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Disaggregated Heterogeneous Platform
= Disaggregated

= Separate components with a fast interconnect

= Heterogeneous

= “Executing programs on a computing platform with computing nodes of different characteristics.™

Compute Nodes

Fast, low-latency interconnect

Smart Memory Accelerator Nodes Smart Storage
B wiATERLSD| DBSE:
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Why?

New Application Demands
Technological Changes
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New Application Demands

Big data applications
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The
FOUR V’s
of Big
Data

From traffic patterns and music dawnloads to web
history and medical records, data is recorded,
stored, and analyzed to enable the technology
and services that the world relies on every day.
But what exactly is big data, and how can these
massive amounts of data be used?

As a leader In the sector, IBM data sclentists

break big data into four dimensions: Volume,

Velocity, Variety and Veracity

Depending on the industry and organization, big
data encompasses information from multiple
intemal and external sources such as transactions,
social media, enterprise content, sensors and
mobile devices, Companies can leverage data to
adapt their products and services to better meet
customer needs, optimize operations and
infrastructure, and find new sources of revenue.

By 2015
4.4 MILLION IT JOBS

will be created globally to support big data,

with 1.9 million in the United States
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New Application Demands

Big data applications —le+12
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New Application Demands

Big data applications
= Very large storage

= 10x rule in ML workloads

= Repetitive computation

SiftDB'23/5

class Vertex:
def  init (self, name):

self.name = name
self.children = []
self.parents = []
self.auth = 1.0
self.hub = 1.0
self.pagerank = 1.0

#One iteration computation
def PageRank one iter (graph, d):
vertex list = graph.vertices
for vertex 1n vertex list:
vertex.update pagerank(d, len(graph.vertices))

#Go over all vertices until convergence
def PageRank (graph, d):
finished = False
while not finished:
PageRank one iter (graph, d)
finished = converge ()
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New Application Demands
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New Application Demands

Big data applications 7 Al and Memory wall
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TECHNOLOGY CHANGES
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Move to the Cloud

Mobile

Applications

Database
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Move to the Cloud

= Move is expanding
Storage @ Applications

O cLoup
Mid-2022 ) W
1 iy , COMPUTING y_( B
s
0% 20% 40% 60% 80% 100% Server _BD Database

On-premise  Some cloud ®mSome on-premise mAll cloud

Mobile

WATERLGo| DBSE:



Move to the Cloud

= Move is expanding

Mobile

= Reasons

Storage

= Elasticity
= Availability

= Cost savings

S \ S e t—
Server O" 6 LO Database
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Move to the Cloud

= Move is expanding

Mobile

= Reasons

Storage

Applications

= Elasticity
= Availability

= Cost savings

= Stress points . Q.I 6 LO Database

= Elasticity in demand

= Configuration to meet SLAs
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Is Traditional Processor Keeping Up?

42 Years of Microprocessor Trend Data u MOOI‘e’S LaW application
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New plot and data collected for 2010-2017 by K. Rupp
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https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Changes in RAM

RAM capacities increasing 10x
every four years (?)

= Not single memory chip
= RAM prices are going down

= Memory bandwidth increasing
~23% per year!

= Memory latency increasing
~4% per year?

SiftDB'23/9
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https://hpc.fau.de/files/2021/12/memorybw_systembalance_slides_2021-12-15.pdf

Is The Memory Keeping Up?
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Storage Capacity and Price Over Time

Hard disk drive space in 1980 versus 2010 and 2019 $1,000,000.00 hard drive cost per gigabyte (USD)
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Storage Devices

= 10TB disks are about US$600 En 3

= Approximately 4,000 DVD movies,1.8M R —
digital photos or 2.5M mp3 music files
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Storage Devices

Cool-to-Cold

= 10TB disks are about US$600 v @/QB

= Approximately 4,000 DVD movies,1.8M
digital photos or 2.5M mp3 music files

= 10TB single drives are now available

Internet
Media
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Storage Devices

Cool-to-Cold

= 10TB disks are about US$600 @/’QB =~ W

Archive

= Approximately 4,000 DVD movies,1.8M
digital photos or 2.5M mp3 music files

= 10TB single drives are now available

= Nimbus ExaDrive DC100: 100TB SSD

Internet

Media . ExaDrive

DC series
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Storage Devices

Cool-to-Cold
Storage

10TB disks are about US$600 @/’@ =

Archive

= Approximately 4,000 DVD movies,1.8M Cloud @/ ’ 4

Storage

digital photos or 2.5M mp3 music files (

10TB single drives are now available

Nimbus ExaDrive DC100: 100TB SSD

. ExaDrive

DC series

Internet
Media

Flash is now mainstream

= 1TB flash is common

= Different storage hierarchy
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Storage Devices

Cool-to-Cold

» 10TB disks are about US$600 /@/QB = OF
= Approximately 4,000 DVD movies, 1.8M o & 4 el
digital photos or 2.5M mp3 music files | 4

Gigabytes of storage you can buy with $100

10TB single drives are now available 5000

4500

Nimbus ExaDrive DC100: 100TB SSD 4000

3500

= Flash is now mainstream 3000
2500
= 1TB flash is common 2000
1500
= Different storage hierarchy 1000
500
= Money goes a long way : |

1975 1980 1985 1990 199 000 2005 2010 2015

2
UNIVERSITY OF Data
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Changing Memory+Storage Hierarchy

HATENEY TWO new
. entries!
1-10ns + Massive b/w
HBM
- DRAM
50-100ns Storage class memory
100-500ns o
1-10us
ms
MBs 10-100GBs 1TBs 1-10TBs 10-100TBs
CAPACITY
SiftDB23/13 waTErLOO | DBS
K. Keeton. Memory-Driven Computing, Proc. USENIX FAST, 2017.




Accellerators

= GPU

Large thread parallelism

SIMD computation

Limited on-chip memory

Large global memory w/ increasing bandwidth
= FPGA

= A set of programmable logic blocks

= Logic blocks can be configured to perform
complex functions

= On-chip memory configurable

= ASIC

= Once you know what you are doing
SiftDB23/14 wATERLOO | DBE -



Networking Capabilities

= Bandwidth is increasing considerably
= Transmission speeds have improved (optical networking, etc)

= Messaging overhead is still an issue

Software
Overhead

Hardware
Overhead

10 Mbps 1 Gbps 10 Gbps 100+ Gbps
SIftDB23/15 wATERLOO | DBE Er



Networking Capabilities

= Bandwidth is increasing considerably

= Transmission speeds have improved (optical networking, etc)

= Messaging overhead is still an issue What we want
Software
Overhead
Hardware
Overhead
10 Mbps 1 Gbps 10 Gbps 100+ Gbps 100+ Gbps
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CURRENT ENVIRONMENT
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Current Data Centre Rack and Blade Design
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Current Data Centre Rack and Blade Design

Z

Data
Systems
Group

2 waterLoo| D82
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Our Existing Platform as Example

NVIDIA Tesla 100
. Samsung PM883

— 23.04TB

. E Samsung 980 NVMe
S 1TB

g NVIDIA Tesla 100

PCle 4

Intel Cyclone GX

NVIDIA Tesla 100

@

;

Mellanox CX-6

6x Samsung PM883
23.04 TB

Mellanox Mellanox SN201 0 Mellanox
CX-6 1 OOGbpS CX-6

B Samsung 980 NVMe
1TB

B Samsung 980 NVMe
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Our Existing Platform as Example

100
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lntel Cyclone GX
.
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DISAGGREGATED HETEROGENEQUS PLATFORM



DISAGGREGATED HETEROGENEQUS PLATFORM

Disaggregation



Disaggregated Rack and Blade Design

Data
Systems
Group

waterLoo| D82
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Disaggregated Heterogeneous Platform

Compute Nodes

Fast, low-latency interconnect

Accelerator Nodes
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Disaggregated Heterogeneous Platform

Compute Nodes

Fast, low-latency interconnect

Smart Memory m m m

Accelerator Nodes

Farview
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Disaggregated Heterogeneous Platform

Compute Nodes

Fast, low-latency interconnect

Smart Memory m m m

Smart Storage

Accelerator Nodes

Farview AWS Aqua

HWATERLGO | DBSE:
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What Are We Disaggregating?
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What Are We Disaggregating?

(a81]
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What Are We Disaggregating?

= Storage

= Memory
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What Are We Disaggregating?

= Storage
= Memory 111,
= Accelerators LIL1

waTerLoo| DBS
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What Are We Disaggregating?

= Storage
= Memory 111,
= Accelerators LIL1

o} (o B
o} @
Compute Nodes
b . HEEE®
Fast, low-latency interconnect HEEE®

Accelerator Nodes Smart Storage

fooofosofoso
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Storage Disaggregation
Cloud deployments prefer shared
e {5}
= Easier for crash recovery; no need for
migration
Easier for serverless computing @

= Faster startup, easier shutdown

Independent and easy scaling of
storage

TCP/IP for connection may be @

sufficient

B WATERLGo| DBSE:
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Storage Disaggregation is Well Understood

OLTP Systems OLAP Systems

= Amazon Aurora’ . e = Snowflake5
= Microsoft Socrates? ) - §Q|fi Azure = Amazon Redshift®
N A” D B Amazon Redshit
= Google AlloyDB3 '\/I Oy
. > 4 PolarDB

= Alibaba PolarDB# Y 4

L A. Verbitsky et al. Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational

Databases, Proc. SIGMOD, 2017. ATATER o Srdens
SiftDB'23/45 2 Pétzinetlf)flsopor&%s et al. Socri?;z: The New SQL Server in the Cloud, Proc. SIGMOD, 2019. WATERLOO ‘ mg Group

3 https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-intelligent-scalable-storage 5 B. Dageville et al. The Snowflake Elastic Data Warehouse, Proc. SIGMOD, 2016.
4F. Li. Cloud-Native Database Systems at Alibaba: Opportunities and Challenges, Proc. VLDB Endow., 2019. 6N. Armenatzoglou et al. Amazon Redshift Re-invented, Proc. SIGMOD, 2022.
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Memory Disaggregation

= Newer direction



Memory Disaggregation

= Newer direction

= The case for memory disaggregation

= DRAM is an expensive resource in the
cloud — 50% of server cost on Azure!

1 H. Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, arXiv 2203.00241, 2022.
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Memory Disaggregation

100

= Newer direction £ 40| “vemory
: : 2 Google
= The case for memory disaggregation B Cluster
= DRAM is an expensive resource in the RN
cloud — 50% of server cost on Azure!
= Memory utilization is low in the (current)
cloud? S100) oy
Sl r o Alibaba
E 4OW Cluster

1 H. Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, arXiv 2203.00241, 2022. UNIVERSITY OF .
ata
2 DBS

2Y. Shen et al. Pond: LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation, Proc. OSDI, 2018. WATERLOO s
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Memory Disaggregation

= Newer direction

= The case for memory disaggregation

. . . R 40-
= DRAM is an expensive resource in the = [ 3
¢ 1
cloud — 50% of server cost on Azure! © 30 —1—4
-~ -+ '
q, Em
oy . . . '
= Memory utilization is low in the (current) 153 20 -
cloud? Lo} ; /
S 10+ }
© 1 |
— P
= Stranded memory (shows Azure3) = - +
0 - ¥ ¢
60 70 80 90

Scheduled CPU Cores [%]

1 H. Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, arXiv 2203.00241, 2022.

UNIVERSITY OF Dat:
2Y. Shen et al. Pond: LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation, Proc. OSDI, 2018. WATERLOO ‘ mg Systems
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https://www.nextplatform.com/2022/07/11/microsoft-azure-blazes-the-disaggregated-memory-trail-with-znuma/

Memory Disaggregation

= Newer direction

= The case for memory disaggregation

, . . AWS EC2 Instance vCPU DRAM (GB)
= DRAM is an expensive resource in the fa . medium ] ]
cloud — 50% of server cost on Azure! J-
re6g.large 2 16
» Memory utilization is low in the (current) r6g.xlarge 4 32
cloud? rog.2xlarge 8 b4
= Stranded memory (shows Azure3) reg.4xlarge 16 128
rog.8xlarge 32 256
» Independent and elastic scaling of compute r6g.l6xlarge B4 517

and memory+4

1 H. Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, arXiv 2203.00241, 2022. UNIVERSITY OF

Data
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4https://aws.amazon.com/ec2/instance-types/
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The Case for Memory Disaggregation

= Flexibility in VM configuration

= Independent allocation

SiftDB'23/27




The Case for Memory Disaggregation

= Flexibility in VM configuration

= Independent allocation

= Fault tolerance

= Independent failure

SiftDB'23/27




Critical Component in Disaggregation (Beyond Storage)

Low latency, high bandwidth
interconnect



Networking Hardware Improvements

= Basic/Foundational NIC

= Simple network connection

= Usually 1Gbps — 25Gbps

= Relies on CPU for protocol processing — > 30% server
CPU for higher speeds

= Smart NIC
= Offload network protocol processing
= Have their own processor, memory & OS
= > 50Gbps
= DPU
= Smart NIC + security + storage + ...

= Custom chips and/or FPGAs

W UNIVERSITY OF baa
oo 5 DS2
SiftDB'23/29 T. Doring et al., SmartNICs: Current Trends in Research and Industry, 2020 WATERLOO Group
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2021-05-1/NET-2021-05-1 05.pdf



https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2021-05-1/NET-2021-05-1_05.pdf

Networking Software Improvements

100+ Gbps

S WATERLGo| DBSE:



Networking Software Improvements

= High overhead of TCP

100+ Gbps

SiftDB23/30 wATERLOO | DBE -



Networking Software Improvements

= High overhead of TCP

» “Data center tax™

100+ Gbps

Sy UNIVERSITY OF Data
. ’ /\ mg Systems
SiftDB’23/30 1L. Barroso, et al. Attack of the Killer Microseconds. Commun. ACM, 60(4):48-54, March 2017. WATERLOO ‘ Group



Networking Software Improvements

It’s Time to Replace TCP in the Datacenter

. ngh Overhead Of TCP John Ousterhout

Stanford University arXiv 2210.00714

. “Data Center taX”I January 18§, 2023
= "Modern networking hardware enables

roundtrip times of a few microseconds for short

messages. The transport protocol must not add

significantly to this latency™2 p

100+ Gbps

W UNIVERSITY OF Baa
s A DSSE
SiftDB’23/30 1 L. Barroso, et al. Attack of the Killer Microseconds. Commun. ACM, 60(4):48-54, March 2017. WATERLOO Group
2 J. OQusterhout. It’s Time to Replace TCP in the Datacenter, arXiv 2210.00714, 2023.



Networking Software Improvements

It’s Time to Replace TCP in the Datacenter

. ngh Overhead Of TCP John Ousterhout

Stanford University arXiv 2210.00714

. “Data Center taX”I January 18§, 2023
= "Modern networking hardware enables

roundtrip times of a few microseconds for short

messages. The transport protocol must not add

significantly to this latency™2 p

= Low-overhead protocol
= RDMA (Infiniband, RoCE)

- CXL 100+ Gbps

W UNIVERSITY OF Baa
s A DSSE
SiftDB’23/30 1 L. Barroso, et al. Attack of the Killer Microseconds. Commun. ACM, 60(4):48-54, March 2017. WATERLOO Group
2 J. OQusterhout. It’s Time to Replace TCP in the Datacenter, arXiv 2210.00714, 2023.



Networking Software Improvements

It’s Time to Replace TCP in the Datacenter

. ngh Overhead Of TCP John Ousterhout

Stanford University arXiv 2210.00714

January 18, 2023

» “Data center tax™

= "Modern networking hardware enables
roundtrip times of a few microseconds for short
messages. The transport protocol must not add

significantly to this latency™2 p

= Low-overhead protocol
= RDMA (Infiniband, RoCE)

- CXL 100+ Gbps

= Efficient RPC protocol — higher level

UNIVERSITY OF Data
SiftDB’23/30 1 L. Barroso, et al. Attack of the Killer Microseconds. Commun. ACM, 60(4):48-54, March 2017. WATERLOO ‘ Group

2 J. OQusterhout. It’s Time to Replace TCP in the Datacenter, arXiv 2210.00714, 2023.



RDMA - Remote Direct Memory Access

Physical View
CPU
CPU
(App)
RDMA RDMA
NIC NIC
Mem Mem
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RDMA - Remote Direct Memory Access

Physical View
CPU Send Queue
Uﬂ]: ecv Queue CPU
(App) feev®
RDMA RDMA
NIC NIC
Mem Mem

S WATERLGo| DBSE:



CPU
(App)

Mem

/

+__ ][] Send Queue
II Recv Queue
]

NIC

RDMA _
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RDMA - Remote Direct Memory Access

Physical View

U4
RDMA ,/>-sided

; CPU

/

Mem
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RDMA - Remote Direct Memory Access

Physical View
CPU I' Send Queue
Uﬂ]: ecv Queue CPU

(app) [/

/ RDMA | _ RDMA

II NIC NIC \\l\-sided

\

Mem Y Mem
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RDMA - Remote Direct Memory Access

Process View

App ’° Send Queue App
,’ Dﬂ]: Recv Queue
Buffer 4 , Buffer
RDMA _| __ RDMA _.-~
NIC NIC
OS OS
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RDMA - Remote Direct Memory Access

Process View

App ,0:|:|:|:D Send Queue App
’ Recv Queue

Buffer ,ﬁ, Buffer
RDMA _| __ RDMA _.*°

NIC NIC
OS OS
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RDMA - Remote Direct Memory Access

Physical View Process View
&iﬁ) it + CPU APP o slf’fp
I RDMA | _____ | RDMA 4 a.d RDMA RDMA _-~
] NIC NIC \l-sided| NIc [~~~ "7777 - NIC
Mem *Mem oS oS
= Zero-copy networking = CPU bypass
= OS bypass = Message-based
communication

waTerLoo| DBS



CXL - Compute Express Link

= High bandwidth, low latency, cache coherent interconnect
= Avoids memory copy between application memory and NIC buffers

= Does not require a CPU (or controller) on memory nodes

S WATERLGo| DBSE:



CXL - Compute Express Link

= High bandwidth, low latency, cache coherent interconnect
= Avoids memory copy between application memory and NIC buffers

= Does not require a CPU (or controller) on memory nodes
Type 1

Accelerator
NIC

Cache

/ CXL

Mem — CPU
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CXL - Compute Express Link

= High bandwidth, low latency, cache coherent interconnect
= Avoids memory copy between application memory and NIC buffers

= Does not require a CPU (or controller) on memory nodes

Type 1 Type 2
Accelerator Accelerator
NIC Mem —— NIC
Cache Cache
/ CXL ><' CXL
Mem — CPU Mem — CPU

S WATERLGo| DBSE:



CXL - Compute Express Link

= High bandwidth, low latency, cache coherent interconnect
= Avoids memory copy between application memory and NIC buffers

= Does not require a CPU (or controller) on memory nodes

Type 1 Type 2 Type 3
Mem —
Accelerator Accelerator
NIC Mem —— NIC : Memory
. Buffer
Cache Cache
Mem
/ CXL ><' CXL i CXL
Mem — CPU Mem — CPU Mem — CPU
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CXL vs RDMA

RDMA CXL

= Copies data from application memory to NIC

Does not copy data into NIC buffers

butfters = Does not copy data across the network,

= Copies data across the network accesses remote memory

= Requires handling of cache coherence (in = Provides a hardware supported coherent
some configurations) cache

= Requires a CPU/controller at memory nodes No need for CPU/controller at memory nodes
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CXL vs RDMA

RDMA CXL

= Copies data from application memory to NIC

Does not copy data into NIC buffers

butfters = Does not copy data across the network,

= Copies data across the network accesses remote memory

= Requires handling of cache coherence (in = Provides a hardware supported coherent
some configurations) cache

= Requires a CPU/controller at memory nodes No need for CPU/controller at memory nodes

[ |PCle lMemory
ANetwork BICPU cache

W27 1

?\\(@0\ _ B~ xs3 faster

S0 300 2400 2700
Latency (cycles) B WATERLoo DBSE:

I D. Gouk, et al. Direct Access, High Performance Memory Disaggregation with DirectCXL. Proc. USENIX ATC, 2022.




Main Issue with Memory Disaggregation

{F {F {F

Access Latency vs
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Main Issue with Memory Disaggregation

{F {F {F

Access Latency vs

Near-data Processing

' EHE

Optimized Design
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Near-Data Processing: The Case for Smart Memory

= Minimize data movement from memory to CPU

= Also coofocofacs

= DRAM growing but not at the same speed as the
demand

= The independent provisioning issue again

= Farview: buffer pool on disaggregated memory

= Push down operators to memory — reduce data
movement

= Centralize buffer cache on disaggregated memory —
reduce memory requirement on compute nodes

S WATERLGo| DBSE:

D. Korolija et al. Farview: Disaggregated Memory with Operator Off-loading for Database Engines, Proc. CIDR, 2002



Near-Data Processing: The Case for Smart Storage

= Further restrict data movement

= Pushing near-data computation to the
storage

= Similar to old idea of database
machines

S WATERLGo| DBSE:



Near-Data Processing: The Case for Smart Storage

= Further restrict data movement

Compute nodes

= Pushing near-data computation to the 0O [
storage Amazon E

Redshift cluster

= Similar to old idea of database
maChiIleS AQUA layer J,

= AWS Aqua nodes — I

Amazon S3
Durable storage

UNIVERSITY OF
SiftDB23/38 % waterLoo | DBS

J.Barr. AQUA (Advanced Query Accelerator) — A Speed Boost for Your Amazon Redshift Queries, 2021
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift

scale-out
architecture



https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/

Our Work

= Scope: in-memory DBMS

{@Ho)
{@Ho)
)

= Compute nodes

= Strong computing, but limited local

memory % % E
= SQL parser, optimization, transaction, RDMA
buffer Over
Infiniband
= Each compute can read/write E E E E {é}
= Memory nodes
= Form a DSM layer accessed by all E E E E @
compute nodes
B WaTERLGo DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Transaction Execution Design

Compute node 1 Compute node 2

Distributed Shared-Memory (DSM) Layer

WATERLGo| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Transaction Execution Design

= Challenge: Cache coherence

= This is not an issue if CXL is used

= RDMA: No hardware-supported cache Compute node 1 Compute node 2
coherence between compute nodes

Distributed Shared-Memory (DSM) Layer

WATERLGo| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Transaction Execution Design

= Challenge: Cache coherence

= This is not an issue if CXL is used

= RDMA: No hardware-supported cache Compute node 1 Compute node 2
coherence between compute nodes

= Challenge: Distributed commit

= Depends on the model

Distributed Shared-Memory (DSM) Layer

WATERLGo| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Transaction Execution Design

= Challenge: Cache coherence

= This is not an issue if CXL is used

= RDMA: No hardware-supported cache Compute node 1 Compute node 2
coherence between compute nodes

= Challenge: Distributed commit

= Depends on the model

= Challenge: Concurrency Control Algs

= Cannot directly use existing CC protocols,
e.g., 2PL, MVCC, OCC

Distributed Shared-Memory (DSM) Layer

WATERLGo| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Transaction Execution Design

= Challenge: Cache coherence

= This is not an issue if CXL is used

= RDMA: No hardware-supported cache Compute node 1 Compute node 2

coherence between compute nodes

= Challenge: Distributed commit

= Depends on the model

= Challenge: Concurrency Control Algs

= Cannot directly use existing CC protocols,
e.g., 2PL, MVCC, OCC

Distributed Shared-Memory (DSM) Layer

= Challenge: Massive concurrency

= Main difference with multi-core single-node
architecture

SiftDB23/40 % waterLoo| DBS

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Data
Systems
Group




Cache Coherence

= Do we use the local buffer in
each compute node?

Compute node 1 Compute node 2

Distributed Shared-Memory (DSM) Layer

WATERLGo| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Cache Coherence

= Do we use the local buffer in
each compute node?

Compute node 1 Compute node 2
= If yes, need to address cache-

coherence problem via software-
level — overhead

= If not, performance hit

" many remote accesses

Distributed Shared-Memory (DSM) Layer

WATERLGo| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Cache Coherence

= Do we use the local buffer in
each compute node?

Compute node 1 Compute node 2
= If yes, need to address cache-

coherence problem via software-
level — overhead

= If not, performance hit

" many remote accesses

Distributed Shared-Memory (DSM) Layer

= Do we use sharding between
compute nodes?

WATERLGo| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Alternative #1: No Sharding, No Cache

= Each compute node reads/writes
all data

Compute Compute

= But doesn’t store any data in local node 1 node 2
buffer— No cache coherence issue

= Data pages are stored in DSM

Distributed shared-memory layer

WATERLGO| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Alternative #1: No Sharding, No Cache

Each compute node reads/writes
all data

Compute

But doesn’t store any data in local node 1
buffer— No cache coherence issue

Data pages are stored in DSM
All compute nodes use RDMA CAS

first

Not realistic — many remote

accesses
SiftbDB’23/42

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Compute
node 2

. Distributed shared-memory layer
(compare & swap) to acquire a lock _

UNIVERSITY OF

WATERLOO




Alternative #2: No Sharding, With Cache

= Each compute node reads/writes all

data

Compute Compute

= Each compute node caches local data node 1 node 2

= How to resolve conflicts?

SiftDB’23/43

oherenc
Rrotocg
Distributed shared-memory layer

waterLoo| DBS

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.
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Alternative #2: No Sharding, With Cache

Each compute node reads/writes all
data

Compute Compute
Each compute node caches local data node 1 node 2

How to resolve conflicts?
Develop a software-level cache lohetr.
DIOTOCQO
coherence protocol —
» Update-based Distributed shared-memory layer

» Invalidation-based

Overhead has to be measured and

considered
SiftDB'23/43 waTErLOO | DBS

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Alternative #3: With Sharding, With Cache

= Logical sharding among compute nodes
= Each compute node accesses a partition

= Use local buffer to cache data

= Bypass cache coherence issue

= But depending on workloads

SiftDB'23/44

Compute
node 1

RDMA

Compute
node 2

RDMA

Distributed shared-memory layer

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.
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Alternative #3: With Sharding, With Cache

= Logical sharding among compute nodes
= Each compute node accesses a partition
= Use local buffer to cache data

= Bypass cache coherence issue

= But depending on workloads

= Similar to distributed shared-nothing
= We do logical sharding (not physical sharding)

= Also, the use of DSM layer can address
distributed transaction and data skewness

= Support elasticity very well

SiftDB'23/44

Compute
node 1

Compute
node 2

RDMA RDMA

Distributed shared-memory layer

waTerLoo| DBS

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.




Distributed Shared-Memory (DSM) Design

= (Goal: manage a cluster of memory nodes,
and expose necessary APIs to compute
nodes

= Looks like a single unified memory space

GoOT00 O RREG O O

Distributed Shared-Memory (DSM) Layer

WATERLGO| DBSE:

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



Distributed Shared-Memory (DSM) Design

= (Goal: manage a cluster of memory nodes,

and expose necessary APIs to compute
nodes

= Looks like a single unified memory space

= Challenge: Durability & Availability m m eooo m

= Challenge: Abstract APIs

Distributed Shared-Memory (DSM) Layer

= Memory access APIs (also memory space
representation)

= Data transmission APIs (for RDMA)
= Function offloading APIs (for DBMS ops)

SiftoB23/45 % waterLoo| DBS

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.
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Durability & Availability

= Memory-based system

= Replication of data

= Additional memory space + write performance
= Log-based solution (RAMCloud*)

= Separate logs from data (log store + data
store)

= Only logs are replicated in three memory
nodes

= A transaction is committed once all the logs
are replicated and acknowledged

write

= Data pages are asynchronously materialized
= Data pages are stored only once in memory

= Periodically checkpoint data pages to

shared-storage to improve availability N .
SiftDB'23/46 waTErLOO | DBS

1J. Ousterhout, et al. The Case for RAMClouds: Scalable High-Performance Storage Entirely in DRAM, Proc. SIGOPS, 2009.



Index Design Challenges

Challenge: Leveraging RDMA
characteristics (e.g., RDMA primitives)

Compute node 1 Compute node 2

Challenge: How to use the buffer
memory in compute nodes?

Challenge: Leveraging RDMA byte-
addressability

Challenge: Leveraging near-data
computing

Distributed Shared-Memory (DSM) Layer

Challenge: How to support multi-node

concurrent accesses? o
SiftDB'23/47 waTErLOO | DBS

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.




Rethinking Existing Indexes

Disk-based indexes

= E.g., B-tree, LSM-tree "

= Not designed for RDMA (e.g., which .
primitive)

= Not optimized for byte-addressability .

= Not leveraging near-data computing .

= Multi-node concurrent accesses .

= E.g., use a single lock for both read and write
or use read-write locks?

SiftDB’23/99

Memory-based indexes

E.g., Bw-tree, Mass-tree, ART

Not designed for RDMA (e.g., which
primitive)

Not leveraging local buffer
Not leveraging near-data computing

Multi-node concurrent accesses

= E.g., lock-free vs. lock-based

waTerLoo| DBS

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.



dLSM

= Compute node: MemTable, immutable,
index blocks, bloom filters

= Memory node: SSTables (memory- Compute node Memory node
optimized) %%g}} E E E E E E & o
" One'Sided RDMA I'ead/WI'ite LSM-tree <) Background 1 ' Background
metadata Modify  threads RDMA RPC threads
= Reduce software overhead . ﬂwm"
eaders ! LsM-tree
= Synchronization L Table re— Near-data

I
compaction |
I
SSTable SSTable

= Flushing

Writers — SSTable SSTable SSTable

= Near-data compaction

= Optimize for byte-addressability

= Can access a single KV pair

WATERLGO| DBSE:

R. Wang et al. dLSM: An LSM-based Index for RDM-Enabled Memory Disaggregation, Proc. ICDE, 2023.



DISAGGREGATED HETEROGENEQUS PLATFORM

Heterogeneity



Case for Heterogeneous Computing

= Computing platforms are already DA e 10 LERGylone 6

heterogeneous

= Remember that CPU is not keeping

u
p 6x Samsung SM883
23.04 TB

= Data parallel computations of new
workloads perform well on GPUs

= FPGAs are more flexible and can
serve to experiment with solutions

= High volume demand for same task
might be best met by ASICs Samsung 980 NvMe (T

S WATERLGo| DBSE:




Data Management over GPU/CPU-GPU

Intel Cyclone GX

| Cyclone®10

NVIDIA Tesla 100

6x Samsung SM8§
23.04 TB

Samsung 980 NVMe ' =
1TB ” :

B WATERLGo| DBSE:



Data Management over GPU/CPU-GPU

Intel Cyclone GX TWO appro aCheS

(@ |

i Cyclone®10

NVIDIA Tesla 100

6x Samsung SM8§
23.04 TB

Samsung 980 NVMe
1TB
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Data Management over GPU/CPU-GPU

Intel Cyclone GX TWO approaCheS
' l
( o = Transfer data to GPU on-demandt

Cyclone®10

NVIDIA Tesla 100

I » PCle bandwidth is an issue

= PCle bottleneck sometimes causes performance
< optimized CPU implementations

6x Samsung SM8§
23.04 TB

= Store working set directly on GPU?2

Samsung 980 NVMe
1TB

w UNIVERSITY OF Data
SiftDB'23/52 1 J. Li et al. HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data Analytics, Proc. VLDB, 2016. WATERLOO ‘ mg é‘m‘ '
2 A. Shanbhag, S. Madden and X. Yu. A Study of the Fundamental Performance Characteristics of GPUs and CPUs for
Database Analytics, Proc. SIGMOD, 2020.



Data Management over GPU/CPU-GPU

Intel Cyclone GX TWO approaCheS
' l
( o = Transfer data to GPU on-demandt

Cyclone¢10

NVIDIA Tesla 100

) = PCle bandwidth is an issue

= PCle bottleneck sometimes causes performance

6x Samsung SV < optimized CPU implementations

23.04 TB
= Store working set directly on GPU?2

= CPU-GPU heterogeneous processing3-4

SAMSUNG
Solid State Drive

= Design more complicated
= Data placement — treat GPU memory as cache4

= Finer granularity cache — more complex query

Samsung 980 NVMe execution
1TB ” .
= Cost model to decide where to execute what
w UNIVERSITY OF Data
SiftDB’23/52 3 P. Chrysogelos et al. HeatExchange: Encapsulating Heterogeneous CPU-GPU Parallelism in JIT Compiled Engines, Proc. VLDB, 2019. WATERLOO ‘ mg @m“

4 B. W. Yogatama, W. Gong and X. Yu. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS, Proc.
VLDB, 2022.




Data Management over FPGA/CPU-FPGA

Intel Cyclone G

(@ |

i Cyclone®10

Samsung 980 NVMe
1TB

SiftbB’23/53

“FPGAs ... configure different parts of the design space
offering advantages that other current options do not
have:

line rate processing;

enabling processing streams of data out of the
network, disks, or memory without performance loss;

architectural flexibility in that they can be inserted in
places where the other type of processor cannot be
used such as in NICs, in storage, in memory, etc. ...;
and

the customizable nature of reconfigurable computing
with the FPGA serving equally well to accelerate
network function virtualization, data reorganization in
a database, or to accelerate joins.”

waTerLoo| DBS

W. Jiang, D. Korolija and G. Alonso. Data Processing with FPGAs on Modern Architectures, Proc. SIGMOD, 2023.




FINAL WORDS
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Environment is Getting Interesting

= Other h/w developments that can help (but I don’t know much about):
= Tensor Processing Unit (TPU)
= Data Processing Unit (DPU)
= Non-Volatile Memory (NVM)

= Design space is varied and large

= But start somewhere

S WATERLGo| DBSE:
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