
© Modeling streaming graphs
e Synthetic graph model that preserves realistic patterns
e For pinpointing the performance of processing algorithms
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Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

DEBS 2020
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Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

© Unbounded stream management and processing
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Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

© Unbounded stream management and processing

© Addressing structural evolutions
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Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

© Unbounded stream management and processing
© Addressing structural evolutions

© Addressing streaming property graphs
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Representation Learning over Streaming Graphs

Main issue: trade-off between effectiveness and efficiency

© Unbounded stream management and processing
© Addressing structural evolutions

© Addressing streaming property graphs

© Addressing data sparsity
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Representation Learning over Streaming Graphs
Main issue: trade-off between effectiveness and efficiency

© Unbounded stream management and processing
© Addressing structural evolutions
© Addressing streaming property graphs

© Addressing data sparsity
© Model optimizations

o Heterogeneous embedding
e Dynamic graph convolutions
e Parameter training
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Representation Learning over Streaming Graphs
Main issue: trade-off between effectiveness and efficiency

© Unbounded stream management and processing
© Addressing structural evolutions

© Addressing streaming property graphs

© Addressing data sparsity

© Model optimizations

o Heterogeneous embedding
e Dynamic graph convolutions
e Parameter training

An embedding model based on window semantics to incrementally learn the graph
evolutions and update the vertex embeddings.
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Prediction-based Analytics over Streaming Graphs

@ Efficient windowed analytics
© Window semantics
© Graph versatility

@ Accurate predictions

DEBS 2020
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Some Take-home Messages

@ Streaming graphs are real and occur in real-life applications
@ We have not paid nearly sufficient attention to streaming graph challenges

@ Streaming # dynamic
. most “streaming” papers are not streaming

Unboundedness in streams raises real challenges

Most graph problems are unbounded under edge insert/delete

The entire field is pretty much open...
... this area is tough and you are not likely to write as many papers

DEBS 2020
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Thank you!

Aida Anil Angela
Sheshbolouki Pacaci Bonifati

(D) szng mowmonca  Fonaro SVQ Google ® BoscH &
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