
Disaggregated & Heterogeneous
Platform for Data Management

M. Tamer Özsu
Cheriton School of Computer Science
tamer.ozsu@uwaterloo.ca

mailto:tamer.ozsu@uwaterloo.ca

My research

Graph Processing Distributed/Parallel
Data Management

Graph Processing
On GPUs1,2

Graph Processing on
Heterogeneous Platform

Disaggregated Systems3

Graph Processing on Disaggregated
Heterogeneous Platform

1 L. Hu, L. Zou and M. T. Özsu. GAMMA: A Graph Pattern Mining Framework for Large Graphs on GPU, Proc. ICDE, 2023.
2 L. Zeng, et al. GSI:GPU-friendly Subgraph Isomorophism, Proc. ICDE, 2020.
3 R.Wang et al. The Case for Shared-Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

SiftDB’23/2

Disaggregated Heterogeneous Platform
§ Disaggregated

§ Separate components with a fast interconnect

§ Heterogeneous
§ “Executing programs on a computing platform with computing nodes of different characteristics.”1

…
Compute Nodes

Smart Memory

Fast, low-latency interconnect

Accelerator Nodes Smart Storage

1 M. Zahran. Heterogeneous Computing, ACM Books, 2019.
SiftDB’23/3

Why?

New Application Demands
Technological Changes

SiftDB’23/4

New Application Demands
Big data applications

SiftDB’23/5

New Application Demands
Big data applications

§ Very large storage
§ 10x rule in ML workloads

https://epochai.org/blog/trends-in-training-dataset-sizes

SiftDB’23/5

New Application Demands
Big data applications

§ Very large storage
§ 10x rule in ML workloads

§ Repetitive computation

class Vertex:
def __init__(self, name):

self.name = name
self.children = []
self.parents = []
self.auth = 1.0
self.hub = 1.0
self.pagerank = 1.0

#One iteration computation
def PageRank_one_iter(graph, d):

vertex_list = graph.vertices
for vertex in vertex_list:

vertex.update_pagerank(d, len(graph.vertices))

#Go over all vertices until convergence
def PageRank(graph, d):

finished = False
while not finished:

PageRank_one_iter(graph, d)
finished = converge()

SiftDB’23/5

New Application Demands
Big data applications

§ Very large storage
§ 10x rule in ML workloads

§ Repetitive computation
§ Excessive computing cycles

SiftDB’23/5

New Application Demands
Big data applications

§ Very large storage
§ 10x rule in ML workloads

§ Repetitive computation
§ Excessive computing cycles

§ Large memory

SiftDB’23/5

TECHNOLOGY CHANGES

SiftDB’23/6

Move to the Cloud

SiftDB’23/7

Move to the Cloud
§ Move is expanding

0% 20% 40% 60% 80% 100%

Mid-2022

End-2023

On-premise Some cloud Some on-premise All cloud

Foundry Cloud Computing Study, 2022

SiftDB’23/7

Move to the Cloud
§ Move is expanding
§ Reasons

§ Elasticity

§ Availability

§ Cost savings

§ …

SiftDB’23/7

Move to the Cloud
§ Move is expanding
§ Reasons

§ Elasticity

§ Availability

§ Cost savings

§ …

§ Stress points
§ Elasticity in demand

§ Configuration to meet SLAs

§ …

SiftDB’23/7

Is Traditional Processor Keeping Up?
§ Moore’s Law application

questionable
§ The number of transistors on a

microchip doubles every two
years

§ Pollack’s Rule
§ Microprocessor performance

increase due to microarchitecture
advances is roughly proportional
to the square root of the increase
in complexity.

PAGE 8

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Changes in RAM

§ RAM capacities increasing 10x
every four years (?)
§ Not single memory chip

§ RAM prices are going down

§ Memory bandwidth increasing
~23% per year1

§ Memory latency increasing
~4% per year1

8KB

80KB

800KB

8MB

80MB

800MB

8GB

80GB

800GB

8TB

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016
https://aiimpacts.org/trends-in-dram-price-per-gigabyte/

SiftDB’23/9 J. McCalpin. Memory Bandwidth and System Balance in HPC Systems: 2021 Update, Talk at Erlangen National High Performance
Computing Center. https://hpc.fau.de/files/2021/12/memorybw_systembalance_slides_2021-12-15.pdf

https://hpc.fau.de/files/2021/12/memorybw_systembalance_slides_2021-12-15.pdf

Is The Memory Keeping Up?

SiftDB’23/10

The New Normal: memory isn’t keeping up

+14.2%/year
2x / 5.2 years

+24.5%/year
2x / 3.2 years

J. McCalpin, “Memory Bandwidth and System Balance in HPC Systems,” Invited talk at SC16, 2016.
http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

Processors are becoming increasingly imbalanced with respect to data motion

B
al

an
ce

 R
at

io
 (F

LO
P

S
 /

m
em

or
y

ac
ce

ss
)

Date of Introduction

©Copyright 2017 Hewlett Packard Enterprise Company

J. McCalpin. Memory Bandwidth and System Balance in HPC Systems, Invited talk at Supercomputing Symposium, 2016.
http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

http://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/

Storage Capacity and Price Over Time

https://www.pingdom.com/ https://aiimpacts.com/

SiftDB’23/11

Storage Devices
§ 10TB disks are about US$600

§ Approximately 4,000 DVD movies,1.8M
digital photos or 2.5M mp3 music files

SiftDB’23/12

Storage Devices
§ 10TB disks are about US$600

§ Approximately 4,000 DVD movies,1.8M
digital photos or 2.5M mp3 music files

§ 10TB single drives are now available

SiftDB’23/12

Storage Devices
§ 10TB disks are about US$600

§ Approximately 4,000 DVD movies,1.8M
digital photos or 2.5M mp3 music files

§ 10TB single drives are now available

§ Nimbus ExaDrive DC100: 100TB SSD

SiftDB’23/12

Storage Devices
§ 10TB disks are about US$600

§ Approximately 4,000 DVD movies,1.8M
digital photos or 2.5M mp3 music files

§ 10TB single drives are now available

§ Nimbus ExaDrive DC100: 100TB SSD

§ Flash is now mainstream
§ 1TB flash is common

§ Different storage hierarchy

SiftDB’23/12

Storage Devices
§ 10TB disks are about US$600

§ Approximately 4,000 DVD movies,1.8M
digital photos or 2.5M mp3 music files

§ 10TB single drives are now available

§ Nimbus ExaDrive DC100: 100TB SSD

§ Flash is now mainstream
§ 1TB flash is common

§ Different storage hierarchy

§ Money goes a long way

SiftDB’23/12

Changing Memory+Storage Hierarchy

SiftDB’23/13
K. Keeton. Memory-Driven Computing, Proc. USENIX FAST, 2017.

Accellerators
§ GPU

§ Large thread parallelism

§ SIMD computation

§ Limited on-chip memory

§ Large global memory w/ increasing bandwidth

§ FPGA
§ A set of programmable logic blocks

§ Logic blocks can be configured to perform
complex functions

§ On-chip memory configurable

§ ASIC
§ Once you know what you are doing

SiftDB’23/14

Networking Capabilities
§ Bandwidth is increasing considerably

§ Transmission speeds have improved (optical networking, etc)

§ Messaging overhead is still an issue

1 Gbps 10 Gbps 10 Mbps

Hardware
Overhead

Software
Overhead

100+ Gbps
SiftDB’23/15

Networking Capabilities
§ Bandwidth is increasing considerably

§ Transmission speeds have improved (optical networking, etc)

§ Messaging overhead is still an issue

1 Gbps 10 Gbps 10 Mbps

Hardware
Overhead

Software
Overhead

100+ Gbps 100+ Gbps

What we want

SiftDB’23/15

CURRENT ENVIRONMENT

SiftDB’23/16

Current Data Centre Rack and Blade Design

SiftDB’23/17

Current Data Centre Rack and Blade Design

SiftDB’23/17

DDR4-3200
1TB

Xeon 8358
2x 32 cores

DDR4-3200
1TB

Xeon 8380
2x 40 cores

DDR4-3200
1TB

NVIDIA Tesla 100
Intel Cyclone GX

NVIDIA Tesla 100

Mellanox SN2010
100Gbps

PCIe 4

PCIe 4

PCIe 4

Mellanox

CX-6

Mellanox CX-6

NVIDIA Tesla 100 SATA

SA
TA

SA
TA

6x Samsung SM883
23.04 TB

6x Samsung PM883
23.04 TB

6x Samsung PM883
23.04 TB

PCIe 4

PCIe 4

PCIe 4

Samsung 980 NVMe
1TB

Samsung 980 NVMe
1TB

Mellanox

CX-6

Samsung 980 NVMe
1TB

Xeon 8358
2x 32 cores

Our Existing Platform as Example

SiftDB’23/18

DDR4-3200
1TB

Xeon 8358

2x 32 cores

DDR4-3200
1TB

Xeon 8380

2x 40 cores

DDR4-3200
1TB

NVIDIA Tesla 100
Intel Cyclone GX

NVIDIA Tesla 100

Mellanox SN2010
100Gbps

PCIe 4

PCIe 4

PCIe 4

Mellanox
CX-6

Mellanox CX-6

NVIDIA Tesla 100 SATA

S A T A

SA
TA

6x Samsung SM883
23.04 TB

6x Samsung PM883
23.04 TB

6x Samsung PM883
23.04 TB

PCIe 4

PCIe 4

PCIe 4

Samsung 980 NVMe
1TB

Samsung 980 NVMe
1TB

Mellanox
CX-6

Samsung 980 NVMe
1TB

Xeon 8358

2x 32 cores

Our Existing Platform as Example

SiftDB’23/18

DISAGGREGATED HETEROGENEOUS PLATFORM

SiftDB’23/19

Disaggregation
DISAGGREGATED HETEROGENEOUS PLATFORM

SiftDB’23/20

Disaggregated Rack and Blade Design

SiftDB’23/21

Disaggregated Heterogeneous Platform

…

Compute Nodes

Memory

Fast, low-latency interconnect

Accelerator Nodes

Storage

SiftDB’23/22

Disaggregated Heterogeneous Platform

…

Compute Nodes

Memory

Fast, low-latency interconnect

Accelerator Nodes

Storage

Farview

Smart

SiftDB’23/22

Disaggregated Heterogeneous Platform

…

Compute Nodes

Memory

Fast, low-latency interconnect

Accelerator Nodes

Storage

Farview AWS Aqua

Smart
Smart

SiftDB’23/22

What Are We Disaggregating?

SiftDB’23/23

What Are We Disaggregating?
§ Storage

SiftDB’23/23

What Are We Disaggregating?
§ Storage

§ Memory

SiftDB’23/23

What Are We Disaggregating?
§ Storage

§ Memory

§ Accelerators

SiftDB’23/23

What Are We Disaggregating?
§ Storage

§ Memory

§ Accelerators

…

Compute Nodes

Smart Memory

Fast, low-latency interconnect

Accelerator Nodes Smart Storage

SiftDB’23/23

Storage Disaggregation
§ Cloud deployments prefer shared

disk1

§ Easier for crash recovery; no need for
migration

§ Easier for serverless computing
§ Faster startup, easier shutdown

§ Independent and easy scaling of
storage

§ TCP/IP for connection may be
sufficient

1 J. Tan et al. Choosing a Cloud DBMS: Architectures and Tradeoffs, Proc. VLDB, 2019.
SiftDB’23/24

OLTP Systems

§ Amazon Aurora1

§ Microsoft Socrates2

§ Google AlloyDB3

§ Alibaba PolarDB4

OLAP Systems

Storage Disaggregation is Well Understood

1 A. Verbitsky et al. Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational
Databases, Proc. SIGMOD, 2017.

2 P. Antonopoulos et al. Socrates: The New SQL Server in the Cloud, Proc. SIGMOD, 2019.
3 https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-intelligent-scalable-storage
4 F. Li. Cloud-Native Database Systems at Alibaba: Opportunities and Challenges, Proc. VLDB Endow., 2019.

§ Snowflake5

§ Amazon Redshift6

5 B. Dageville et al. The Snowflake Elastic Data Warehouse, Proc. SIGMOD, 2016.
6 N. Armenatzoglou et al. Amazon Redshift Re-invented, Proc. SIGMOD, 2022.

SiftDB’23/45

https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-intelligent-scalable-storage

Memory Disaggregation
§ Newer direction

SiftDB’23/26

Memory Disaggregation
§ Newer direction

§ The case for memory disaggregation
§ DRAM is an expensive resource in the

cloud – 50% of server cost on Azure1

SiftDB’23/26

1 H. Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, arXiv 2203.00241, 2022.

Memory Disaggregation
§ Newer direction

§ The case for memory disaggregation
§ DRAM is an expensive resource in the

cloud – 50% of server cost on Azure1

§ Memory utilization is low in the (current)
cloud2

SiftDB’23/26

1 H. Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, arXiv 2203.00241, 2022.
2 Y. Shen et al. Pond: LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation, Proc. OSDI, 2018.

Time (day)
0 5 10 15 20 25

U
t
i
l
i
z
a
t
i
o
n

(
%
)

0

20

40

60

80

100
CPU

Memory

(a) Google Cluster
Time (hour)

0 2 4 6 8 10 12

U
t
i
l
i
z
a
t
i
o
n

(
%
)

0

20

40

60

80

100
CPU

Memory

(b) Alibaba Cluster
Figure 4: Datacenter Resource Utilization.

2 Disaggregate Hardware Resource
This section motivates the hardware resource disaggre-
gation architecture and discusses the challenges in man-
aging disaggregated hardware.

2.1 Limitations of Monolithic Servers
A monolithic server has been the unit of deployment and
operation in datacenters for decades. This long-standing
server-centric architecture has several key limitations.
Inefficient resource utilization. With a server being the
physical boundary of resource allocation, it is difficult
to fully utilize all resources in a datacenter [18, 33, 65].
We analyzed two production cluster traces: a 29-day
Google one [45] and a 12-hour Alibaba one [10]. Fig-
ure 4 plots the aggregated CPU and memory utilization
in the two clusters. For both clusters, only around half of
the CPU and memory are utilized. Interestingly, a signif-
icant amount of jobs are being evicted at the same time
in these traces (e.g., evicting low-priority jobs to make
room for high-priority ones [102]). One of the main
reasons for resource underutilization in these production
clusters is the constraint that CPU and memory for a job
have to be allocated from the same physical machine.
Poor hardware elasticity. It is difficult to add, move,
remove, or reconfigure hardware components after they
have been installed in a monolithic server [39]. Because
of this rigidity, datacenter owners have to plan out server
configurations in advance. However, with today’s speed
of change in application requirements, such plans have
to be adjusted frequently, and when changes happen, it
often comes with waste in existing server hardware.
Coarse failure domain. The failure unit of monolithic
servers is coarse. When a hardware component within a
server fails, the whole server is often unusable and ap-
plications running on it can all crash. Previous analy-
sis [90] found that motherboard, memory, CPU, power
supply failures account for 50% to 82% of hardware fail-
ures in a server. Unfortunately, monolithic servers cannot
continue to operate when any of these devices fail.
Bad support for heterogeneity. Driven by application
needs, new hardware technologies are finding their ways
into modern datacenters [94]. Datacenters no longer
host only commodity servers with CPU, DRAM, and
hard disks. They include non-traditional and special-
ized hardware like GPGPU [11, 46], TPU [55], DPU [5],

FPGA [12, 84], non-volatile memory [49], and NVMe-
based SSDs [98]. The monolithic server model tightly
couples hardware devices with each other and with a
motherboard. As a result, making new hardware devices
work with existing servers is a painful and lengthy pro-
cess [84]. Mover, datacenters often need to purchase new
servers to host certain hardware. Other parts of the new
servers can go underutilized and old servers need to retire
to make room for new ones.

2.2 Hardware Resource Disaggregation
The server-centric architecture is a bad fit for the fast-
changing datacenter hardware, software, and cost needs.
There is an emerging interest in utilizing resources be-
yond a local machine [41], such as distributed mem-
ory [7, 34, 74, 79] and network swapping [47]. These so-
lutions improve resource utilization over traditional sys-
tems. However, they cannot solve all the issues of mono-
lithic servers (e.g., the last three issues in §2.1), since
their hardware model is still a monolithic one. To fully
support the growing heterogeneity in hardware and to
provide elasticity and flexibility at the hardware level, we
should break the monolithic server model.

We envision a hardware resource disaggregation
architecture where hardware resources in traditional
servers are disseminated into network-attached hardware
components. Each component has a controller and a net-
work interface, can operate on its own, and is an inde-
pendent, failure-isolated entity.

The disaggregated approach largely increases the flex-
ibility of a datacenter. Applications can freely use re-
sources from any hardware component, which makes re-
source allocation easy and efficient. Different types of
hardware resources can scale independently. It is easy to
add, remove, or reconfigure components. New types of
hardware components can easily be deployed in a data-
center — by simply enabling the hardware to talk to the
network and adding a new network link to connect it.
Finally, hardware resource disaggregation enables fine-
grain failure isolation, since one component failure will
not affect the rest of a cluster.

Three hardware trends are making resource disag-
gregation feasible in datacenters. First, network speed
has grown by more than an order of magnitude and
has become more scalable in the past decade with
new technologies like Remote Direct Memory Access
(RDMA) [69] and new topologies and switches [15, 30,
31], enabling fast accesses of hardware components that
are disaggregated across the network. InfiniBand will
soon reach 200Gbps and sub-600 nanosecond speed [66],
being only 2⇥ to 4⇥ slower than main memory bus in
bandwidth. With main memory bus facing a bandwidth
wall [87], future network bandwidth (at line rate) is even
projected to exceed local DRAM bandwidth [99].

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 71

Google
Cluster

Alibaba
Cluster

Time (day)
0 5 10 15 20 25

U
t
i
l
i
z
a
t
i
o
n

(
%
)

0

20

40

60

80

100
CPU

Memory

(a) Google Cluster
Time (hour)

0 2 4 6 8 10 12

U
t
i
l
i
z
a
t
i
o
n

(
%
)

0

20

40

60

80

100
CPU

Memory

(b) Alibaba Cluster
Figure 4: Datacenter Resource Utilization.

2 Disaggregate Hardware Resource
This section motivates the hardware resource disaggre-
gation architecture and discusses the challenges in man-
aging disaggregated hardware.

2.1 Limitations of Monolithic Servers
A monolithic server has been the unit of deployment and
operation in datacenters for decades. This long-standing
server-centric architecture has several key limitations.
Inefficient resource utilization. With a server being the
physical boundary of resource allocation, it is difficult
to fully utilize all resources in a datacenter [18, 33, 65].
We analyzed two production cluster traces: a 29-day
Google one [45] and a 12-hour Alibaba one [10]. Fig-
ure 4 plots the aggregated CPU and memory utilization
in the two clusters. For both clusters, only around half of
the CPU and memory are utilized. Interestingly, a signif-
icant amount of jobs are being evicted at the same time
in these traces (e.g., evicting low-priority jobs to make
room for high-priority ones [102]). One of the main
reasons for resource underutilization in these production
clusters is the constraint that CPU and memory for a job
have to be allocated from the same physical machine.
Poor hardware elasticity. It is difficult to add, move,
remove, or reconfigure hardware components after they
have been installed in a monolithic server [39]. Because
of this rigidity, datacenter owners have to plan out server
configurations in advance. However, with today’s speed
of change in application requirements, such plans have
to be adjusted frequently, and when changes happen, it
often comes with waste in existing server hardware.
Coarse failure domain. The failure unit of monolithic
servers is coarse. When a hardware component within a
server fails, the whole server is often unusable and ap-
plications running on it can all crash. Previous analy-
sis [90] found that motherboard, memory, CPU, power
supply failures account for 50% to 82% of hardware fail-
ures in a server. Unfortunately, monolithic servers cannot
continue to operate when any of these devices fail.
Bad support for heterogeneity. Driven by application
needs, new hardware technologies are finding their ways
into modern datacenters [94]. Datacenters no longer
host only commodity servers with CPU, DRAM, and
hard disks. They include non-traditional and special-
ized hardware like GPGPU [11, 46], TPU [55], DPU [5],

FPGA [12, 84], non-volatile memory [49], and NVMe-
based SSDs [98]. The monolithic server model tightly
couples hardware devices with each other and with a
motherboard. As a result, making new hardware devices
work with existing servers is a painful and lengthy pro-
cess [84]. Mover, datacenters often need to purchase new
servers to host certain hardware. Other parts of the new
servers can go underutilized and old servers need to retire
to make room for new ones.

2.2 Hardware Resource Disaggregation
The server-centric architecture is a bad fit for the fast-
changing datacenter hardware, software, and cost needs.
There is an emerging interest in utilizing resources be-
yond a local machine [41], such as distributed mem-
ory [7, 34, 74, 79] and network swapping [47]. These so-
lutions improve resource utilization over traditional sys-
tems. However, they cannot solve all the issues of mono-
lithic servers (e.g., the last three issues in §2.1), since
their hardware model is still a monolithic one. To fully
support the growing heterogeneity in hardware and to
provide elasticity and flexibility at the hardware level, we
should break the monolithic server model.

We envision a hardware resource disaggregation
architecture where hardware resources in traditional
servers are disseminated into network-attached hardware
components. Each component has a controller and a net-
work interface, can operate on its own, and is an inde-
pendent, failure-isolated entity.

The disaggregated approach largely increases the flex-
ibility of a datacenter. Applications can freely use re-
sources from any hardware component, which makes re-
source allocation easy and efficient. Different types of
hardware resources can scale independently. It is easy to
add, remove, or reconfigure components. New types of
hardware components can easily be deployed in a data-
center — by simply enabling the hardware to talk to the
network and adding a new network link to connect it.
Finally, hardware resource disaggregation enables fine-
grain failure isolation, since one component failure will
not affect the rest of a cluster.

Three hardware trends are making resource disag-
gregation feasible in datacenters. First, network speed
has grown by more than an order of magnitude and
has become more scalable in the past decade with
new technologies like Remote Direct Memory Access
(RDMA) [69] and new topologies and switches [15, 30,
31], enabling fast accesses of hardware components that
are disaggregated across the network. InfiniBand will
soon reach 200Gbps and sub-600 nanosecond speed [66],
being only 2⇥ to 4⇥ slower than main memory bus in
bandwidth. With main memory bus facing a bandwidth
wall [87], future network bandwidth (at line rate) is even
projected to exceed local DRAM bandwidth [99].

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 71

Memory Disaggregation
§ Newer direction

§ The case for memory disaggregation
§ DRAM is an expensive resource in the

cloud – 50% of server cost on Azure1

§ Memory utilization is low in the (current)
cloud2

§ Stranded memory (shows Azure3)

SiftDB’23/26

1 H. Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, arXiv 2203.00241, 2022.
2 Y. Shen et al. Pond: LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation, Proc. OSDI, 2018.
3 https://www.nextplatform.com/2022/07/11/microsoft-azure-blazes-the-disaggregated-memory-trail-with-znuma/

https://www.nextplatform.com/2022/07/11/microsoft-azure-blazes-the-disaggregated-memory-trail-with-znuma/

Memory Disaggregation
§ Newer direction

§ The case for memory disaggregation
§ DRAM is an expensive resource in the

cloud – 50% of server cost on Azure1

§ Memory utilization is low in the (current)
cloud2

§ Stranded memory (shows Azure3)

§ Independent and elastic scaling of compute
and memory4

SiftDB’23/26

1 H. Li et al. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, arXiv 2203.00241, 2022.
2 Y. Shen et al. Pond: LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation, Proc. OSDI, 2018.

4 https://aws.amazon.com/ec2/instance-types/
3 https://www.nextplatform.com/2022/07/11/microsoft-azure-blazes-the-disaggregated-memory-trail-with-znuma/

AWS EC2 Instance vCPU DRAM (GB)
r6g.medium 1 8
r6g.large 2 16
r6g.xlarge 4 32
r6g.2xlarge 8 64
r6g.4xlarge 16 128
r6g.8xlarge 32 256
r6g.16xlarge 64 512

https://aws.amazon.com/ec2/instance-types/
https://www.nextplatform.com/2022/07/11/microsoft-azure-blazes-the-disaggregated-memory-trail-with-znuma/

The Case for Memory Disaggregation

SiftDB’23/27

The Case for Memory Disaggregation
§ Flexibility in VM configuration

§ Independent allocation

SiftDB’23/27

The Case for Memory Disaggregation
§ Flexibility in VM configuration

§ Independent allocation

§ Fault tolerance
§ Independent failure

SiftDB’23/27

X

Critical Component in Disaggregation (Beyond Storage)

SiftDB’23/28

Low latency, high bandwidth
interconnect

Networking Hardware Improvements
§ Basic/Foundational NIC

§ Simple network connection

§ Usually 1Gbps – 25Gbps

§ Relies on CPU for protocol processing – ≥ 30% server
CPU for higher speeds

§ Smart NIC
§ Offload network protocol processing

§ Have their own processor, memory & OS

§ ≥ 50Gbps

§ DPU
§ Smart NIC + security + storage + …

§ Custom chips and/or FPGAs

T. Döring et al., SmartNICs: Current Trends in Research and Industry, 2020
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2021-05-1/NET-2021-05-1_05.pdf

SiftDB’23/29

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2021-05-1/NET-2021-05-1_05.pdf

Networking Software Improvements

100+ Gbps

SiftDB’23/30

Networking Software Improvements
§ High overhead of TCP

100+ Gbps

SiftDB’23/30

Networking Software Improvements
§ High overhead of TCP

§ “Data center tax”1

1 L. Barroso, et al. Attack of the Killer Microseconds. Commun. ACM, 60(4):48–54, March 2017.

100+ Gbps

SiftDB’23/30

Networking Software Improvements
§ High overhead of TCP

§ “Data center tax”1

§ “Modern networking hardware enables
roundtrip times of a few microseconds for short
messages. The transport protocol must not add
significantly to this latency”2

1 L. Barroso, et al. Attack of the Killer Microseconds. Commun. ACM, 60(4):48–54, March 2017.
2 J. Ousterhout. It’s Time to Replace TCP in the Datacenter, arXiv 2210.00714, 2023.

100+ Gbps

SiftDB’23/30

Networking Software Improvements
§ High overhead of TCP

§ “Data center tax”1

§ “Modern networking hardware enables
roundtrip times of a few microseconds for short
messages. The transport protocol must not add
significantly to this latency”2

§ Low-overhead protocol
§ RDMA (Infiniband, RoCE)

§ CXL

1 L. Barroso, et al. Attack of the Killer Microseconds. Commun. ACM, 60(4):48–54, March 2017.
2 J. Ousterhout. It’s Time to Replace TCP in the Datacenter, arXiv 2210.00714, 2023.

100+ Gbps

SiftDB’23/30

Networking Software Improvements
§ High overhead of TCP

§ “Data center tax”1

§ “Modern networking hardware enables
roundtrip times of a few microseconds for short
messages. The transport protocol must not add
significantly to this latency”2

§ Low-overhead protocol
§ RDMA (Infiniband, RoCE)

§ CXL

§ Efficient RPC protocol – higher level

1 L. Barroso, et al. Attack of the Killer Microseconds. Commun. ACM, 60(4):48–54, March 2017.
2 J. Ousterhout. It’s Time to Replace TCP in the Datacenter, arXiv 2210.00714, 2023.

100+ Gbps

SiftDB’23/30

CPU
(App)

RDMA
NIC

Mem

CPU

RDMA
NIC

Mem

RDMA – Remote Direct Memory Access

SiftDB’23/31

Physical View

CPU
(App)

RDMA
NIC

Mem

CPU
Send Queue
Recv Queue

RDMA
NIC

Mem

RDMA – Remote Direct Memory Access

SiftDB’23/31

Physical View

CPU
(App)

RDMA
NIC

Mem

CPU
Send Queue
Recv Queue

RDMA
NIC

2-sided

Mem

RDMA – Remote Direct Memory Access

SiftDB’23/31

Physical View

CPU
(App)

RDMA
NIC

Mem

CPU
Send Queue
Recv Queue

RDMA
NIC 1-sided

Mem

RDMA – Remote Direct Memory Access

SiftDB’23/31

Physical View

RDMA – Remote Direct Memory Access

SiftDB’23/32

App

RDMA
NIC

OS

Send Queue
Recv Queue

RDMA
NIC

OS

App

Buffer Buffer

Process View

RDMA – Remote Direct Memory Access

SiftDB’23/32

App

RDMA
NIC

OS

Send Queue
Recv Queue

RDMA
NIC

OS

App

Buffer Buffer

Process View

§ Zero-copy networking

§ OS bypass

§ CPU bypass

§ Message-based
communication

33

RDMA – Remote Direct Memory Access

App

RDMA
NIC

OS

Send Queue
Recv Queue

RDMA
NIC

OS

App
Buffer Buffer

CPU
(App)

RDMA
NIC

Mem

CPU
Send Queue
Recv Queue

RDMA
NIC

2-sided
1-sided

Mem

Physical View Process View

CXL – Compute Express Link
§ High bandwidth, low latency, cache coherent interconnect

§ Avoids memory copy between application memory and NIC buffers

§ Does not require a CPU (or controller) on memory nodes

SiftDB’23/34

CXL – Compute Express Link
§ High bandwidth, low latency, cache coherent interconnect

§ Avoids memory copy between application memory and NIC buffers

§ Does not require a CPU (or controller) on memory nodes

SiftDB’23/34

CPUMem

Accelerator
NIC

Cache

CXL

Type 1

CXL – Compute Express Link
§ High bandwidth, low latency, cache coherent interconnect

§ Avoids memory copy between application memory and NIC buffers

§ Does not require a CPU (or controller) on memory nodes

SiftDB’23/34

CPUMem CPUMem

Accelerator
NIC

Cache

CXL

Type 2Type 1

Accelerator
NIC

Cache

CXL

Mem

CXL – Compute Express Link
§ High bandwidth, low latency, cache coherent interconnect

§ Avoids memory copy between application memory and NIC buffers

§ Does not require a CPU (or controller) on memory nodes

SiftDB’23/34

CPUMem CPUMem CPUMem

Accelerator
NIC

Cache

CXL

Type 2Type 1 Type 3

Accelerator
NIC

Cache

CXL

Mem Memory
Buffer

Mem

Mem

...

CXL

RDMA
§ Copies data from application memory to NIC

buffers
§ Copies data across the network
§ Requires handling of cache coherence (in

some configurations)
§ Requires a CPU/controller at memory nodes

CXL
§ Does not copy data into NIC buffers
§ Does not copy data across the network,

accesses remote memory
§ Provides a hardware supported coherent

cache
§ No need for CPU/controller at memory nodes

CXL vs RDMA

SiftDB’23/35

RDMA
§ Copies data from application memory to NIC

buffers
§ Copies data across the network
§ Requires handling of cache coherence (in

some configurations)
§ Requires a CPU/controller at memory nodes

CXL
§ Does not copy data into NIC buffers
§ Does not copy data across the network,

accesses remote memory
§ Provides a hardware supported coherent

cache
§ No need for CPU/controller at memory nodes

CXL vs RDMA

SiftDB’23/35
1 D. Gouk, et al. Direct Access, High Performance Memory Disaggregation with DirectCXL. Proc. USENIX ATC, 2022.

Main Issue with Memory Disaggregation

Access Latency vs

SiftDB’23/36

Main Issue with Memory Disaggregation

Access Latency

Near-data Processing
+

Optimized Design

vs

SiftDB’23/36

Near-Data Processing: The Case for Smart Memory
§ Minimize data movement from memory to CPU

§ Also
§ DRAM growing but not at the same speed as the

demand

§ The independent provisioning issue again

§ Farview: buffer pool on disaggregated memory
§ Push down operators to memory → reduce data

movement

§ Centralize buffer cache on disaggregated memory →
reduce memory requirement on compute nodes

D. Korolija et al. Farview: Disaggregated Memory with Operator Off-loading for Database Engines, Proc. CIDR, 2002
SiftDB’23/37

Near-Data Processing: The Case for Smart Storage
§ Further restrict data movement

§ Pushing near-data computation to the
storage

§ Similar to old idea of database
machines

SiftDB’23/38

Near-Data Processing: The Case for Smart Storage
§ Further restrict data movement

§ Pushing near-data computation to the
storage

§ Similar to old idea of database
machines

§ AWS Aqua nodes

J.Barr. AQUA (Advanced Query Accelerator) – A Speed Boost for Your Amazon Redshift Queries, 2021
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/

SiftDB’23/38

https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/

Our Work
§ Scope: in-memory DBMS

§ Compute nodes
§ Strong computing, but limited local

memory

§ SQL parser, optimization, transaction,
buffer

§ Each compute can read/write

§ Memory nodes
§ Form a DSM layer accessed by all

compute nodes

RDMA
Over
Infiniband

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.
SiftDB’23/39

Transaction Execution Design

SiftDB’23/40
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Transaction Execution Design
§ Challenge: Cache coherence

§ This is not an issue if CXL is used

§ RDMA: No hardware-supported cache
coherence between compute nodes

SiftDB’23/40
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Transaction Execution Design
§ Challenge: Cache coherence

§ This is not an issue if CXL is used

§ RDMA: No hardware-supported cache
coherence between compute nodes

§ Challenge: Distributed commit
§ Depends on the model

SiftDB’23/40
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Transaction Execution Design
§ Challenge: Cache coherence

§ This is not an issue if CXL is used

§ RDMA: No hardware-supported cache
coherence between compute nodes

§ Challenge: Distributed commit
§ Depends on the model

§ Challenge: Concurrency Control Algs
§ Cannot directly use existing CC protocols,

e.g., 2PL, MVCC, OCC

SiftDB’23/40
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Transaction Execution Design
§ Challenge: Cache coherence

§ This is not an issue if CXL is used

§ RDMA: No hardware-supported cache
coherence between compute nodes

§ Challenge: Distributed commit
§ Depends on the model

§ Challenge: Concurrency Control Algs
§ Cannot directly use existing CC protocols,

e.g., 2PL, MVCC, OCC

§ Challenge: Massive concurrency
§ Main difference with multi-core single-node

architecture

SiftDB’23/40
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Cache Coherence
§ Do we use the local buffer in

each compute node?

SiftDB’23/41
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Cache Coherence
§ Do we use the local buffer in

each compute node?
§ If yes, need to address cache-

coherence problem via software-
level → overhead

§ If not, performance hit

§ many remote accesses

SiftDB’23/41
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Cache Coherence
§ Do we use the local buffer in

each compute node?
§ If yes, need to address cache-

coherence problem via software-
level → overhead

§ If not, performance hit

§ many remote accesses

§ Do we use sharding between
compute nodes?

SiftDB’23/41
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Alternative #1: No Sharding, No Cache
§ Each compute node reads/writes

all data

§ But doesn’t store any data in local
buffer→ No cache coherence issue

§ Data pages are stored in DSM

SiftDB’23/42
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Alternative #1: No Sharding, No Cache
§ Each compute node reads/writes

all data

§ But doesn’t store any data in local
buffer→ No cache coherence issue

§ Data pages are stored in DSM

§ All compute nodes use RDMA CAS
(compare & swap) to acquire a lock
first

§ Not realistic → many remote
accesses

SiftDB’23/42
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Alternative #2: No Sharding, With Cache
§ Each compute node reads/writes all

data

§ Each compute node caches local data

§ How to resolve conflicts?

SiftDB’23/43
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Alternative #2: No Sharding, With Cache
§ Each compute node reads/writes all

data

§ Each compute node caches local data

§ How to resolve conflicts?

§ Develop a software-level cache
coherence protocol
§ Update-based

§ Invalidation-based

§ Overhead has to be measured and
considered

SiftDB’23/43
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Alternative #3: With Sharding, With Cache
§ Logical sharding among compute nodes

§ Each compute node accesses a partition

§ Use local buffer to cache data

§ Bypass cache coherence issue

§ But depending on workloads

SiftDB’23/44

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Alternative #3: With Sharding, With Cache
§ Logical sharding among compute nodes

§ Each compute node accesses a partition

§ Use local buffer to cache data

§ Bypass cache coherence issue

§ But depending on workloads

§ Similar to distributed shared-nothing

§ We do logical sharding (not physical sharding)

§ Also, the use of DSM layer can address
distributed transaction and data skewness

§ Support elasticity very well

SiftDB’23/44
R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.

Distributed Shared-Memory (DSM) Design
§ Goal: manage a cluster of memory nodes,

and expose necessary APIs to compute
nodes

§ Looks like a single unified memory space

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.
SiftDB’23/45

Distributed Shared-Memory (DSM) Design
§ Goal: manage a cluster of memory nodes,

and expose necessary APIs to compute
nodes

§ Looks like a single unified memory space

§ Challenge: Durability & Availability

§ Challenge: Abstract APIs

§ Memory access APIs (also memory space
representation)

§ Data transmission APIs (for RDMA)

§ Function offloading APIs (for DBMS ops)

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.
SiftDB’23/45

Durability & Availability
§ Memory-based system
§ Replication of data

§ Additional memory space + write performance

§ Log-based solution (RAMCloud1)
§ Separate logs from data (log store + data

store)
§ Only logs are replicated in three memory

nodes
§ A transaction is committed once all the logs

are replicated and acknowledged
§ Data pages are asynchronously materialized

§ Data pages are stored only once in memory
§ Periodically checkpoint data pages to

shared-storage to improve availability
SiftDB’23/46

1 J. Ousterhout, et al. The Case for RAMClouds: Scalable High-Performance Storage Entirely in DRAM, Proc. SIGOPS, 2009.

write
loglog

Index Design Challenges
§ Challenge: Leveraging RDMA

characteristics (e.g., RDMA primitives)

§ Challenge: How to use the buffer
memory in compute nodes?

§ Challenge: Leveraging RDMA byte-
addressability

§ Challenge: Leveraging near-data
computing

§ Challenge: How to support multi-node
concurrent accesses?

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.
SiftDB’23/47

Disk-based indexes
§ E.g., B-tree, LSM-tree

§ Not designed for RDMA (e.g., which
primitive)

§ Not optimized for byte-addressability

§ Not leveraging near-data computing

§ Multi-node concurrent accesses

§ E.g., use a single lock for both read and write
or use read-write locks?

Memory-based indexes
§ E.g., Bw-tree, Mass-tree, ART

§ Not designed for RDMA (e.g., which
primitive)

§ Not leveraging local buffer

§ Not leveraging near-data computing

§ Multi-node concurrent accesses

§ E.g., lock-free vs. lock-based

Rethinking Existing Indexes

R. Wang et al. The Case for Distributed Shared Memory Databases with RDMA-Enabled Memory Disaggregation, Proc. VLDB, 2022.
§ SiftDB’23/99

dLSM
§ Compute node: MemTable, immutable,

index blocks, bloom filters
§ Memory node: SSTables (memory-

optimized)
§ One-sided RDMA read/write
§ Reduce software overhead

§ Synchronization

§ Flushing

§ Near-data compaction
§ Optimize for byte-addressability

§ Can access a single KV pair

R. Wang et al. dLSM: An LSM-based Index for RDM-Enabled Memory Disaggregation, Proc. ICDE, 2023.
SiftDB’23/49

Heterogeneity
DISAGGREGATED HETEROGENEOUS PLATFORM

SiftDB’23/50

Case for Heterogeneous Computing
§ Computing platforms are already

heterogeneous

§ Remember that CPU is not keeping
up

§ Data parallel computations of new
workloads perform well on GPUs

§ FPGAs are more flexible and can
serve to experiment with solutions

§ High volume demand for same task
might be best met by ASICs

SiftDB’23/51

Xeon 8380
2x 40 cores

DDR4-3200
1TB

NVIDIA Tesla 100
Intel Cyclone GX

PCIe 4

SA
TA

6x Samsung SM883
23.04 TB

PCIe 4

Samsung 980 NVMe
1TB

Data Management over GPU/CPU-GPU

Xeon 8380
2x 40 cores

DDR4-3200
1TB

NVIDIA Tesla 100
Intel Cyclone GX

PCIe 4

SA
TA

6x Samsung SM883
23.04 TB

PCIe 4

Samsung 980 NVMe
1TB

SiftDB’23/52

Data Management over GPU/CPU-GPU

Xeon 8380
2x 40 cores

DDR4-3200
1TB

NVIDIA Tesla 100
Intel Cyclone GX

PCIe 4

SA
TA

6x Samsung SM883
23.04 TB

PCIe 4

Samsung 980 NVMe
1TB

Two approaches

SiftDB’23/52

Data Management over GPU/CPU-GPU

Xeon 8380
2x 40 cores

DDR4-3200
1TB

NVIDIA Tesla 100
Intel Cyclone GX

PCIe 4

SA
TA

6x Samsung SM883
23.04 TB

PCIe 4

Samsung 980 NVMe
1TB

Two approaches
§ Transfer data to GPU on-demand1

§ PCIe bandwidth is an issue
§ PCIe bottleneck sometimes causes performance

< optimized CPU implementations
§ Store working set directly on GPU2

1 J. Li et al. HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data Analytics, Proc. VLDB, 2016.
2 A. Shanbhag, S. Madden and X. Yu. A Study of the Fundamental Performance Characteristics of GPUs and CPUs for
Database Analytics, Proc. SIGMOD, 2020.

SiftDB’23/52

Data Management over GPU/CPU-GPU

Xeon 8380
2x 40 cores

DDR4-3200
1TB

NVIDIA Tesla 100
Intel Cyclone GX

PCIe 4

SA
TA

6x Samsung SM883
23.04 TB

PCIe 4

Samsung 980 NVMe
1TB

3 P. Chrysogelos et al. HeatExchange: Encapsulating Heterogeneous CPU-GPU Parallelism in JIT Compiled Engines, Proc. VLDB, 2019.
4 B. W. Yogatama, W. Gong and X. Yu. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS, Proc.
VLDB, 2022.

Two approaches
§ Transfer data to GPU on-demand1

§ PCIe bandwidth is an issue
§ PCIe bottleneck sometimes causes performance

< optimized CPU implementations
§ Store working set directly on GPU2

§ CPU-GPU heterogeneous processing3,4

§ Design more complicated
§ Data placement – treat GPU memory as cache4

§ Finer granularity cache →more complex query
execution

§ Cost model to decide where to execute what

SiftDB’23/52

Data Management over FPGA/CPU-FPGA
“FPGAs … configure different parts of the design space
offering advantages that other current options do not
have:

§ line rate processing;

§ enabling processing streams of data out of the
network, disks, or memory without performance loss;

§ architectural flexibility in that they can be inserted in
places where the other type of processor cannot be
used such as in NICs, in storage, in memory, etc. …;
and

§ the customizable nature of reconfigurable computing
with the FPGA serving equally well to accelerate
network function virtualization, data reorganization in
a database, or to accelerate joins.”

Xeon 8380
2x 40 cores

DDR4-3200
1TB

NVIDIA Tesla 100 Intel Cyclone GX

PCIe 4

SA
TA

6x Samsung SM883
23.04 TB

PCIe 4

Samsung 980 NVMe
1TB

W. Jiang, D. Korolija and G. Alonso. Data Processing with FPGAs on Modern Architectures, Proc. SIGMOD, 2023.
SiftDB’23/53

FINAL WORDS

SiftDB’23/54

Environment is Getting Interesting
§ Other h/w developments that can help (but I don’t know much about):

§ Tensor Processing Unit (TPU)

§ Data Processing Unit (DPU)

§ Non-Volatile Memory (NVM)

§ Design space is varied and large
§ But start somewhere

SiftDB’23/55

Thank you

