An Introduction to Graph Analytics Platforms

@© M. Tamer Ozsu

(Very Short Version)

M. Tamer Ozsu

University of Waterloo
David R. Cheriton School of Computer Science

UNIVERSITY OF

Waterloo

%

(2018/08/31)

1/

46



© Introduction — Graph Types
© Property Graph Processing
o Classification
@ Online querying
o Offline analytics
e Graph Analytics Approaches
@ MapReduce & Variants
o Classification of Native
Approaches
@ Graph Analytics Systems

© OLAP-Style Analytics

@ Graph Summarization

@ Snapshot-based
Aggregation

@ Graph Cube

@ Pagrol

o Gagg Model

@© M. Tamer Ozsu

(2018/08/31)  2/46



© Introduction — Graph Types

@© M. Tamer Ozsu (2018/08/31) 3/46



Graph Types

Property graph

film_3418
(label, “The Passenger”

film_1267
(label, “The Last Tycoon")

UnitedKingdom

(wikipedjaArticle)

offers_0743424425amazonOffer
(hasKffer)

ge0.2635167
books.0743424425 (name, “United Kingdom")
(rating, 4.7) (Population, 62348447)

29704
lack

icholson’

(creator)

StephenKing

(relatedBook) (based_near)

film_2014
(initial_release_date, “1980-05-23")
(label, “The Shining")
(music_contributor, music_contributor/4110)
(language, (is0639_3/eng)
(Iabel, “English")

(usedin, is03166,/CA)

(usesScript, script/latn))

actor 30013
(actor_name, “Shelley Duvall

director_8476
(director_name, “Stanley Kubrick")

film 2685
(label, “A Clockwork Orange”)




Graph Types

RDF graph

‘ “The Passenger” ‘ ‘ “The Last Tycoon” ‘
wp:UnitedKingdom refs:’abel refs:’abel
ikioedaartice | meAIm/3418] [ mdb:film) 1267
‘ bm:offers/0743424425amazonOffer gn- ricle
‘ “United Kingdom” ‘ ‘62348447
scam:hasOffer N movi&actor movigtactor
gnmame  gn:popdlation
bm:persons/StephenKing E‘m{ bm:books/0743424425 ‘ £€0:2635167
mdb:actor/29704
ing
movie:rdl foaf:baged_near . movie:actzname
moyieractor
“Jack Nicholson"

‘ “The Shining” |- <=120¢! [ it fitm /2014 }M’»
e Ia ge

movie:initial_release_date
movie:actor

mdb:actor/30013
i

rdt-label Ivont:usesScript

Ivont:psedin
lexvo:script/latin

lexvo:is0639_3/eng

moviedirector  movieXirector

refs:|abel refs:|abel

“A Clockwork Orange” “Spartacus” ‘ ‘ “Shelley Duvall” ‘ lexvo:is03166,/CA

M. Tamer Ozsu TD-LSG

/31)  4/46




Graph Types

Property graph RDF graph

im1267
(1abel, “The Last Tycoon')

s “United Kingdom' 62348447

scamhagOffer ovidactor moviglactor

ofer= ST e Z5amazanOer]

oo T Eomame gn:popdation
(ating, 47) ‘hm books/ nnzazms‘ ‘ge\, 2635,57‘
et et

oS TRtedBook  fostbaded near e i ame

“Jack Nicholson

mdb:film, 2014
movagtor
date

mdbractor /30013

movigafiector  movieigector

[mabiim 2685 [mabitim;a2¢] [ -1980-05-23']
efs: lmw refsabel
‘ “A Clockwork Orange' ‘ ‘ “Spartacus’ ‘

@ Workload: Online queries and @ Workload: SPARQL queries

analytic workloads @ Query execution: subgraph

@ Query execution: Varies matching by homomorphism

© M. Tamer Ozsu (2018/08/31) 4/46



© Property Graph Processing
@ Classification
@ Online querying
o Offline analytics

@© M. Tamer Ozsu (2018/08/31) 5/46



© Property Graph Processing
@ Classification

@© M. Tamer Ozsu (2018/08/31) 6 /46



Classification Summary

Graph Dynamism

Algorithm Types

Static Dynamic Streaming Evolving

Graphs Graphs Graphs

Graphs

Workload Types

i

Online Analytics
Queries Workloads

Offline

© M. Tamer Ozsu

Online

l_l_l

Streaming Incremental

TD-LSG

Dynamic

I
Batch

Dynamic

(2018/08/31)  7/46



Example Design Points

Graph Dynamism

Algorithm Types

I I I
Static Dynamic

Graphs Graphs Graphs

Streaming Evolving

Graphs

Workload Types

.

Offline

Online

I_I_I

Streaming Incremental

Online Analytics
Queries Workloads
I
Dynamic
I
Batch
Dynamic

Compute the query result/perform analytic computation over the graph

as it exists.

(2018/08/31)

8/46

© M. Tamer Ozsu



Example Design Points

Graph Dynamism

Algorithm Types

I I I
Static Dynamic

Graphs Graphs Graphs

Streaming Evolving

Graphs

Workload Types

.

Offline

Online

I_I_I

Streaming Incremental

Online Analytics
Queries Workloads
I
Dynamic
I
Batch
Dynamic

Compute the query result/perform analytic computation on each snap-

shot from scratch.

(2018/08/31)

8/46

© M. Tamer Ozsu



Example Design Points

Graph Dynamism

Algorithm Types

I I I
Static Dynamic

Graphs Graphs Graphs

Streaming Evolving

Graphs

Workload Types

.

Offline

Online

I_I_I

Streaming Incremental

Online Analytics
Queries Workloads
I
Dynamic
I
Batch
Dynamic

Continuously compute the query result/perform analytic computation as

the input changes.

(2018/08/31)

8/46

© M. Tamer Ozsu



Example Design Points — Not all alternatives make sense

Graph Type Graph Dynamism Algorithm Types Workload Types
I I I I
RDF  Property Static DynamicStreaming Online Analytics
Graphs Graphs Graphs Graphs Graphs Queries Workloads
| | |
Offline Online Dynamic
I
Batch
Dynamic

Dynamic (or batch-dynamic) algorithms do not make sense for static
graphs.

© M. Tamer Ozsu TD-LSG (2018/08/31)  9/46



Scale-up or Scale-out? [Lin, 2018]

@ Scale-up: Single machine execution
o Graph datasets are small and can fit in a single machine — even in main
memory
e Single machine avoids parallel execution complexities

@© M. Tamer Ozsu /31) 10/ 46



Scale-up or Scale-o [Lin, 2018]

@ Scale-up: Single machine execution
o Graph datasets are small and can fit in a single machine — even in main
memory
e Single machine avoids parallel execution complexities
@ Scale-out: Parallel execution
e Graph data sets grow when they are expanded to their storage formats

[ Dataset [ V] [ |E| | Regular size | Single Machine* |
Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UKO0705 82,240,700 2,829,101,180 43GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 | 64,422,000,000 1.3TB Out of memory

* Using (PowerLyra)

© M. Tamer Ozsu TD-LSG (2018/08/31) 10/ 46



Scale-up or Scale-o [Lin, 2018]

@ Scale-up: Single machine execution
o Graph datasets are small and can fit in a single machine — even in main
memory
e Single machine avoids parallel execution complexities

@ Scale-out: Parallel execution

e Graph data sets grow when they are expanded to their storage formats

o Workstations big enough to handle even smaller datasets are still
expensive

e Some graphs are very large: Alibaba: several billion vertices, > 100
million edges

e Dataset size may not be the determinant = parallelizing computation
is important

@© M. Tamer Ozsu (2018/08/31) 10/ 46



Scale-up or Scale-out? [Lin, 2018]

@ Scale-up: Single machine execution
o Graph datasets are small and can fit in a single machine — even in main
memory
e Single machine avoids parallel execution complexities

@ Scale-out: Parallel execution

e Graph data sets grow when they are expanded to their storage formats

o Workstations big enough to handle even smaller datasets are still
expensive

e Some graphs are very large: Alibaba: several billion vertices, > 100
million edges

e Dataset size may not be the determinant = parallelizing computation
is important

We focus on parallel graph analytics systems |

© M. Tamer Ozsu TD-LSG (2018/08/31) 10/ 46



Graph Partitioning

e Edge-cut (vertex-disjoint)

e Achieve disjoint partitions by allocating each vertex to a partition
Objective 1: Partitions should be balanced
Objective 2: Minimize edge-cuts (to reduce communication)
Good for graphs with low-degree vertices, not for power-law graphs
Examples: Hashing, METIS [Karypis and Kumar, 1995], label
propagation algorithms [Ugander and Backstrom, 2013]

@© M. Tamer Ozsu (2018/08/31) 11/46



Graph Partitioning

e Edge-cut (vertex-disjoint)

e Achieve disjoint partitions by allocating each vertex to a partition
Objective 1: Partitions should be balanced
Objective 2: Minimize edge-cuts (to reduce communication)
Good for graphs with low-degree vertices, not for power-law graphs
Examples: Hashing, METIS [Karypis and Kumar, 1995], label
propagation algorithms [Ugander and Backstrom, 2013]

@ Vertex-cut (edge-disjoint)
e Achieve disjoint partitions by allocating each edge to a partition and
replicating vertices as necessary
Objective 1: Partitions should be balanced
Objective 2: Minimize vertex-cuts (to reduce replica cost)
Perform better on power-law graphs
Examples: Hashing, greedy algorithms [Gonzalez et al., 2012]

© M. Tamer Ozsu TD-LSG (2018/08/31) 11/46



Graph Partitioning

e Edge-cut (vertex-disjoint)

Achieve disjoint partitions by allocating each vertex to a partition
Objective 1: Partitions should be balanced
Objective 2: Minimize edge-cuts (to reduce communication)

Good for graphs with low-degree vertices, not for power-law graphs

Examples: Hashing, METIS [Karypis and Kumar, 1995], label
propagation algorithms [Ugander and Backstrom, 2013]

@ Vertex-cut (edge-disjoint)

Achieve disjoint partitions by allocating each edge to a partition and
replicating vertices as necessary

e Objective 1: Partitions should be balanced
o Objective 2: Minimize vertex-cuts (to reduce replica cost)
e Perform better on power-law graphs
o Examples: Hashing, greedy algorithms [Gonzalez et al., 2012]
@ Hybrid
o Edge-cut for low-degree vertices/vertex-cut for high-degree ones

PowerLyra [Chen et al., 2015]

© M. Tamer Ozsu TD-LSG (2018/08/31) 11/46



Graph Workloads

Offline graph analytics

Online graph querying

Reachability

Single source shortest-path
Subgraph matching
SPARQL queries

@© M. Tamer Ozsu

TD-LSG

PageRank

Clustering

Connected components
Diameter finding
Graph colouring

All pairs shortest path
Graph pattern mining

Machine learning algorithms
(Belief propagation, Gaussian
non-negative matrix
factorization)

(2018/08/31) 12 /46



© Property Graph Processing

@ Online querying

@© M. Tamer Ozsu (2018/08/31) 13 /46



Reachability Queries

(label, “The Last Tycoon™)

film_3418

Umted}‘(mgdom (label, “The Passenger")

(wikipedjaArticle)

offers_0743424425amazonOffer
ge0.2635167

(hasKffer)
b00k54?743424425 (name, “United Kingdom")
(rating, 4.7) , 62348447)

(population

(cregtor)
(based_near)

v
StephenKing

film_2014
(initial_release_date, “1980-05-23")
(Iabel, “The Shining”)
(music_contributor, music_contributor/4110)
(language, (is0639_3/eng)
(label, “English” )
(usedln, is03166,/CA)
(usesScript, script/latn))

actor_30013
ame, “Shelley Duvall

director_8476
(director_name, “Stanley Kubrick")

film_424

film_2685
(label, “A Clockwork Orange") (label, “Spartacus”")

Tamer Ozsu




Reachability Queries

film_3418

(label, “The Last Tycoon™)

I:Umted:(:lmgdom (label, “The Passenger")
offers_0743424425amazonOffer (wikiped{aArticle)
(hasRffer) (adxor) (agt6r)
£e0-2635167
books_0743424425 (name, “United Kingdom™)
(population, 62348447) actor 29704
(actor_name, “Jack Nicholson")

(rating, 4.7)

(cregtor)
(based_near)

v
StephenKing

film_2014
(initial_release_date, “1980-05-23")
(Iabel, “The Shining”)
(music_contributor, music_contributor/4110)
(language, (is0639_3/eng)
(label, “English” )
(usedln, is03166,/CA)
(usesScript, script/latn))

(dirgctor)
actor_30013
(actor_name, “Shelley Duvall”)

director_8476
(director_name, “Stanley Kubrick")

film_2685
(label, “A Clockwork Orange")

© M. Tamer Ozsu




Reachability Queries

offers_0743424425amazonOffer

(hasgiffer)

books_0743424425

Umted}‘(mgdom (label, “The Passenger")

(wikipedjaArticle)

260_2635167
(name, “United Kingdom™)
(population, 62348447)

film_1267

(label, “The Last Tycoon™)

actor 29704
(actor_name, “Jack Nicholson")

(rating, 4.7)

(cregtor)
(based_near)

v
StephenKing

film_2014
(initial_release_date, “1980-05-23")
(Iabel, “The Shining”)
(music_contributor, music_contributor/4110)
(language, (is0639_3/eng)
(label, “English” )
(usedln, is03166,/CA)
(usesScript, script/latn))

(dirgctor)
director_8476 actor_30013
(director_name, “Stanley Kubrick”) (actor_name, “Shelley Duvall")

film_424
(label. “Spartacus”)

film_2685

(label. “A Clockwork Orange”)
Is there a book whose rating is > 4.0 associated with a film that
was directed by Stanley Kubrick?

(2018/08/31) 14 /46

M. Tamer Ozsu TD-LSG




Reachability Queries

© M. Tamer Ozsu



Subgraph Matching

S
<

e rev:rating @ /o)
.—‘ PN
%
%
. ‘ “The Passenger” ‘ “The Last Tycoon” ‘
)
N refs:|abel refs:|abel
‘ mdbfilm /3418 ‘ ‘ mdb:film /1267 ‘
bm:offers /07434244 Offer
‘ “United Kingdom” ‘ ‘62348447‘

movieactor movig‘actor

foaf:baged_near

‘ “The Shining” ‘—J'efs label mdb.ﬁlm/2014‘
movie:direetor_name movie:director

moviesactor
movie:initial| release_date

mdb:director/8476

moviedirector

mdbsfilm /2685

‘ “A Clockwork Orange”

mdb:actor/30013

moviedirector

mdb:film /424

1980-05-23"

[spartas

M. Tamer Ozsu




© Property Graph Processing

o Offline analytics

@© M. Tamer Ozsu (2018/08/31) 16 / 46



PageRank Computation

A web page is important if it is pointed to by other important

pages.

PjEBpi

]

nea(P) =)

PJ'GBPI. ’FPJ|
@ Bp,: in-neighbours of P;

Fp,: out-neighbours of P;

N
~
—~
w
)
~

@© M. Tamer Ozsu TD-LSG

(2018/08/31)

(P)=(1—-d)+d Y r’(F

17 /46



PageRank Computation

A web page is important if it is pointed to by other important

pages.

r(Pj)
rev1(Pi) = g il
Iteration 0 Iteration 1 Iteration 2 Rlank at
ter. 2
n(P)=1/6 n(P)=1/18 r(P;)=1/36 5
n(P2)=1/6 n(P2)=5/36 nr(P;)=1/18 4
n(P3)=1/6 n(P3)=1/12 n(P;)=1/36 5
n(Ps) =1/6 n(Py)=1/4 n(Py)=17/72 1
r(Ps)=1/6 r(Ps)=5/36 r(Ps)=11/72 3
rn(Ps) =1/6 n(Ps)=1/6 rn(Ps) = 14/72 2
@ Iterative processing
Touch each vertex
© M. Tamer Ozsu TD-LSG (2018/08/31) 17/ 46



e Graph Analytics Approaches
@ MapReduce & Variants
o Classification of Native
Approaches

@© M. Tamer Ozsu (2018/08/31) 18 /46



e Graph Analytics Approaches
@ MapReduce & Variants

@© M. Tamer Ozsu (2018/08/31) 19 /46



Can MapReduce be Used for Graph Analytics?

@ Yes; map and reduce functions can be written for graph analytics
workloads

e Scalable Graph processing Class SGC
e Connected component computation

@ Not suitable for iterative processing due to data movement at each
stage

o No guarantee that computation will be assigned to the same worker
nodes in the next round

e High I/O cost

o Need to save in storage system (HDFS) intermediate results of each
iteration

© M. Tamer Ozsu TD-LSG (2018/08/31)  20/46



Can MapReduce be Used for Graph Analytics?

@ Yes; map and reduce functions can be written for graph analytics
workloads

e Scalable Graph processing Class SGC
e Connected component computation

@ Not suitable for iterative processing due to data movement at each
stage

o No guarantee that computation will be assigned to the same worker
nodes in the next round

e High I/O cost
o Need to save in storage system (HDFS) intermediate results of each
iteration

@ There are systems that address these concerns

e Haloop
e GraphX over Spark

© M. Tamer Ozsu TD-LSG (2018/08/31)  20/46



@ Spark objectives

o Better support for iterative programs

o Provide a complete ecosystem

o Similar abstraction (to MapReduce) for programming
e Maintain MapReduce fault-tolerance and scalability

@© M. Tamer Ozsu (2018/08/31) 21 /46



@ Spark objectives
o Better support for iterative programs
o Provide a complete ecosystem
o Similar abstraction (to MapReduce) for programming
e Maintain MapReduce fault-tolerance and scalability

@ Fundamental concepts

o RDD: Reliable Distributed Datasets
e Caching of working set
e Maintaining lineage for fault-tolerance

@© M. Tamer Ozsu (2018/08/31)



GraphX [Gonzalez et al., 2014]

Built on top of Spark
Objective is to combine data analytics with graph processing
e Unify computation on tables and graphs

Carefully convert graph to tabular representation

Native GraphX API or can accommodate vertex-centric computation

App | App
Vertex-
centric API

MLIib GraphX
(machine (graph
learning) processing)

Apache Spark

© M. Tamer Ozsu (2018/08/31) 22 /46

Spark

Streaming




GraphX: Representation of Graphs as Tables

© M. Tamer Ozsu (2018/08/31) 23 /46



GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

Edge-disjoint
partitioning

© M. Tamer Ozsu TD-LSG (2018/08/31)  23/46



GraphX: Representation of Graphs as Tables

( A
Partition 1 Vertex Table
A | v-prop
—
B | v-prop _E
B
O
(g}
=
| | v-prop
D | v-prop
o~
E | v-prop _QE)
=
F | v-prop ®
=
Partition 2 M orop
Edge-disjoint -
gec ) (RDD)

partitioning v-prop:vertex prop.

© M. Tamer Ozsu TD-LSG (2018/08/31) 23 /46



GraphX: Representation of Graphs as Tables

( N
Partition 1 ( Vertex Table ) Edge Table
[B]vprop | £ A eprop [
=
. O
. T
' =
|| F | eprop | G
D | v-prop o Al e-prop | b
E (O]
PP ;E A | e-prop | E
F | v-prop é
Partition 2 M orop Eeprop | £
I J L )
Edge-disjoint (RDD) (ROD)
partitioning v-prop:vertex prop. e-prop:edge prop

© M. Tamer Ozsu (2018/08/31) 23 /46




GraphX: Representation of Graphs as Tables

\N| A | e-prop | E
v-prop 1

( N - N
Partition 1 Vertex Table Edge Table
Alerrop [ B
E v-prop | £ \f A | e-prop | C
B
. O v
. (g} :
) = :
|| F | e-prop | G
D | v-prop o Al e-prop | b
E | v-prop _QE)
F
J

S :
Partition 2 V-prop E | eprop | F
- Joining vertices )
Edge-disjoint g and edges
partitioning (RDD)  Move verticesgto edges (RDD)
v-prop:vertex prop. e-prop:edge prop

© M. Tamer Ozsu 23 /46




GraphX: Representation of Graphs as Tables

Partition 1 ( Vertex Table | [ R'qutt)ilgg ) ( Edge Table )

. Bl1[ L |A|eprop|C

v

Ine

Mach
=
N

n 1 F | e-prop | G
AN
D | v-pro Fl1/2 =
prop (q\l) / N A | e-prop | D
E | v-prop | / D2 ‘| A | eprop | E
-
F V-prop 2 ] E 2 5
Partition 2 J [ v-prop J |2 E | eprop | F
Edvedisioint J /N g
gtfet. IS_!OII’I (RDD) (RDD) (RDD)
partitioning ——,_prop:vertex prop. e-prop:edge prop

© M. Tamer Ozsu 23 /46




e Graph Analytics Approaches

o Classification of Native
Approaches

@© M. Tamer Ozsu (2018/08/31) 24 / 46



Classification of Graph Processing Systems [Han, 2015]

@ Programming model

@ Computation model

© M. Tamer Ozsu (2018/08/31) 25 /46



Classification of Graph Processing Systems [Han, 2015]

@ Programming model
@ Computation model

Computation Model

T T

T
Vertex-centric Partition-centric  Edge-centric
Programming Model

© M. Tamer Ozsu (2018/08/31) 25 /46



Classification of Graph Processing Systems

[Han, 2015]

@ Programming model
@ Computation model

Vertex-centric
Q& GAS 77 77
L )
_ Rl
= S
2 &g
>
Y Vertex-centric
5 o1 77 77
5 & Asynchronous
3 (00
3 &
Q. N
£ ©
o
) R Vertex-centric  Partition-centric Edge-centric
N
\(\@“ BSP BSP BSP
E N
%‘\QQ)L)Q
& é\
Y N
2 2
Q T T

Vertex-centric Partition-centric
Programming Model

© M. Tamer Ozsu

Edge-centric




Programming Models

@ Vertex-centric
e Computation on a vertex is the

focus
e “Think like a vertex” @ @
e Vertex computation depends on
its own state + states of its
neighbors
o Compute(vertex v)
e GetValue(), WriteValue() Q @

@© M. Tamer Ozsu (2018/08/31) 26 / 46



Programming Models
o Vertex-centric Q

e Partition-centric (Block-centric)

o Computation on an entire Q Q
partition is specified

e “Think like a block” or “Think
like a graph” Q Q

e Aim is to reduce the
communication cost among Q Q
vertices :

(2018/08/31) 26 /46

@© M. Tamer Ozsu



Programming Models

@ Vertex-centric
e Partition-centric (Block-centric) ‘

o Edge-centric
o Computation is specified on each
edge rather than on each vertex or
block
e Compute(edge e)

@© M. Tamer Ozsu (2018/08/31) 26 /46



Computational Models

@ Block Synchronous Parallel (BSP)

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)
Computation

I
r

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)

Superstep 1 Superstep 2 Superstep 3
Machine 1
Machine 2
Machine 3
Communication
Barrier
Each machine performs At the end of each superstep
computation results are pushed to other
on its graph partition workers

@© M. Tamer Ozsu (2018/08/31)



Computational Models

@ Block Synchronous Parallel (BSP)

Superstep 1 Superstep 2 Superstep 3
Machine 1 Machine 1
Machine 2 Machine 2
Machine 3 Machine 3
Communication Communication
Barrier Barrier
Each machine performs At the end of each superstep
computation results are pushed to other
on its graph partition workers

© M. Tamer Ozsu TD-LSG (2018/08/31)  27/46



Computational Models

@ Block Synchronous Parallel (BSP)

Superstep 1 Superstep 2 Superstep 3
Machine 1 Machine 1 Machine 1
Machine 2 Machine 2 Machine 2
Machine 3 Machine 3 Machine 3
Communication Communication
Barrier Barrier
Each machine performs At the end of each superstep
computation results are pushed to other
on its graph partition workers

© M. Tamer Ozsu TD-LSG (2018/08/31)  27/46



Computational Models

@ Block Synchronous Parallel (BSP)

@ Asynchronous Parallel

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)
@ Asynchronous Parallel

o No communication barriers. v

o Uses the most recent values. v/
e Implemented via distributed locking

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)
@ Asynchronous Parallel

o No communication barriers. v

o Uses the most recent values. v/
e Implemented via distributed locking

o Consider vertex-centric program

Vi V2

Vo

V3 Vg

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)
@ Asynchronous Parallel

o No communication barriers. v

o Uses the most recent values. v/
e Implemented via distributed locking

o Consider vertex-centric program

Vi V2

Vo

V3 Vg

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)
@ Asynchronous Parallel

o No communication barriers. v
o Uses the most recent values. v/ -
Machine 2

e Implemented via distributed locking

o Consider vertex-centric program

Vi V2

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)
@ Asynchronous Parallel

o No communication barriers. v
o Uses the most recent values. v/ -
Machine 2

e Implemented via distributed locking

o Consider vertex-centric program

Vi V2

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)
@ Asynchronous Parallel
e No communication barriers. v/
o Uses the most recent values. v/
e Implemented via distributed locking

o Consider vertex-centric program
Vi V2

Machine 2

@© M. Tamer Ozsu (2018/08/31)



Computational Models

@ Block Synchronous Parallel (BSP)
@ Asynchronous Parallel

o No communication barriers. v

o Uses the most recent values. v/
e Implemented via distributed locking

o Consider vertex-centric program

Vi V2

@ (&

Vo

@ @

V3 Vg

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)
@ Asynchronous Parallel

o No communication barriers. v

o Uses the most recent values. v/
e Implemented via distributed locking

o Consider vertex-centric program

Vi V2

Vo

V3 Vg

@© M. Tamer Ozsu (2018/08/31) 27 / 46



Computational Models

@ Block Synchronous Parallel (BSP)

@ Asynchronous Parallel

o Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based

Gather: pull state

Apply: Compute function

Scatter: Update state

Updates of states separated from scheduling

@© M. Tamer Ozsu (2018/08/31)



Real-World Graph Characteristics

@ Read-world graphs have skewed vertex degree distribution
o Common in power-law graphs
e Problem: imbalanced communication workloads
@ Real-world graphs have large diameters
o Common in road networks, web graphs, terrain meshes
e Problem: one superstep per hop = too many supersteps
@ Real-world graphs have high average vertex degree

e Common in social networks, mobile communication networks
o Problem: heavy average communication workloads

© M. Tamer Ozsu TD-LSG (2018/08/31)  28/46



@ Graph Analytics Systems

@© M. Tamer Ozsu (2018/08/31) 29 /46



Vertex-Centric BSP Systems

@ “Think like a vertex”

@ Compute(vertex v)

@© M. Tamer Ozsu (2018/08/31) 30/ 46



Vertex-Centric BSP Systems

@ “Think like a vertex”
@ Compute(vertex v)

@ BSP Computation — push state to

neighbor vertices at the end of each
superstep

@© M. Tamer Ozsu

I I
F > r

o]
- e
e

Communication Communication
Barrier Barrier

Superstep 1 Superstep 2 ) Superstep 3
T

(2018/08/31)  30/46



Vertex-Centric BSP Systems

@ “Think like a vertex”
@ Compute(vertex v)

@ BSP Computation — push state to

neighbor vertices at the end of each

Superstep 1

) Superstep 2 ) Superstep 3
T

I

superstep ’ -

Machine 1 |Machine 1|

@ Continue until all vertices are

. . | Machine 2 | Machine 2|
Inactive
. Machine 3 | Machine 3|
@ Vertex state machine Communican —
ommunication Communication
Barrier Barrier
Vote halt

Message received

© M. Tamer Ozsu TD-LSG (2018/08/31) 3046



Vertex-Centric BSP Systems

“Think like a vertex”

Compute (vertex v)

neighbor vertices at the end of each
superstep * -

i ) i |Machine 1|
@ Continue until all vertices are

. . i |Machine 2|
Inactive
=)

BSP Computation — push state to
Superstep 1 Superstep 2 ) Superstep 3

I Vertex State maChIne Communication Communication
e Example systems: Pregel [Malewicz e e
et al., 2010], Apache Giraph, GPS Vote halt

[Salihoglu and Widom, 2013], Mizan
[Khayyat et al., 2013], Trinity [?] Chetve ) Clnactive 3
Message received

© M. Tamer Ozsu TD-LSG (2018/08/31)  30/46



Vertex-Centric Asynchronous Systems

@ “Think like a vertex”

@ Compute(vertex v)

@© M. Tamer Ozsu (2018/08/31) 31/46



Vertex-Centric Asynchronous Systems

@ “Think like a vertex”
@ Compute(vertex v)

@ Supersteps exist along with
synchronization barriers, but ...

@ Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

| Machine 1 Machine 1 |

| Machine 2 Machine 2 |

| Machine 3 Machine 3 |

© M. Tamer Ozsu TD-LSG (2018/08/31)  31/46



Vertex-Centric Asynchronous Systems

@ "“Think like a vertex”

@ Compute(vertex v)

@ Supersteps exist along with
synchronization barriers, but ...

@ Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

| Machine 1 Machine 1 |

| Machine 2 Machine 2 |

| Machine 3 Machine 3 |

o Consistency of vertex states:
distributed locking

© M. Tamer Ozsu TD-LSG (2018/08/31)  31/46



Vertex-Centric Asynchronous Systems

@ "“Think like a vertex”

@ Compute(vertex v)

@ Supersteps exist along with
synchronization barriers, but ...

@ Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

| Machine 1 Machine 1 |

| Machine 2 Machine 2 |

| Machine 3 Machine 3 |

o Consistency of vertex states:

distributed locking G 6
(@)

@ @

© M. Tamer Ozsu TD-LSG (2018/08/31)  31/46



Vertex-Centric Asynchronous Systems

@ "“Think like a vertex”

@ Compute(vertex v)

@ Supersteps exist along with
synchronization barriers, but ...

@ Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

| Machine 1 Machine 1 |

| Machine 2 Machine 2 |

| Machine 3 Machine 3 |

o Consistency of vertex states:

distributed locking G 6
(@)

@ @

© M. Tamer Ozsu TD-LSG (2018/08/31)  31/46



Vertex-Centric Asynchronous Systems

@ "“Think like a vertex”

@ Compute(vertex v)

@ Supersteps exist along with
synchronization barriers, but ...

@ Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

| Machine 1 Machine 1 |

| Machine 2 Machine 2 |

| Machine 3 Machine 3 |

o Consistency of vertex states:
distributed locking

© M. Tamer Ozsu TD-LSG (2018/08/31)  31/46



Vertex-Centric Asynchronous Systems

@ "“Think like a vertex”

@ Compute(vertex v)

@ Supersteps exist along with
synchronization barriers, but ...

@ Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

| Machine 1 Machine 1 |

| Machine 2 Machine 2 |

| Machine 3 Machine 3 |

o Consistency of vertex states:
distributed locking

o Consistency issues: no guarantee
about input to Compute ()

e Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015

@© M. Tamer Ozsu (2018/08/31) 31/46




Vertex-Centric GAS Systems

@ “Think like a vertex”
o Gather phase
e Gather local computation from
neighbours if vertex v: called scope S,
o Apply phase
e Compute(v, Sv)
@ Scatter phase
e Compute(v, Sv) produces S‘l,
(scattering state)
o Example: GraphLab [Low et al., 2012]
@ Synchronous version
o Similar to vertex-centric BSP, except
pulling S, rather than pushing
@ Asynchronous version different

@© M. Tamer Ozsu TD-LSG (2018/08/31)  32/46



Vertex-Centric GAS Systems — Asynchronous

procedure GRAPHLAB_ASYNC(G = (V,E,D),T)

return Modified G = (V,E, D)
end procedure

@ Graph mutation restricted to vertex states

@© M. Tamer Ozsu (2018/08/31) 33 /46



Vertex-Centric GAS Systems — Asynchronous

procedure GRAPHLAB_ASYNC(G = (V,E,D),T)
while 7 is not empty do

end while
return Modified G = (V,E, D)
end procedure

@ Graph mutation restricted to vertex states

@© M. Tamer Ozsu

(2018/08/31)



Vertex-Centric GAS Systems — Asynchronous

procedure GRAPHLAB_ASYNC(G = (V,E,D),T)
while 7 is not empty do
v < RemoveNext(7)

end while
return Modified G = (V,E, D)
end procedure

@ Graph mutation restricted to vertex states

@© M. Tamer Ozsu

(2018/08/31)



Vertex-Centric GAS Systems — Asynchronous

procedure GRAPHLAB_ASYNC(G = (V,E,D),T)
while 7 is not empty do

v < RemoveNext(7)

Compute(v,S,) — (7, S,)

end while

return Modified G = (V,E, D)

end procedure

@ Graph mutation restricted to vertex states

e Computing S, updates (scatters) states of
the vertices in scope

© M. Tamer Ozsu TD-LSG (2018/08/31)  33/46



Vertex-Centric GAS Systems — Asynchronous

procedure GRAPHLAB_ASYNC(G = (V,E,D),T)
while 7 is not empty do
v < RemoveNext(7)
Compute(v, S,) — (7, S,)
T« TUuT
end while
return Modified G = (V,E, D)
end procedure

@ Graph mutation restricted to vertex states

e Computing S, updates (scatters) states of
the vertices in scope

o Computation of new states S", separated
from computation of new 7’

e RemoveNext () can remove any vertex —
scheduling separated from state scatter

@© M. Tamer Ozsu TD-LSG

(2018/08/31)

33/46



Partition- (Block-)Centric BSP Systems

o Blogel : "Think like a block”; also “think like a
graph”

o Better handles the characteristics of real-world graphs by reducing
communication

@ Exploit the partitioning of the graph
@ Message exchanges only among blocks

@ Within a block, run a serial in-memory algorithm; BSP between
partitions

=

© M. Tamer Ozsu TD-LSG (2018/08/31)  34/46




Benefits of Partition- (Block-)Centric BSP

@ High-degree vertices inside a block send no messages
@ Fewer number of supersteps

@ Fewer number of blocks than vertices

S

S

. A7 N
PSRN RS
_‘_-‘__>__+_’_
~J3 L~
N ~, Mo ’

A

© M. Tamer Ozsu TD-LSG (2018/08/31) 3546



Edge-Centric BSP Systems

@ “Think like an edge”
o Compute(edge e)

o Number of edges > number of vertices

o More computation but perhaps fewer messages
o Operate on unsorted sequence of edges = no random access

@ X-Stream [Roy et al., 2013]

© M. Tamer Ozsu (2018/08/31)



© OLAP-Style Analytics
@ Graph Summarization
@ Snapshot-based
Aggregation
@ Graph Cube
@ Pagrol
o Gagg Model

@© M. Tamer Ozsu (2018/08/31) 37 /46



OLAP Over Graphs

@ OLAP in RDBMS
o Usage: Data Warehousing + Business Intelligence
e Model: Multidimensional cube
e Operations: Roll-up, drill-down, and slice and dice

@ Analytics that we discussed over graphs is much different
@ Can we do OLAP-style analytics over graphs?
e There is some work

o Graph summarization
Snapshot-based Aggregation
Graph Cube

Pagrol

Gagg Model

© M. Tamer Ozsu TD-LSG (2018/08/31) 3846



Acknowledgements

This presentation draws upon collaborative research and discussions with
the following colleagues

@ Khaled Ammar, U. Waterloo

Xiaofei Zhang, U. Waterloo (U. Memphis)

Khuzaima Daudjee,U. Waterloo Young Han, U. Waterloo (Google)

@© M. Tamer Ozsu (2018/08/31) 39 /46



_"¥->
NSERC INNOVATIONCA zﬁ— Ontano
CRSNG  2pususr| e

MINISTRY OF RESEARCH AND INNOVATION
MINISTERE DE LA RECHERCHE ET DE L'INNOVATION

WV Google

HUAWEI

BOSCH @ gstanada Lab

@© M. Tamer Ozsu (2018/08/31) 40 /46



Tamer Ozsu



References |

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2010). HalLoop: efficient iterative
data processing on large clusters. Proc. VLDB Endowment, 3(1):285-296. Available
from: http://dl.acm.org/citation.cfm?id=1920841.1920881.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2012). The HalLoop approach to
large-scale iterative data analysis. VLDB J., 21(2):169-190.

Chen, C., Yan, X., Zhu, F., Han, J., and Yu, P. S. (2008). Graph OLAP: Towards online
analytical processing on graphs. In Proc. 8th IEEE Int. Conf. on Data Mining, pages
103-112.

Chen, R., Shi, J., Chen, Y., and Chen, H. (2015). PowerlLyra: Differentiated graph
computation and partitioning on skewed graphs. In Proc. 10th ACM
SIGOPS /EuroSys European Conf. on Comp. Syst., pages 1:1-1:15. Available from:
http://doi.acm.org/10.1145/2741948.2741970.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C. (2012). PowerGraph:
Distributed graph-parallel computation on natural graphs. In Proc. 10th USENIX
Symp. on Operating System Design and Implementation, pages 17-30. Available
from: http://dl.acm.org/citation.cfm?id=2387880.2387883.

© M. Tamer Ozsu TD-LSG (2018/08/31)  42/46


http://dl.acm.org/citation.cfm?id=1920841.1920881
http://doi.acm.org/10.1145/2741948.2741970
http://dl.acm.org/citation.cfm?id=2387880.2387883

References Il

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica, I.
(2014). GraphX: graph processing in a distributed dataflow framework graph
processing in a distributed dataflow framework. In Proc. 11th USENIX Symp. on
Operating System Design and Implementation, pages 599-613. Available from:
https://www.usenix.org/conference/osdil4/technical-sessions/
presentation/gonzalez.

Han, M. (2015). On improving distributed Pregel-like graph processing systems.
Master’s thesis, University of Waterloo, David R. Cheriton School of Computer
Science.

Han, M. and Daudjee, K. (2015). Giraph unchained: Barrierless asynchronous parallel
execution in Pregel-like graph processing systems. Proc. VLDB Endowment,
8(9):950-961. Available from: http://www.vldb.org/pvldb/vol8/p950-han.pdf.

Karypis, G. and Kumar, V. (1995). Multilevel graph partitioning schemes. In Proc. 1995
Int. Conf. on Parallel Processing, pages 113-122.

Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., and Kalnis, P. (2013).
Mizan: A system for dynamic load balancing in large-scale graph processing. In Proc.
8th ACM SIGOPS/EuroSys European Conf. on Comp. Syst., pages 169-182.
Available from: http://doi.acm.org/10.1145/2465351.2465369.

© M. Tamer Ozsu TD-LSG (2018/08/31)  43/46


https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
http://www.vldb.org/pvldb/vol8/p950-han.pdf
http://doi.acm.org/10.1145/2465351.2465369

References IlI

Kiveris, R., Lattanzi, S., Mirrokni, V., Rastogi, V., and Vassilvitskii, S. (2014).
Connected components in MapReduce and beyond. In Proc. 5th ACM Symp. on
Cloud Computing, pages 18:1-18:13.

Lin, J. (2018). Scale up or scale out for graph processing? IEEE Internet Comput.,
22(3):72-78.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M.

(2012). Distributed graphlab: A framework for machine learning in the cloud. Proc.
VLDB Endowment, 5(8):716-727.

Maali, F., Campinas, S., and Decker, S. (2015). Gagg: A graph aggregation operator. In
Proc. 14th Int. Semantic Web Conf., pages 491-504.

Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, |., Leiser, N., and
Czajkowski, G. (2010). Pregel: a system for large-scale graph processing. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 135-146.

Qin, L., Yu, J. X, Chang, L., Cheng, H., Zhang, C., and Lin, X. (2014). Scalable big
graph processing in mapreduce. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 827-838. Available from:
http://doi.acm.org/10.1145/2588555.2593661.

© M. Tamer Ozsu TD-LSG (2018/08/31) 44 /46


http://doi.acm.org/10.1145/2588555.2593661

References IV

Rastogi, V., Machanavajjhala, A., Chitnis, L., and Sarma, A. D. (2013). Finding
connected components in map-reduce in logarithmic rounds. In Proc. 29th Int. Conf.
on Data Engineering, pages 50-61.

Roy, A., Mihailovic, I., and Zwaenepoel, W. (2013). X-stream: edge-centric graph
processing using streaming partitions. In Proc. 24th ACM Symp. on Operating
System Principles, pages 472—488. Available from:
http://doi.acm.org/10.1145/2517349.2522740.

Salihoglu, S. and Widom, J. (2013). GPS: a graph processing system. In Proc. 25th Int.
Conf. on Scientific and Statistical Database Management, pages 22:1-22:12.
Available from: http://doi.acm.org/10.1145/2484838.2484843.

Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J. (2013). From
“think like a vertex” to “think like a graph”. Proc. VLDB Endowment, 7(3):193-204.
Available from: http://www.vldb.org/pvldb/vol7/p193-tian.pdf.

Tian, Y., Hankins, R. A., and Patel, J. M. (2008). Efficient aggregation for graph
summarization. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
567-580.

© M. Tamer Ozsu TD-LSG (2018/08/31) 4546


http://doi.acm.org/10.1145/2517349.2522740
http://doi.acm.org/10.1145/2484838.2484843
http://www.vldb.org/pvldb/vol7/p193-tian.pdf

Ugander, J. and Backstrom, L. (2013). Balanced label propagation for partitioning
massive graphs. In Proc. 6th ACM Int. Conf. Web Search and Data Mining, pages
507-516. Available from: http://doi.acm.org/10.1145/2433396.2433461.

Valiant, L. G. (1990). A bridging model for parallel computation. Commun. ACM,
33(8):103-111.
Wang, G., Xie, W., Demers, A. J., and Gehrke, J. (2013). Asynchronous large-scale

graph processing made easy. In Proc. 6th Biennial Conf. on Innovative Data Systems
Research.

Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework for
distributed computation on real-world graphs. Proc. VLDB Endowment,
7(14):1981-1992. Available from:
http://www.vldb.org/pvldb/vol7/p1981-yan.pdf.

Zhao, P., Li, X., Xin, D., and Han, J. (2011). Graph cube: on warehousing and OLAP
multidimensional networks. In Proc. ACM International Conference on Management
of Data, pages 853—-864.

© M. Tamer Ozsu TD-LSG (2018/08/31) 46 /46


http://doi.acm.org/10.1145/2433396.2433461
http://www.vldb.org/pvldb/vol7/p1981-yan.pdf

	Outline
	Introduction – Graph Types
	Property Graph Processing
	Classification
	Online querying
	Offline analytics

	Graph Analytics Approaches
	MapReduce & Variants
	Classification of Native Approaches

	Graph Analytics Systems
	OLAP-Style Analytics
	Graph Summarization
	Snapshot-based Aggregation
	Graph Cube
	Pagrol
	Gagg Model

	References

