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Graph Types

Property graph

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)
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Graph Types

RDF graph

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

mob:music contributor
music contributor

lexvo:iso639 3/eng

language

bm:books/0743424425

4.7

rev:rating

bm:persons/StephenKing
dc:creator

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

wp:UnitedKingdom

gn:wikipediaArticle

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

“Shelley Duvall”

movie:actor name
“English”

rdf:label

lexvo:iso3166/CA

lvont:usedIn
lexvo:script/latin

lvont:usesScript

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director

movie:actor

movie:actor movie:actor

movie:director movie:director
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Graph Types

Property graph

film 2014
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director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Workload: Online queries and
analytic workloads

Query execution: Varies

RDF graph

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

Workload: SPARQL queries

Query execution: subgraph
matching by homomorphism
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Classification Summary

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads
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Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result/perform analytic computation over the graph
as it exists.
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Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result/perform analytic computation on each snap-
shot from scratch.
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Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Continuously compute the query result/perform analytic computation as
the input changes.
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Example Design Points – Not all alternatives make sense

Graph Type

RDF
Graphs

Property
Graphs

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Algorithm Types

Offline Online Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Dynamic (or batch-dynamic) algorithms do not make sense for static
graphs.
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Scale-up or Scale-out? [Lin, 2018]

Scale-up: Single machine execution

Graph datasets are small and can fit in a single machine – even in main
memory
Single machine avoids parallel execution complexities

Scale-out: Parallel execution

Graph data sets grow when they are expanded to their storage formats
Workstations big enough to handle even smaller datasets are still
expensive
Some graphs are very large: Alibaba: several billion vertices, > 100
million edges
Dataset size may not be the determinant ⇒ parallelizing computation
is important

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

We focus on parallel graph analytics systems
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Graph Partitioning

Edge-cut (vertex-disjoint)
Achieve disjoint partitions by allocating each vertex to a partition
Objective 1: Partitions should be balanced
Objective 2: Minimize edge-cuts (to reduce communication)
Good for graphs with low-degree vertices, not for power-law graphs
Examples: Hashing, METIS [Karypis and Kumar, 1995], label
propagation algorithms [Ugander and Backstrom, 2013]

Vertex-cut (edge-disjoint)
Achieve disjoint partitions by allocating each edge to a partition and
replicating vertices as necessary
Objective 1: Partitions should be balanced
Objective 2: Minimize vertex-cuts (to reduce replica cost)
Perform better on power-law graphs
Examples: Hashing, greedy algorithms [Gonzalez et al., 2012]

Hybrid
Edge-cut for low-degree vertices/vertex-cut for high-degree ones
PowerLyra [Chen et al., 2015]
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Graph Workloads

Online graph querying

Reachability

Single source shortest-path

Subgraph matching

SPARQL queries

Offline graph analytics

PageRank

Clustering

Connected components

Diameter finding

Graph colouring

All pairs shortest path

Graph pattern mining

Machine learning algorithms
(Belief propagation, Gaussian
non-negative matrix
factorization)
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Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)
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Reachability Queries
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StephenKing

(creator)
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actor 29704
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director 8476
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(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Can you reach film 1267 from film 2014?
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Reachability Queries

film 2014
(initial release date, “1980-05-23”)
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(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Is there a book whose rating is > 4.0 associated with a film that
was directed by Stanley Kubrick?
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Reachability Queries

Think of Facebook graph and finding friends of friends.
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Subgraph Matching

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

Subgraph
M

atching
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PageRank Computation

A web page is important if it is pointed to by other important
pages.

P1 P2

P3

P5P6

P4

r(Pi ) = (1− d) + d
∑

Pj∈BPi

r(Pj)

|FPj
|

(let d = 1)

r(P2) =
r(P1)

2
+

r(P3)

3

rk+1(Pi ) =
∑

Pj∈BPi

rk(Pj)

|FPj
|

BPi
: in-neighbours of Pi

FPi
: out-neighbours of Pi
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PageRank Computation

A web page is important if it is pointed to by other important
pages.

P1 P2

P3

P5P6

P4

rk+1(Pi ) =
∑

Pj∈BPi

rk(Pj)

|FPj
|

Iteration 0 Iteration 1 Iteration 2
Rank at
Iter. 2

r0(P1) = 1/6 r1(P1) = 1/18 r2(P1) = 1/36 5
r0(P2) = 1/6 r1(P2) = 5/36 r2(P2) = 1/18 4
r0(P3) = 1/6 r1(P3) = 1/12 r2(P3) = 1/36 5
r0(P4) = 1/6 r1(P4) = 1/4 r2(P4) = 17/72 1
r0(P5) = 1/6 r1(P5) = 5/36 r2(P5) = 11/72 3
r0(P6) = 1/6 r1(P6) = 1/6 r2(P6) = 14/72 2

Iterative processing
Touch each vertex
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© M. Tamer Özsu TD-LSG (2018/08/31) 18 / 46



Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model
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Can MapReduce be Used for Graph Analytics?

Yes; map and reduce functions can be written for graph analytics
workloads

Scalable Graph processing Class SGC [Qin et al., 2014]
Connected component computation [Kiveris et al., 2014; Rastogi et al.,
2013]

Not suitable for iterative processing due to data movement at each
stage

No guarantee that computation will be assigned to the same worker
nodes in the next round

High I/O cost

Need to save in storage system (HDFS) intermediate results of each
iteration
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Can MapReduce be Used for Graph Analytics?

Yes; map and reduce functions can be written for graph analytics
workloads

Scalable Graph processing Class SGC [Qin et al., 2014]
Connected component computation [Kiveris et al., 2014; Rastogi et al.,
2013]

Not suitable for iterative processing due to data movement at each
stage

No guarantee that computation will be assigned to the same worker
nodes in the next round

High I/O cost

Need to save in storage system (HDFS) intermediate results of each
iteration

There are systems that address these concerns

HaLoop [Bu et al., 2010, 2012]
GraphX over Spark [Gonzalez et al., 2014]
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Spark System

Spark objectives

Better support for iterative programs
Provide a complete ecosystem
Similar abstraction (to MapReduce) for programming
Maintain MapReduce fault-tolerance and scalability

Fundamental concepts

RDD: Reliable Distributed Datasets
Caching of working set
Maintaining lineage for fault-tolerance
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GraphX [Gonzalez et al., 2014]

Built on top of Spark

Objective is to combine data analytics with graph processing

Unify computation on tables and graphs

Carefully convert graph to tabular representation

Native GraphX API or can accommodate vertex-centric computation

Native
Spark
Apps

Spark
SQL

Spark
Streaming

MLlib
(machine
learning)

GraphX
(graph

processing)

Apache Spark

Vertex-
centric API

AppApp

App App
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GraphX: Representation of Graphs as Tables

A

B

C

D

E

F

G

H

I

J
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GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning
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GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning
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© M. Tamer Özsu TD-LSG (2018/08/31) 23 / 46



GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

Edge Table

(RDD)
e-prop:edge prop.

Routing
Table

(RDD)

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F

A 1 2

B 1

...

I 1

F 1 2

D 2

E 2

J 2

© M. Tamer Özsu TD-LSG (2018/08/31) 23 / 46



Outline

1 Introduction – Graph Types
2 Property Graph Processing
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© M. Tamer Özsu TD-LSG (2018/08/31) 24 / 46



Classification of Graph Processing Systems [Han, 2015]

Programming model

Computation model
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Programming Models

Vertex-centric

Computation on a vertex is the
focus
“Think like a vertex”
Vertex computation depends on
its own state + states of its
neighbors
Compute(vertex v)

GetValue(), WriteValue()

Partition-centric (Block-centric)

Edge-centric

?
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Programming Models

Vertex-centric

Partition-centric (Block-centric)

Computation on an entire
partition is specified
“Think like a block” or “Think
like a graph”
Aim is to reduce the
communication cost among
vertices

Edge-centric
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Programming Models

Vertex-centric

Partition-centric (Block-centric)

Edge-centric

Computation is specified on each
edge rather than on each vertex or
block
Compute(edge e)
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Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]

Asynchronous Parallel

Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling
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Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking

Consider vertex-centric program
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Real-World Graph Characteristics

Read-world graphs have skewed vertex degree distribution

Common in power-law graphs
Problem: imbalanced communication workloads

Real-world graphs have large diameters

Common in road networks, web graphs, terrain meshes
Problem: one superstep per hop ⇒ too many supersteps

Real-world graphs have high average vertex degree

Common in social networks, mobile communication networks
Problem: heavy average communication workloads
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Vertex-Centric BSP Systems

“Think like a vertex”

Compute(vertex v)

BSP Computation – push state to
neighbor vertices at the end of each
superstep

Continue until all vertices are
inactive

Vertex state machine

Example systems: Pregel [Malewicz
et al., 2010], Apache Giraph, GPS
[Salihoglu and Widom, 2013], Mizan
[Khayyat et al., 2013], Trinity [?]

?

Machine 1

Machine 2

Machine 3
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Communication
Barrier

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Active Inactive

Vote halt

Message received
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© M. Tamer Özsu TD-LSG (2018/08/31) 30 / 46



Vertex-Centric BSP Systems

“Think like a vertex”

Compute(vertex v)

BSP Computation – push state to
neighbor vertices at the end of each
superstep

Continue until all vertices are
inactive

Vertex state machine

Example systems: Pregel [Malewicz
et al., 2010], Apache Giraph, GPS
[Salihoglu and Widom, 2013], Mizan
[Khayyat et al., 2013], Trinity [?]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Active Inactive

Vote halt

Message received
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Vertex-Centric Asynchronous Systems

“Think like a vertex”

Compute(vertex v)

Supersteps exist along with
synchronization barriers, but ...

Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

Consistency of vertex states:
distributed locking

Consistency issues: no guarantee
about input to Compute()

Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015]

?
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Machine 3
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Vertex-Centric GAS Systems

“Think like a vertex”
Gather phase

Gather local computation from
neighbours if vertex v : called scope Sv

Apply phase

Compute(v, Sv)

Scatter phase

Compute(v, Sv) produces S
′

v

(scattering state)

Example: GraphLab [Low et al., 2012]
Synchronous version

Similar to vertex-centric BSP, except
pulling Sv rather than pushing

Asynchronous version different

Sv
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Vertex-Centric GAS Systems – Asynchronous

procedure GraphLab Async(G = (V ,E ,D), T )
end procedure

while T is not empty do
v ← RemoveNext(T )
Compute(v ,Sv )→ (T ′ ,S ′v )
T ← T ∪ T ′

end while

return Modified G = (V ,E ,D
′
)

end procedure

Graph mutation restricted to vertex states

Computing S
′
v updates (scatters) states of

the vertices in scope

Computation of new states S
′
v separated

from computation of new T ′

RemoveNext() can remove any vertex →
scheduling separated from state scatter

SvSv
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© M. Tamer Özsu TD-LSG (2018/08/31) 33 / 46



Vertex-Centric GAS Systems – Asynchronous

procedure GraphLab Async(G = (V ,E ,D), T )
end procedurewhile T is not empty do

v ← RemoveNext(T )
Compute(v ,Sv )→ (T ′ ,S ′v )

T ← T ∪ T ′

end while
return Modified G = (V ,E ,D

′
)

end procedure

Graph mutation restricted to vertex states

Computing S
′
v updates (scatters) states of

the vertices in scope

Computation of new states S
′
v separated

from computation of new T ′

RemoveNext() can remove any vertex →
scheduling separated from state scatter

Sv

Sv
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Partition- (Block-)Centric BSP Systems

Blogel [Yan et al., 2014]: “Think like a block”; also “think like a
graph” [Tian et al., 2013]

Better handles the characteristics of real-world graphs by reducing
communication

Exploit the partitioning of the graph

Message exchanges only among blocks

Within a block, run a serial in-memory algorithm; BSP between
partitions

© M. Tamer Özsu TD-LSG (2018/08/31) 34 / 46



Benefits of Partition- (Block-)Centric BSP

High-degree vertices inside a block send no messages

Fewer number of supersteps

Fewer number of blocks than vertices
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Edge-Centric BSP Systems

“Think like an edge”

Compute(edge e)

Number of edges � number of vertices

More computation but perhaps fewer messages
Operate on unsorted sequence of edges ⇒ no random access

X-Stream [Roy et al., 2013]
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OLAP Over Graphs

OLAP in RDBMS

Usage: Data Warehousing + Business Intelligence
Model: Multidimensional cube
Operations: Roll-up, drill-down, and slice and dice

Analytics that we discussed over graphs is much different

Can we do OLAP-style analytics over graphs?
There is some work

Graph summarization [Tian et al., 2008]
Snapshot-based Aggregation [Chen et al., 2008]
Graph Cube [Zhao et al., 2011]
Pagrol [?]
Gagg Model [Maali et al., 2015]
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