
An Introduction to Graph Analytics Platforms
(Very Short Version)

M. Tamer Özsu

University of Waterloo
David R. Cheriton School of Computer Science

© M. Tamer Özsu TD-LSG (2018/08/31) 1 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 2 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 3 / 46

Graph Types

Property graph

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

© M. Tamer Özsu TD-LSG (2018/08/31) 4 / 46

Graph Types

RDF graph

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

mob:music contributor
music contributor

lexvo:iso639 3/eng

language

bm:books/0743424425

4.7

rev:rating

bm:persons/StephenKing
dc:creator

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

wp:UnitedKingdom

gn:wikipediaArticle

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

“Shelley Duvall”

movie:actor name
“English”

rdf:label

lexvo:iso3166/CA

lvont:usedIn
lexvo:script/latin

lvont:usesScript

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director

movie:actor

movie:actor movie:actor

movie:director movie:director

© M. Tamer Özsu TD-LSG (2018/08/31) 4 / 46

Graph Types

Property graph

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Workload: Online queries and
analytic workloads

Query execution: Varies

RDF graph

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

Workload: SPARQL queries

Query execution: subgraph
matching by homomorphism

© M. Tamer Özsu TD-LSG (2018/08/31) 4 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 5 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 6 / 46

Classification Summary

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

© M. Tamer Özsu TD-LSG (2018/08/31) 7 / 46

Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result/perform analytic computation over the graph
as it exists.

© M. Tamer Özsu TD-LSG (2018/08/31) 8 / 46

Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result/perform analytic computation on each snap-
shot from scratch.

© M. Tamer Özsu TD-LSG (2018/08/31) 8 / 46

Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Continuously compute the query result/perform analytic computation as
the input changes.

© M. Tamer Özsu TD-LSG (2018/08/31) 8 / 46

Example Design Points – Not all alternatives make sense

Graph Type

RDF
Graphs

Property
Graphs

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Algorithm Types

Offline Online Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Dynamic (or batch-dynamic) algorithms do not make sense for static
graphs.

© M. Tamer Özsu TD-LSG (2018/08/31) 9 / 46

Scale-up or Scale-out? [Lin, 2018]

Scale-up: Single machine execution

Graph datasets are small and can fit in a single machine – even in main
memory
Single machine avoids parallel execution complexities

Scale-out: Parallel execution

Graph data sets grow when they are expanded to their storage formats
Workstations big enough to handle even smaller datasets are still
expensive
Some graphs are very large: Alibaba: several billion vertices, > 100
million edges
Dataset size may not be the determinant ⇒ parallelizing computation
is important

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

We focus on parallel graph analytics systems

© M. Tamer Özsu TD-LSG (2018/08/31) 10 / 46

Scale-up or Scale-out? [Lin, 2018]

Scale-up: Single machine execution

Graph datasets are small and can fit in a single machine – even in main
memory
Single machine avoids parallel execution complexities

Scale-out: Parallel execution

Graph data sets grow when they are expanded to their storage formats

Workstations big enough to handle even smaller datasets are still
expensive
Some graphs are very large: Alibaba: several billion vertices, > 100
million edges
Dataset size may not be the determinant ⇒ parallelizing computation
is important

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

We focus on parallel graph analytics systems

© M. Tamer Özsu TD-LSG (2018/08/31) 10 / 46

Scale-up or Scale-out? [Lin, 2018]

Scale-up: Single machine execution

Graph datasets are small and can fit in a single machine – even in main
memory
Single machine avoids parallel execution complexities

Scale-out: Parallel execution

Graph data sets grow when they are expanded to their storage formats
Workstations big enough to handle even smaller datasets are still
expensive
Some graphs are very large: Alibaba: several billion vertices, > 100
million edges
Dataset size may not be the determinant ⇒ parallelizing computation
is important

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

We focus on parallel graph analytics systems

© M. Tamer Özsu TD-LSG (2018/08/31) 10 / 46

Scale-up or Scale-out? [Lin, 2018]

Scale-up: Single machine execution

Graph datasets are small and can fit in a single machine – even in main
memory
Single machine avoids parallel execution complexities

Scale-out: Parallel execution

Graph data sets grow when they are expanded to their storage formats
Workstations big enough to handle even smaller datasets are still
expensive
Some graphs are very large: Alibaba: several billion vertices, > 100
million edges
Dataset size may not be the determinant ⇒ parallelizing computation
is important

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

We focus on parallel graph analytics systems

© M. Tamer Özsu TD-LSG (2018/08/31) 10 / 46

Graph Partitioning

Edge-cut (vertex-disjoint)
Achieve disjoint partitions by allocating each vertex to a partition
Objective 1: Partitions should be balanced
Objective 2: Minimize edge-cuts (to reduce communication)
Good for graphs with low-degree vertices, not for power-law graphs
Examples: Hashing, METIS [Karypis and Kumar, 1995], label
propagation algorithms [Ugander and Backstrom, 2013]

Vertex-cut (edge-disjoint)
Achieve disjoint partitions by allocating each edge to a partition and
replicating vertices as necessary
Objective 1: Partitions should be balanced
Objective 2: Minimize vertex-cuts (to reduce replica cost)
Perform better on power-law graphs
Examples: Hashing, greedy algorithms [Gonzalez et al., 2012]

Hybrid
Edge-cut for low-degree vertices/vertex-cut for high-degree ones
PowerLyra [Chen et al., 2015]

© M. Tamer Özsu TD-LSG (2018/08/31) 11 / 46

Graph Partitioning

Edge-cut (vertex-disjoint)
Achieve disjoint partitions by allocating each vertex to a partition
Objective 1: Partitions should be balanced
Objective 2: Minimize edge-cuts (to reduce communication)
Good for graphs with low-degree vertices, not for power-law graphs
Examples: Hashing, METIS [Karypis and Kumar, 1995], label
propagation algorithms [Ugander and Backstrom, 2013]

Vertex-cut (edge-disjoint)
Achieve disjoint partitions by allocating each edge to a partition and
replicating vertices as necessary
Objective 1: Partitions should be balanced
Objective 2: Minimize vertex-cuts (to reduce replica cost)
Perform better on power-law graphs
Examples: Hashing, greedy algorithms [Gonzalez et al., 2012]

Hybrid
Edge-cut for low-degree vertices/vertex-cut for high-degree ones
PowerLyra [Chen et al., 2015]

© M. Tamer Özsu TD-LSG (2018/08/31) 11 / 46

Graph Partitioning

Edge-cut (vertex-disjoint)
Achieve disjoint partitions by allocating each vertex to a partition
Objective 1: Partitions should be balanced
Objective 2: Minimize edge-cuts (to reduce communication)
Good for graphs with low-degree vertices, not for power-law graphs
Examples: Hashing, METIS [Karypis and Kumar, 1995], label
propagation algorithms [Ugander and Backstrom, 2013]

Vertex-cut (edge-disjoint)
Achieve disjoint partitions by allocating each edge to a partition and
replicating vertices as necessary
Objective 1: Partitions should be balanced
Objective 2: Minimize vertex-cuts (to reduce replica cost)
Perform better on power-law graphs
Examples: Hashing, greedy algorithms [Gonzalez et al., 2012]

Hybrid
Edge-cut for low-degree vertices/vertex-cut for high-degree ones
PowerLyra [Chen et al., 2015]

© M. Tamer Özsu TD-LSG (2018/08/31) 11 / 46

Graph Workloads

Online graph querying

Reachability

Single source shortest-path

Subgraph matching

SPARQL queries

Offline graph analytics

PageRank

Clustering

Connected components

Diameter finding

Graph colouring

All pairs shortest path

Graph pattern mining

Machine learning algorithms
(Belief propagation, Gaussian
non-negative matrix
factorization)

© M. Tamer Özsu TD-LSG (2018/08/31) 12 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 13 / 46

Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

© M. Tamer Özsu TD-LSG (2018/08/31) 14 / 46

Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Can you reach film 1267 from film 2014?

© M. Tamer Özsu TD-LSG (2018/08/31) 14 / 46

Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Is there a book whose rating is > 4.0 associated with a film that
was directed by Stanley Kubrick?

© M. Tamer Özsu TD-LSG (2018/08/31) 14 / 46

Reachability Queries

Think of Facebook graph and finding friends of friends.

© M. Tamer Özsu TD-LSG (2018/08/31) 14 / 46

Subgraph Matching

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

Subgraph
M

atching

© M. Tamer Özsu TD-LSG (2018/08/31) 15 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 16 / 46

PageRank Computation

A web page is important if it is pointed to by other important
pages.

P1 P2

P3

P5P6

P4

r(Pi) = (1− d) + d
∑

Pj∈BPi

r(Pj)

|FPj
|

(let d = 1)

r(P2) =
r(P1)

2
+

r(P3)

3

rk+1(Pi) =
∑

Pj∈BPi

rk(Pj)

|FPj
|

BPi
: in-neighbours of Pi

FPi
: out-neighbours of Pi

© M. Tamer Özsu TD-LSG (2018/08/31) 17 / 46

PageRank Computation

A web page is important if it is pointed to by other important
pages.

P1 P2

P3

P5P6

P4

rk+1(Pi) =
∑

Pj∈BPi

rk(Pj)

|FPj
|

Iteration 0 Iteration 1 Iteration 2
Rank at
Iter. 2

r0(P1) = 1/6 r1(P1) = 1/18 r2(P1) = 1/36 5
r0(P2) = 1/6 r1(P2) = 5/36 r2(P2) = 1/18 4
r0(P3) = 1/6 r1(P3) = 1/12 r2(P3) = 1/36 5
r0(P4) = 1/6 r1(P4) = 1/4 r2(P4) = 17/72 1
r0(P5) = 1/6 r1(P5) = 5/36 r2(P5) = 11/72 3
r0(P6) = 1/6 r1(P6) = 1/6 r2(P6) = 14/72 2

Iterative processing
Touch each vertex

© M. Tamer Özsu TD-LSG (2018/08/31) 17 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 18 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 19 / 46

Can MapReduce be Used for Graph Analytics?

Yes; map and reduce functions can be written for graph analytics
workloads

Scalable Graph processing Class SGC [Qin et al., 2014]
Connected component computation [Kiveris et al., 2014; Rastogi et al.,
2013]

Not suitable for iterative processing due to data movement at each
stage

No guarantee that computation will be assigned to the same worker
nodes in the next round

High I/O cost

Need to save in storage system (HDFS) intermediate results of each
iteration

© M. Tamer Özsu TD-LSG (2018/08/31) 20 / 46

Can MapReduce be Used for Graph Analytics?

Yes; map and reduce functions can be written for graph analytics
workloads

Scalable Graph processing Class SGC [Qin et al., 2014]
Connected component computation [Kiveris et al., 2014; Rastogi et al.,
2013]

Not suitable for iterative processing due to data movement at each
stage

No guarantee that computation will be assigned to the same worker
nodes in the next round

High I/O cost

Need to save in storage system (HDFS) intermediate results of each
iteration

There are systems that address these concerns

HaLoop [Bu et al., 2010, 2012]
GraphX over Spark [Gonzalez et al., 2014]

© M. Tamer Özsu TD-LSG (2018/08/31) 20 / 46

Spark System

Spark objectives

Better support for iterative programs
Provide a complete ecosystem
Similar abstraction (to MapReduce) for programming
Maintain MapReduce fault-tolerance and scalability

Fundamental concepts

RDD: Reliable Distributed Datasets
Caching of working set
Maintaining lineage for fault-tolerance

© M. Tamer Özsu TD-LSG (2018/08/31) 21 / 46

Spark System

Spark objectives

Better support for iterative programs
Provide a complete ecosystem
Similar abstraction (to MapReduce) for programming
Maintain MapReduce fault-tolerance and scalability

Fundamental concepts

RDD: Reliable Distributed Datasets
Caching of working set
Maintaining lineage for fault-tolerance

© M. Tamer Özsu TD-LSG (2018/08/31) 21 / 46

GraphX [Gonzalez et al., 2014]

Built on top of Spark

Objective is to combine data analytics with graph processing

Unify computation on tables and graphs

Carefully convert graph to tabular representation

Native GraphX API or can accommodate vertex-centric computation

Native
Spark
Apps

Spark
SQL

Spark
Streaming

MLlib
(machine
learning)

GraphX
(graph

processing)

Apache Spark

Vertex-
centric API

AppApp

App App

© M. Tamer Özsu TD-LSG (2018/08/31) 22 / 46

GraphX: Representation of Graphs as Tables

A

B

C

D

E

F

G

H

I

J

© M. Tamer Özsu TD-LSG (2018/08/31) 23 / 46

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

© M. Tamer Özsu TD-LSG (2018/08/31) 23 / 46

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

© M. Tamer Özsu TD-LSG (2018/08/31) 23 / 46

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

Edge Table

(RDD)
e-prop:edge prop.

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F

© M. Tamer Özsu TD-LSG (2018/08/31) 23 / 46

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

Edge Table

(RDD)
e-prop:edge prop.

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F
Joining vertices

and edges
Move vertices to edges

© M. Tamer Özsu TD-LSG (2018/08/31) 23 / 46

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

Edge Table

(RDD)
e-prop:edge prop.

Routing
Table

(RDD)

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F

A 1 2

B 1

...

I 1

F 1 2

D 2

E 2

J 2

© M. Tamer Özsu TD-LSG (2018/08/31) 23 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 24 / 46

Classification of Graph Processing Systems [Han, 2015]

Programming model

Computation model

© M. Tamer Özsu TD-LSG (2018/08/31) 25 / 46

Classification of Graph Processing Systems [Han, 2015]

Programming model
Computation model

Vertex-centric Partition-centric Edge-centric

Blo
ck

Syn
ch

ro
nou

s

Par
al

lel
(B

SP)

Asy
nch

ro
nou

s

Gat
her

-A
pply

Sca
tt

er
(G

AS)

Programming Model

C
om

p
u

ta
ti

on
M

o
d

el

© M. Tamer Özsu TD-LSG (2018/08/31) 25 / 46

Classification of Graph Processing Systems [Han, 2015]

Programming model
Computation model

Vertex-centric Partition-centric Edge-centric

Blo
ck

Syn
ch

ro
nou

s

Par
al

lel
(B

SP)

Asy
nch

ro
nou

s

Gat
her

-A
pply

Sca
tt

er
(G

AS)

Programming Model

C
om

p
u

ta
ti

on
M

o
d

el

Vertex-centric

BSP

Vertex-centric

Asynchronous

Vertex-centric

GAS

Partition-centric

BSP

???

???

Edge-centric

BSP

???

???

© M. Tamer Özsu TD-LSG (2018/08/31) 25 / 46

Programming Models

Vertex-centric

Computation on a vertex is the
focus
“Think like a vertex”
Vertex computation depends on
its own state + states of its
neighbors
Compute(vertex v)

GetValue(), WriteValue()

Partition-centric (Block-centric)

Edge-centric

?

© M. Tamer Özsu TD-LSG (2018/08/31) 26 / 46

Programming Models

Vertex-centric

Partition-centric (Block-centric)

Computation on an entire
partition is specified
“Think like a block” or “Think
like a graph”
Aim is to reduce the
communication cost among
vertices

Edge-centric

© M. Tamer Özsu TD-LSG (2018/08/31) 26 / 46

Programming Models

Vertex-centric

Partition-centric (Block-centric)

Edge-centric

Computation is specified on each
edge rather than on each vertex or
block
Compute(edge e)

© M. Tamer Özsu TD-LSG (2018/08/31) 26 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]

Asynchronous Parallel

Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
computation
on its graph partition

At the end of each superstep
results are pushed to other
workers

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

Asynchronous Parallel
Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
computation
on its graph partition

At the end of each superstep
results are pushed to other
workers

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

Asynchronous Parallel
Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
computation
on its graph partition

At the end of each superstep
results are pushed to other
workers

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

Asynchronous Parallel
Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
computation
on its graph partition

At the end of each superstep
results are pushed to other
workers

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

Asynchronous Parallel
Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]

Asynchronous Parallel

Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking

Consider vertex-centric program

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

Compute State

Gather-Apply-Scatter (GAS)
Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking
Consider vertex-centric program

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

Compute State

Gather-Apply-Scatter (GAS)
Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking
Consider vertex-centric program

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

Compute State

Gather-Apply-Scatter (GAS)
Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking
Consider vertex-centric program

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

Compute State

Gather-Apply-Scatter (GAS)
Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking
Consider vertex-centric program

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

Compute State

Gather-Apply-Scatter (GAS)
Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking
Consider vertex-centric program

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

Compute State

Gather-Apply-Scatter (GAS)
Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking
Consider vertex-centric program

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

Compute State

Gather-Apply-Scatter (GAS)
Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]
Asynchronous Parallel

No communication barriers. 3
Uses the most recent values. 3
Implemented via distributed locking
Consider vertex-centric program

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

Compute State

Gather-Apply-Scatter (GAS)
Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Computational Models

Block Synchronous Parallel (BSP) [Valiant, 1990]

Asynchronous Parallel

Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling

© M. Tamer Özsu TD-LSG (2018/08/31) 27 / 46

Real-World Graph Characteristics

Read-world graphs have skewed vertex degree distribution

Common in power-law graphs
Problem: imbalanced communication workloads

Real-world graphs have large diameters

Common in road networks, web graphs, terrain meshes
Problem: one superstep per hop ⇒ too many supersteps

Real-world graphs have high average vertex degree

Common in social networks, mobile communication networks
Problem: heavy average communication workloads

© M. Tamer Özsu TD-LSG (2018/08/31) 28 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 29 / 46

Vertex-Centric BSP Systems

“Think like a vertex”

Compute(vertex v)

BSP Computation – push state to
neighbor vertices at the end of each
superstep

Continue until all vertices are
inactive

Vertex state machine

Example systems: Pregel [Malewicz
et al., 2010], Apache Giraph, GPS
[Salihoglu and Widom, 2013], Mizan
[Khayyat et al., 2013], Trinity [?]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Active Inactive

Vote halt

Message received

© M. Tamer Özsu TD-LSG (2018/08/31) 30 / 46

Vertex-Centric BSP Systems

“Think like a vertex”

Compute(vertex v)

BSP Computation – push state to
neighbor vertices at the end of each
superstep

Continue until all vertices are
inactive

Vertex state machine

Example systems: Pregel [Malewicz
et al., 2010], Apache Giraph, GPS
[Salihoglu and Widom, 2013], Mizan
[Khayyat et al., 2013], Trinity [?]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Active Inactive

Vote halt

Message received

© M. Tamer Özsu TD-LSG (2018/08/31) 30 / 46

Vertex-Centric BSP Systems

“Think like a vertex”

Compute(vertex v)

BSP Computation – push state to
neighbor vertices at the end of each
superstep

Continue until all vertices are
inactive

Vertex state machine

Example systems: Pregel [Malewicz
et al., 2010], Apache Giraph, GPS
[Salihoglu and Widom, 2013], Mizan
[Khayyat et al., 2013], Trinity [?]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Active Inactive

Vote halt

Message received

© M. Tamer Özsu TD-LSG (2018/08/31) 30 / 46

Vertex-Centric BSP Systems

“Think like a vertex”

Compute(vertex v)

BSP Computation – push state to
neighbor vertices at the end of each
superstep

Continue until all vertices are
inactive

Vertex state machine

Example systems: Pregel [Malewicz
et al., 2010], Apache Giraph, GPS
[Salihoglu and Widom, 2013], Mizan
[Khayyat et al., 2013], Trinity [?]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Active Inactive

Vote halt

Message received

© M. Tamer Özsu TD-LSG (2018/08/31) 30 / 46

Vertex-Centric Asynchronous Systems

“Think like a vertex”

Compute(vertex v)

Supersteps exist along with
synchronization barriers, but ...

Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

Consistency of vertex states:
distributed locking

Consistency issues: no guarantee
about input to Compute()

Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

© M. Tamer Özsu TD-LSG (2018/08/31) 31 / 46

Vertex-Centric Asynchronous Systems

“Think like a vertex”

Compute(vertex v)

Supersteps exist along with
synchronization barriers, but ...

Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

Consistency of vertex states:
distributed locking

Consistency issues: no guarantee
about input to Compute()

Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

© M. Tamer Özsu TD-LSG (2018/08/31) 31 / 46

Vertex-Centric Asynchronous Systems

“Think like a vertex”

Compute(vertex v)

Supersteps exist along with
synchronization barriers, but ...

Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

Consistency of vertex states:
distributed locking

Consistency issues: no guarantee
about input to Compute()

Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

© M. Tamer Özsu TD-LSG (2018/08/31) 31 / 46

Vertex-Centric Asynchronous Systems

“Think like a vertex”

Compute(vertex v)

Supersteps exist along with
synchronization barriers, but ...

Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

Consistency of vertex states:
distributed locking

Consistency issues: no guarantee
about input to Compute()

Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

© M. Tamer Özsu TD-LSG (2018/08/31) 31 / 46

Vertex-Centric Asynchronous Systems

“Think like a vertex”

Compute(vertex v)

Supersteps exist along with
synchronization barriers, but ...

Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

Consistency of vertex states:
distributed locking

Consistency issues: no guarantee
about input to Compute()

Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

© M. Tamer Özsu TD-LSG (2018/08/31) 31 / 46

Vertex-Centric Asynchronous Systems

“Think like a vertex”

Compute(vertex v)

Supersteps exist along with
synchronization barriers, but ...

Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

Consistency of vertex states:
distributed locking

Consistency issues: no guarantee
about input to Compute()

Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

© M. Tamer Özsu TD-LSG (2018/08/31) 31 / 46

Vertex-Centric Asynchronous Systems

“Think like a vertex”

Compute(vertex v)

Supersteps exist along with
synchronization barriers, but ...

Compute(vertex v) function can
see messages it was sent in the same
superstep as well as those that come
at the end of the previous superstep

Consistency of vertex states:
distributed locking

Consistency issues: no guarantee
about input to Compute()

Example systems: GRACE [Wang
et al., 2013], GiraphCU [Han and
Daudjee, 2015]

?

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

© M. Tamer Özsu TD-LSG (2018/08/31) 31 / 46

Vertex-Centric GAS Systems

“Think like a vertex”
Gather phase

Gather local computation from
neighbours if vertex v : called scope Sv

Apply phase

Compute(v, Sv)

Scatter phase

Compute(v, Sv) produces S
′

v

(scattering state)

Example: GraphLab [Low et al., 2012]
Synchronous version

Similar to vertex-centric BSP, except
pulling Sv rather than pushing

Asynchronous version different

Sv

© M. Tamer Özsu TD-LSG (2018/08/31) 32 / 46

Vertex-Centric GAS Systems – Asynchronous

procedure GraphLab Async(G = (V ,E ,D), T)
end procedure

while T is not empty do
v ← RemoveNext(T)
Compute(v ,Sv)→ (T ′ ,S ′v)
T ← T ∪ T ′

end while

return Modified G = (V ,E ,D
′
)

end procedure

Graph mutation restricted to vertex states

Computing S
′
v updates (scatters) states of

the vertices in scope

Computation of new states S
′
v separated

from computation of new T ′

RemoveNext() can remove any vertex →
scheduling separated from state scatter

SvSv

© M. Tamer Özsu TD-LSG (2018/08/31) 33 / 46

Vertex-Centric GAS Systems – Asynchronous

procedure GraphLab Async(G = (V ,E ,D), T)
end procedurewhile T is not empty do

v ← RemoveNext(T)
Compute(v ,Sv)→ (T ′ ,S ′v)
T ← T ∪ T ′

end while
return Modified G = (V ,E ,D

′
)

end procedure

Graph mutation restricted to vertex states

Computing S
′
v updates (scatters) states of

the vertices in scope

Computation of new states S
′
v separated

from computation of new T ′

RemoveNext() can remove any vertex →
scheduling separated from state scatter

SvSv

© M. Tamer Özsu TD-LSG (2018/08/31) 33 / 46

Vertex-Centric GAS Systems – Asynchronous

procedure GraphLab Async(G = (V ,E ,D), T)
end procedurewhile T is not empty do

v ← RemoveNext(T)

Compute(v ,Sv)→ (T ′ ,S ′v)
T ← T ∪ T ′

end while
return Modified G = (V ,E ,D

′
)

end procedure

Graph mutation restricted to vertex states

Computing S
′
v updates (scatters) states of

the vertices in scope

Computation of new states S
′
v separated

from computation of new T ′

RemoveNext() can remove any vertex →
scheduling separated from state scatter

Sv

Sv

© M. Tamer Özsu TD-LSG (2018/08/31) 33 / 46

Vertex-Centric GAS Systems – Asynchronous

procedure GraphLab Async(G = (V ,E ,D), T)
end procedurewhile T is not empty do

v ← RemoveNext(T)
Compute(v ,Sv)→ (T ′ ,S ′v)

T ← T ∪ T ′

end while
return Modified G = (V ,E ,D

′
)

end procedure

Graph mutation restricted to vertex states

Computing S
′
v updates (scatters) states of

the vertices in scope

Computation of new states S
′
v separated

from computation of new T ′

RemoveNext() can remove any vertex →
scheduling separated from state scatter

Sv

Sv

© M. Tamer Özsu TD-LSG (2018/08/31) 33 / 46

Vertex-Centric GAS Systems – Asynchronous

procedure GraphLab Async(G = (V ,E ,D), T)
end procedurewhile T is not empty do

v ← RemoveNext(T)
Compute(v ,Sv)→ (T ′ ,S ′v)
T ← T ∪ T ′

end while
return Modified G = (V ,E ,D

′
)

end procedure

Graph mutation restricted to vertex states

Computing S
′
v updates (scatters) states of

the vertices in scope

Computation of new states S
′
v separated

from computation of new T ′

RemoveNext() can remove any vertex →
scheduling separated from state scatter

SvSv

© M. Tamer Özsu TD-LSG (2018/08/31) 33 / 46

Partition- (Block-)Centric BSP Systems

Blogel [Yan et al., 2014]: “Think like a block”; also “think like a
graph” [Tian et al., 2013]

Better handles the characteristics of real-world graphs by reducing
communication

Exploit the partitioning of the graph

Message exchanges only among blocks

Within a block, run a serial in-memory algorithm; BSP between
partitions

© M. Tamer Özsu TD-LSG (2018/08/31) 34 / 46

Benefits of Partition- (Block-)Centric BSP

High-degree vertices inside a block send no messages

Fewer number of supersteps

Fewer number of blocks than vertices

© M. Tamer Özsu TD-LSG (2018/08/31) 35 / 46

Edge-Centric BSP Systems

“Think like an edge”

Compute(edge e)

Number of edges � number of vertices

More computation but perhaps fewer messages
Operate on unsorted sequence of edges ⇒ no random access

X-Stream [Roy et al., 2013]

© M. Tamer Özsu TD-LSG (2018/08/31) 36 / 46

Outline

1 Introduction – Graph Types
2 Property Graph Processing

Classification
Online querying
Offline analytics

3 Graph Analytics Approaches
MapReduce & Variants
Classification of Native
Approaches

4 Graph Analytics Systems

5 OLAP-Style Analytics
Graph Summarization
Snapshot-based
Aggregation
Graph Cube
Pagrol
Gagg Model

© M. Tamer Özsu TD-LSG (2018/08/31) 37 / 46

OLAP Over Graphs

OLAP in RDBMS

Usage: Data Warehousing + Business Intelligence
Model: Multidimensional cube
Operations: Roll-up, drill-down, and slice and dice

Analytics that we discussed over graphs is much different

Can we do OLAP-style analytics over graphs?
There is some work

Graph summarization [Tian et al., 2008]
Snapshot-based Aggregation [Chen et al., 2008]
Graph Cube [Zhao et al., 2011]
Pagrol [?]
Gagg Model [Maali et al., 2015]

© M. Tamer Özsu TD-LSG (2018/08/31) 38 / 46

Acknowledgements

This presentation draws upon collaborative research and discussions with
the following colleagues

Khaled Ammar, U. Waterloo

Khuzaima Daudjee,U. Waterloo

Xiaofei Zhang, U. Waterloo (U. Memphis)

Young Han, U. Waterloo (Google)

© M. Tamer Özsu TD-LSG (2018/08/31) 39 / 46

Thank you!

© M. Tamer Özsu TD-LSG (2018/08/31) 40 / 46

© M. Tamer Özsu TD-LSG (2018/08/31) 41 / 46

References I

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2010). HaLoop: efficient iterative
data processing on large clusters. Proc. VLDB Endowment, 3(1):285–296. Available
from: http://dl.acm.org/citation.cfm?id=1920841.1920881.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2012). The HaLoop approach to
large-scale iterative data analysis. VLDB J., 21(2):169–190.

Chen, C., Yan, X., Zhu, F., Han, J., and Yu, P. S. (2008). Graph OLAP: Towards online
analytical processing on graphs. In Proc. 8th IEEE Int. Conf. on Data Mining, pages
103–112.

Chen, R., Shi, J., Chen, Y., and Chen, H. (2015). PowerLyra: Differentiated graph
computation and partitioning on skewed graphs. In Proc. 10th ACM
SIGOPS/EuroSys European Conf. on Comp. Syst., pages 1:1–1:15. Available from:
http://doi.acm.org/10.1145/2741948.2741970.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C. (2012). PowerGraph:
Distributed graph-parallel computation on natural graphs. In Proc. 10th USENIX
Symp. on Operating System Design and Implementation, pages 17–30. Available
from: http://dl.acm.org/citation.cfm?id=2387880.2387883.

© M. Tamer Özsu TD-LSG (2018/08/31) 42 / 46

http://dl.acm.org/citation.cfm?id=1920841.1920881
http://doi.acm.org/10.1145/2741948.2741970
http://dl.acm.org/citation.cfm?id=2387880.2387883

References II

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica, I.
(2014). GraphX: graph processing in a distributed dataflow framework graph
processing in a distributed dataflow framework. In Proc. 11th USENIX Symp. on
Operating System Design and Implementation, pages 599–613. Available from:
https://www.usenix.org/conference/osdi14/technical-sessions/

presentation/gonzalez.

Han, M. (2015). On improving distributed Pregel-like graph processing systems.
Master’s thesis, University of Waterloo, David R. Cheriton School of Computer
Science.

Han, M. and Daudjee, K. (2015). Giraph unchained: Barrierless asynchronous parallel
execution in Pregel-like graph processing systems. Proc. VLDB Endowment,
8(9):950–961. Available from: http://www.vldb.org/pvldb/vol8/p950-han.pdf.

Karypis, G. and Kumar, V. (1995). Multilevel graph partitioning schemes. In Proc. 1995
Int. Conf. on Parallel Processing, pages 113–122.

Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., and Kalnis, P. (2013).
Mizan: A system for dynamic load balancing in large-scale graph processing. In Proc.
8th ACM SIGOPS/EuroSys European Conf. on Comp. Syst., pages 169–182.
Available from: http://doi.acm.org/10.1145/2465351.2465369.

© M. Tamer Özsu TD-LSG (2018/08/31) 43 / 46

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
http://www.vldb.org/pvldb/vol8/p950-han.pdf
http://doi.acm.org/10.1145/2465351.2465369

References III

Kiveris, R., Lattanzi, S., Mirrokni, V., Rastogi, V., and Vassilvitskii, S. (2014).
Connected components in MapReduce and beyond. In Proc. 5th ACM Symp. on
Cloud Computing, pages 18:1–18:13.

Lin, J. (2018). Scale up or scale out for graph processing? IEEE Internet Comput.,
22(3):72–78.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M.
(2012). Distributed graphlab: A framework for machine learning in the cloud. Proc.
VLDB Endowment, 5(8):716–727.

Maali, F., Campinas, S., and Decker, S. (2015). Gagg: A graph aggregation operator. In
Proc. 14th Int. Semantic Web Conf., pages 491–504.

Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N., and
Czajkowski, G. (2010). Pregel: a system for large-scale graph processing. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 135–146.

Qin, L., Yu, J. X., Chang, L., Cheng, H., Zhang, C., and Lin, X. (2014). Scalable big
graph processing in mapreduce. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 827–838. Available from:
http://doi.acm.org/10.1145/2588555.2593661.

© M. Tamer Özsu TD-LSG (2018/08/31) 44 / 46

http://doi.acm.org/10.1145/2588555.2593661

References IV

Rastogi, V., Machanavajjhala, A., Chitnis, L., and Sarma, A. D. (2013). Finding
connected components in map-reduce in logarithmic rounds. In Proc. 29th Int. Conf.
on Data Engineering, pages 50–61.

Roy, A., Mihailovic, I., and Zwaenepoel, W. (2013). X-stream: edge-centric graph
processing using streaming partitions. In Proc. 24th ACM Symp. on Operating
System Principles, pages 472–488. Available from:
http://doi.acm.org/10.1145/2517349.2522740.

Salihoglu, S. and Widom, J. (2013). GPS: a graph processing system. In Proc. 25th Int.
Conf. on Scientific and Statistical Database Management, pages 22:1–22:12.
Available from: http://doi.acm.org/10.1145/2484838.2484843.

Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J. (2013). From
“think like a vertex” to “think like a graph”. Proc. VLDB Endowment, 7(3):193–204.
Available from: http://www.vldb.org/pvldb/vol7/p193-tian.pdf.

Tian, Y., Hankins, R. A., and Patel, J. M. (2008). Efficient aggregation for graph
summarization. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
567–580.

© M. Tamer Özsu TD-LSG (2018/08/31) 45 / 46

http://doi.acm.org/10.1145/2517349.2522740
http://doi.acm.org/10.1145/2484838.2484843
http://www.vldb.org/pvldb/vol7/p193-tian.pdf

References V

Ugander, J. and Backstrom, L. (2013). Balanced label propagation for partitioning
massive graphs. In Proc. 6th ACM Int. Conf. Web Search and Data Mining, pages
507–516. Available from: http://doi.acm.org/10.1145/2433396.2433461.

Valiant, L. G. (1990). A bridging model for parallel computation. Commun. ACM,
33(8):103–111.

Wang, G., Xie, W., Demers, A. J., and Gehrke, J. (2013). Asynchronous large-scale
graph processing made easy. In Proc. 6th Biennial Conf. on Innovative Data Systems
Research.

Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework for
distributed computation on real-world graphs. Proc. VLDB Endowment,
7(14):1981–1992. Available from:
http://www.vldb.org/pvldb/vol7/p1981-yan.pdf.

Zhao, P., Li, X., Xin, D., and Han, J. (2011). Graph cube: on warehousing and OLAP
multidimensional networks. In Proc. ACM International Conference on Management
of Data, pages 853–864.

© M. Tamer Özsu TD-LSG (2018/08/31) 46 / 46

http://doi.acm.org/10.1145/2433396.2433461
http://www.vldb.org/pvldb/vol7/p1981-yan.pdf

	Outline
	Introduction – Graph Types
	Property Graph Processing
	Classification
	Online querying
	Offline analytics

	Graph Analytics Approaches
	MapReduce & Variants
	Classification of Native Approaches

	Graph Analytics Systems
	OLAP-Style Analytics
	Graph Summarization
	Snapshot-based Aggregation
	Graph Cube
	Pagrol
	Gagg Model

	References

