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Abstract. Given a set of query points, a dynamic skyline query reports all data
points that are not dominated by other data points according to the distances
between data points and query points. In this paper, we study dynamic skyline
queries in a large graph (DSG-query for short). Although dynamic skylines have
been studied in Euclidean space [16], road network [6], and metric space [4, 7],
there is no previous work on dynamic skylines over large graphs. We employ
a filter-and-refine framework to speed up the query processing that can answer
DSG-query efficiently. We propose a novel pruning rule based on graph properties
to derive the candidates for DSG-query, that are guaranteed not to introduce false
negatives. In the refinement step, with a carefully-designed index structure, we
compute short path distances between vertices in O(H), where H is the number
of maximal hops between any two vertices. Extensive experiments demonstrate
that our methods outperform existing algorithms by orders of magnitude.

1 Introduction
As a popular multi-criteria decision making and business planning operator, skyline has
attracted considerable attention. Given a record set D of n dimensions, a skyline query
over D returns a set of records that are not dominated by any other record in D [2]. A
record r is said to dominate another record r′, if and only if the value of r is no larger
than that of r′ in each dimension, and the value of r is smaller than that of r′ in at
least one dimension. Fig. 1 shows a simple skyline query example. Given a record set
D with 8 records, only 001 and 003 are reported as skyline records, since they are not
dominated by any other record in D. The others are all dominated by 001 or 003. For
example, 002 is dominated by 001, since 2 < 3 in dimension x and 3 < 4 in dimension
y. Based on the skyline definition, given a record set D, the skylines of D are fixed,
thus, we refer to the skylines following the original definition as static skylines [4].

In some cases, the values of records are computed at run time based on the values
of query points, even for the same record set D, given different query points, we might
obtain different skylines. We refer to these as dynamic skylines. These have been studied
in various contexts. For example, “spatial” skylines have been proposed in Euclidean
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space [16]. Specifically, given a set of query points Q = {qi} (i = 1...n), for each
record r ∈ D, we compute a new vector rd of dimension n, where rd’s i-th dimension
is computed as Euclidean Distance between r and qi. The spatial skylines refer to all
vectors rd whose values are not dominated by other r′d in the record set D. A similar
query, called multi-source skyline query in road networks, is studied by Deng et al. [6],
where the values of records are defined as the shortest path lengths on road networks
from data points to query points.
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Fig. 1. (a)Static Skyline Query and (b) Running Example

Compared to static skylines, dynamic skylines offer users more flexibility in spec-
ifying their search criteria. In other words, different users can specify different sets of
query points. Meanwhile, the flexibility of dynamic skyline queries brings new chal-
lenges for efficient query processing. A naive solution computes all the new vectors
according to the query points, and then searches the skylines over the generated vec-
tors. This approach is clearly inefficient, since it requires scanning the whole record set
D to compute the new vectors.

In this paper, we study the problem of dynamic skyline queries over graph data,
which is formally defined as follows:
Definition 1. Dominate. Given a large undirected and edge-weighted graph G and a
set of query vertices Q = {qi}, i = 1...n, in graph G, for two data vertices v′ and v
in G (v and v′ are not query vertices), we say that v′ dominates v, if and only if the
following holds: (∀i, Dist(v′, qi) ≤ Dist(v, qi)) ∧ (∃j, Dist(v′, qj) < Dist(v, qj) , where
Dist(v, qi) is the shortest path distance between v and qi in graph G.
Definition 2. Problem Definition. Given a large undirected and edge-weighted graph
G and a set Q of query vertices Q = {qi}, i = 1...n, in graph G, a dynamic skyline
query in graph (DSG-query) reports all data vertices v in graph G (v 6= qi) where each
v is not dominated by any other vertex v′ in G. All skyline vertices of query Q in graph
G are denoted as Skyline(G,Q).
Example 1 (Running Example). Consider a graph G and two query vertices q1 and q2

(denoted as shaded vertices) in Fig. 1b. The number in the vertex is the vertex ID. For
simplicity, we assume that all edges have the same weight 1. Obviously, in this example,
there is only one skyline vertex, that is v0.

Similar to the cases in the Euclidean space, dynamic skylines over graph data are
quite useful. For example, given a social network modeled as a large graph, where each
vertex corresponds to an individual, and each edge denotes the friendship between two
corresponding individuals, we can use shortest path distance to define the relationship
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score between two individuals in a social network [18]. Assuming that there are two
important latent customers (two query vertices), a company may look for a salesman
who has “closer” relationship to these customers than any other salesmen. In fact, the
company is looking for the skyline salesmen with respect to the two given potential
customers c1 and c2. A salesman r is a skyline if and only if there exists no other
salesman r′, such that Dist(r′, c1) < Dist(r, c1) and Dist(r′, c2) < Dist(r, c2),
where Dist(r, ci) denotes the shortest path distance between r and ci. Finally, consider
a Peer-to-Peer (P2P) network with a number of peers that are interested in some movies.
In order to reduce the communication cost, we can put replicas of the movies on a node
that is near these peers. Obviously, dynamic skylines with respect to these peers in the
topology map (a graph) of this P2P network can provide some candidate nodes for
storing the replicas.

Although efficient solutions have been proposed for dynamic skylines over Eu-
clidean space [16], these cannot be applied to graphs. In a graph, the shortest path
distance is often used as a measure between two vertices, rather than Euclidean dis-
tance. Thus, it is impossible to utilize existing pruning rules, such as MBR and Voronoi
Diagrams that have been used in Euclidean space [16].

The most related work is multi-source skyline query processing in road networks
[6], which also uses shortest path distance as the measure. Three different algorithms
have been proposed to find dynamic skylines in road networks. Two of the algorithms
(EDC and LBC) [6] utilize Euclidean distance as the lower bound of shortest path dis-
tance in a road network to perform pruning. However, for a general graph G, we cannot
define Euclidean distances to bound the shortest path distances between any two ver-
tices in G, since there is no coordinate associated with each vertex. Therefore, EDC
and LBC algorithms cannot be applied to DSG-Query. The third algorithm (CE) is not
efficient. It expands each query point towards all directions, which may generate too
many candidate objects and cause unnecessary shortest path distance computation, as
confirmed by our experiments (Section 4).

Dist(v, qi) in DSG-query is a metric distance. Thus, the approaches that address
skyline queries in metric space (e.g. [4]) are of interest. However, these solutions are
only designed for the general metric space, and the methods are not optimized for large
graphs. Experiments in Section 4 show that our methods outperform these general ap-
proaches by orders of magnitude. For a DSG-query, there exist two challenges: 1) Huge
Search Space: each vertex in graph G (except for query vertices) is a candidate for
DSG-query; and 2) Expensive Shortest Path Computation: In order to find final sky-
line vertices, we need to compute Dist(v, qi) (see Definitions 1 and 2). However, the
expansion process in shortest path algorithms (e.g. Dijkstra’s Algorithm [5]) is very
time-consuming, especially in very large graphs.

In order to address the above challenges, we adopt the “filter-and-refine” frame-
work. During the filtering process, we prune most false positives (the vertices that can-
not be skyline vertices) to generate a set of candidate vertices. We compute Dist(v, qi)
for each candidate vertex during refinement using an index structure. Furthermore, we
can compute Dist(v, qi) in O(H)where His the number of maximal hops between any two
vertices in the graph, without expensive expansions that are employed in previous solutions. In
summary, we make the following contributions:
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1. We propose shared-shortest-paths (SSP) pruning for DSG-query, that considers graph prop-
erties, and that filters out most false positive vertices. We also give a theoretical analysis of
the pruning power of SSP-pruning.

2. During offline processing of DSG-query, we build carefully-designed index structures that
support both filtering and verification processes in online DSG-query.

3. Based on novel pruning rules and index structures, we propose the SSP query algorithm (see
Algorithm 3) for DSG-query.

4. We show by extensive experiments that our methods have good pruning power and fast query
response time.

The remainder of this paper is organized as follows. Some background knowledge is discussed in
Section 2. A novel pruning rule is proposed in Section 3. The index structures and SSP-query al-
gorithm are also presented in Section 3. We evaluate the efficiency of our methods with extensive
experiments in Section 4. We discuss related work in Section 5 in detail. Finally, we conclude the
paper in Section 6.

2 Preliminaries
Definition 3. Shortest Path Tree. (SP -Tree for short) Given a large graph G and a vertex v, we
perform a single-source shortest path algorithm (such as Dijkstra algorithm [5]) from vertex v
to get a tree SP (v). The root of SP (v) is v, and all paths from v to another node v′ in SP (v) is
the shortest path from v to v′ in graph G.
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Fig. 2. Shortest Path Trees

Fig. 2 shows all SP -Trees for graph G of Example 1. We can perform Dijkstra’s algorithm
[5] offline to obtain the SP -Tree. Note that, for a vertex v in a large graph G, there may exist
more than one SP -Tree rooted at v. Actually, for a vertex v in G, we can select any SP -Tree
rooted at v without affecting the correctness of our methods. We will prove this claim in Section
3 (see Lemma 4). We utilize SP-Tree in our SSP query algorithm (see Section 3).
Definition 4. Minimum Common Ancestor. Given a SP -Tree SP (v) in a large graph G and a
set of nodes {v1, ..., vn} in SP (v), a node v′ is the minimum common ancestor of {v1, ..., vn}
(denoted as MCA(v1...vn, SP (v))) if and only if
1) v′ is the ancestor of all nodes v1, ..., vn; and
2) there exists no other node v′′, where v′′ is the ancestor of all nodes v1, ..., vn, and v′ is the
ancestor of v′′.

Take SP (v3) in Fig. 2, for example, MCA(v0, v1, SP (v3)) = v2.

3 Shared Shortest Path Algorithm
3.1 SSP Pruning Algorithm
We first note an interesting property of graphs: many pairwise shortest paths in a graph
have shared parts. We propose a pruning strategy (SSP Pruning) that exploits these
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Fig. 3. (a)Shared Shortest Path Pruning and (b) Lemma 2

shared paths. We also give a theoretical analysis of pruning power of SSP pruning.
Theoretical analysis and experiments confirm the effectiveness of SSP pruning. Fur-
thermore, the indexing structures proposed for SSP can be used to support the efficient
computation of Dist(v, qi) (discussed in Section 3.2).
Pruning Rule 1: Shared Shortest Path (SSP) Pruning. Given a large graph G and a
set of query vertices Q = {qi}, i = 1...n, for a data vertex v, if there exists at least
one joint (common) vertex v′ among all shortest paths between v and qi (denoted as
vqi)(v 6= v′, i = 1...n), v can be pruned safely for DSG-query.

Lemma 1. SSP pruning will not lead to false negatives.

Proof. Since vertex v′ is in the shortest path vqi (as shown in Fig. 3a), it is straightfor-
ward to see that Dist(v′, qi) < Dist(v, qi), i = 1...n . According to Definition 1, vertex
v′ dominates v. Therefore, v cannot be a skyline vertex, without causing false negatives.

Definition 5. Strictly Dominate, Candidate Skyline Vertex. Given a large graph G and
a set Q of query vertices Q = {qi}, i = 1...n, for a vertex v, if there exists a joint vertex
v′ (v 6= v′) in all shortest paths vqi, vertex v′ strictly dominates vertex v.

For a vertex v in graph G, if there exists no other vertex v′ that strictly dominates
v, the vertex v is a candidate skyline vertex.

Theorem 1. Given a large graph G and a set Q of query vertices Q = {qi}, i = 1...n,
the following formula holds:Skyline(G,Q) ⊆ Can Skyline(G,Q), where Skyline(G)
(or CanSkyline(G)) is the set of skyline vertices (or candidate skyline vertices) in
graph G.

Proof. SSP-pruning will not lead to false negatives, therefore, Skyline(G,Q) ⊆ Can
Skyline(G,Q)

Obviously, CanSkyline(G,Q) can be regarded as a candidate set for Skyline(G,Q).
In Example 1, we enumerate all SP -Trees in graph G, as shown in Fig. 2.
Lemma 2. Given a large graph G, a set Q of query vertices Q = {qi}, i = 1...n, and
a SP -Tree SP (v) and v′ = MCA( q1...qn, SP (v)), v is a candidate skyline vertex if
and only if v = v′.

Proof. Proof is based on Definition 5. Due to space limit, we omit the details.
We show two shortest path trees SP (v0) and SP (v4) in Fig. 3b. In these trees, MCA(q1, q2,

SP (v4)) = v3 6= v4 , therefore,v4 /∈ CanSkyline(G,Q). However, MCA(q1, q2, SP (v0))
= v0, thus, v0 ∈ CanSkyline(G,Q).
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Using Lemma 2, we propose a conceptually simple framework for SSP-pruning.
During offline processing, we enumerate all SP -Trees in graph G. Given a set Q of
query vertices Q = {qi}, i = 1...n, in each SP (v), if v′ = MCA(q1... qn, SP (v)) and
v′ = v, v will be inserted into candidate set CL. Otherwise, v can be pruned safely. We
can find CanSkyline(G,Q) by sequentially scanning all SP -Trees.

However, due to large space cost, it is impractical to store all SP -Trees of a large
graph G. The space cost of each SP -Tree is O(|V (G)|), where |V (G)| is the number
of vertices in G. Therefore, we would need O(|V (G)|2) space to store all SP -Trees in
graph G. For example, if G has 10K vertices, the total space cost is O(108). To alleviate
this space cost, in this work, we only store 1-hop SP -Trees.

Definition 6. 1−Hop Shortest Path Tree Given a large graph G and a vertex v in G, 1-
Hop Shortest Path Tree from v (denoted as SP (v, 1)) is obtained by extracting vertex v
and vertices that are directly reachable from v in SP (v). Each leaf node f in SP (v, 1)
also has a set des of vertices (denoted as f.des), that corresponds to all descendants of
the leaf node f in SP (v). We call f.des the node area of f .

v0

v1 v2

SP(v0)

v2.des = {v3,v4}v1.des =

Fig. 4. 1−Hop Shortest-Distance-Path Tree

Fig. 4 shows SP (v0, 1) in Example 1, that is obtained by extracting vertices v1 and v2

that are directly reachable from v0 in SP (v0) to form SP (v0, 1). Since vertices v3 and
v4 are descendants of v2 in SP (v0), v2.des = {v3, v4}.

Theorem 2. Given a set of query vertices Q = {qi}, i = 1...n, and 1-hop SP-Tree
SP (v, 1), if there exists a leaf node f in SP (v, 1) and f.des contains all query vertices,
vertex v cannot be a skyline vertex.

Proof. Proof is based on Definition 5. Due to space limit, we omit the details.

Based on Theorem 2, we propose Algorithm 1. For a vertex v, we only need to
check whether all query vertices are in the same leaf node area f.des. If so, v can be
pruned. Furthermore, Lemma 3 shows that using 1-hop shortest path tree does not affect
the pruning power of Pruning Rule 1.

Lemma 3. Given a large graph G and a set of query vertices Q = {qi}, i = 1...n, for
a data vertex v in G, if v is strictly dominated by another vertex v′, then there must exist
a leaf node f in SP (v, 1) and f.des contains all query vertices.

Proof. Since v′ strictly dominates v, all query vertices are descendent of v′ in SP (v).
According to Definition 6, it is straightforward to know all query vertices are in one leaf
node area f.des.
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Algorithm 1 Prune False Positives by SSP pruning
SSP-pruning(G,Q,S)
Require: Input: A large graph G and a set Q of query vertices Q = {qi}, all 1-hop SP Trees,

and a set S of vertices
Output: Candidate Set CL

1: for each vertex v in S do
2: if all query vertices qi are in only one leaf node n.des of SP (v, 1) then
3: continue (Pruned by Theorem 2 )
4: else
5: insert v into candidate set CL.
6: report CL

Lemma 4. Given a vertex v that has more than one SP -Tree rooted at v (SP1(v), ..., SPb(v)),
choosing any SP-Tree rooted at v for SSP pruning does not lead to false negatives.

Proof. No matter which SPj(v) is selected, if all query vertices are contained in f.des
of SPj(v), f strictly dominates v. Therefore, Lemma 4 holds.

However, the space cost of the set f.des in each leaf node f is still a problem. The
number of vertices in f.des is always large. In order to reduce the space cost, we build
hierarchical clusters on vertices in G. If f.des contains all vertices in a cluster P , we
can use P ′s ID instead of the vertices in P in f.des. For example, Fig. 5a shows a
hierarchical cluster of Example 1. Cluster P2 has two vertices: v3 and v4. Fig. 5b shows
that v3 and v4 are both in v2.des of SP (v0, 1). Therefore, we only need to insert P2

instead of v3 and v4 in v2.des of SP (v0, 1), as shown in Fig. 5c. Intuitively, if some
vertices often occur together in f.des, they should be grouped together. Based on this
intuition, we propose distance definitions (Definitions 7 and 8) that account for clustered
vertices. In Example 1, vertices v3 and v4 should be grouped into one cluster, since they
occur together in three 1-hop SP -Trees (i.e. SP (v0, 1), SP (v1, 1) and SP (v2, 1)).
Similarly, v1 and v2 should be clustered together. Essentially, the coherence of vertices
in 1-hop SP-Tree is derived from their shared shortest paths of SP -Trees.

P

P0 P2

v1 v2 v3 v4v0

Hierachical Cluster Tree

P1

SP(v0,1)

v0

v1 v2

v2.Des={P2}

dst src lef

P2 v0 v2

... ... ...

TAB_1SPT

v0

v1 v2

SP(v0,1)

v2.Des={v3,v4}

(a) (b) (c) (d)

Fig. 5. Hierarchical Cluster Tree and 1-Hop SP -Tree

In order to build a hierarchical cluster on vertices, we propose the following distance
functions, which are used to measure the probability that two vertices appear together.

Definition 7. Vertex Distance. Given three vertices v, v1 and v2, if there exists a leaf
node f in SP (v, 1) and f.des contains both v1 and v2, we say that v1 and v2 occur
together in SP (v, 1). Let the number of vertices v in which v1 and v2 occur together in
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SP (v, 1) be T . Then, vertex distance between v1 and v2 (denoted as V exDis(v1, v2))
is defined as:

V exDis(v1, v2) =
T

|V (G)|
Definition 8. Cluster Distance. Given two clusters P1 and P2 and a vertex v, if there
exists a leaf node f in SP (v, 1) and f.des contains all vertices in P1 and P2, we say
that P1 and P2 occur together in SP (v, 1). Let the number of vertices v in which P1

and P2 occur together in SP (v, 1) be D. Then, cluster distance between P1 and P2

(denoted as CluDis(P1, P2)) is defined as:

CluDis(P1, P2) =
D

|V (G)|
We employ bottom-up clustering to build the hierarchical clusters. First, based on

vertex distances (Definition 7), we utilize clustering algorithms to find clusters on ver-
tices. Then, based on cluster distance (Definition 8), small clusters are grouped into
larger ones. We can recursively build a hierarchical cluster tree HT on vertices in graph
G, as shown in Fig. 5a.

In practice, we store 1-hop SP-Tree in tables using a commercial RDBMS. The table
format is shown in Fig. 5d, where ‘dst’ denotes a destination vertex (or a destination
cluster),‘src’ denotes a source vertex, and ‘lef ’ denotes that the leaf node f whose
node area f.des contains the destination dst in SP (src, 1). We illustrate the methods
using Fig. 5. Since the cluster P2 is in v2.des of SP (v0, 1), there is a row ‘P2, v0, v2’
in table TAB 1SPT , which means that v2.dst contains P2 in SP (v0, 1).

Pruning Power of SSP Pruning We discuss the pruning power of SSP pruning. To
facilitate analysis, we assume that all query vertices are selected independently. First,
in Lemma 5, we discuss the probability that one vertex v can be pruned in DSG-query
with n query vertices.

Lemma 5. Given a vertex v in graph G, there are C leaf nodes in SP (v, 1). The num-
ber of vertices in each leaf node area fc.des is denoted as |fc.des|, c = 1...C. Given
a query set of Q = {qi}, i = 1...n, the probability Pr(v) that v is pruned can be
evaluated by the following formula.

Pr(v) =
1

|V (G)|n
C∑

i=1

|fi.des|n (1)

Proof. If all query vertices are in one leaf node area fc.des of SP (v, 1), fc strictly
dominates v ( Definition 5). Therefore, according to Algorithm 1 and SSP pruning, v
can be filtered out safely. The probability that one query vertex qi is in node area fc.des

is |fc.des|
|V (G)| . Since all query vertices are selected independently, the probability that all

query vertices are in the same node area fc.des is ( |fc.des|
|V (G)| )

n. Since there are C leaf
nodes in SP (v, 1), we obtain:

Pr(v) =
1

|V (G)|n
C∑

i=1

|fi.des|n
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Theorem 3. Given a large graph G with |V (G)| vertices, and a query set of Q = {qi},
i = 1...n, the expected number of pruned vertices can be evaluated by the following
formula.

|V (G)|∑
i=1

Pr(vi) (2)

where Pr(vi) is evaluated by Equation 1.

In the above analysis, we assume that all query vertices are selected independently.
We evaluate Equation 2 in experiments (see Section 4) and show that the simple model
can provide a good approximation of SSP’s pruning power.
3.2 Computing Shortest Path Distance
As stated in Section 1, given a DSG query, we adopt filter-and-refine framework to
find the answers. In the refinement phase, in order to avoid the expensive expansion
in shortest-path algorithms, we can compute Dist(vj , qi) directly based on 1-hop SP -
Trees. The recursive algorithm (DisQ algorithm) shows the computation of Dist(v, q).
DisQ is a recursive function. If the destination vertex q is in SP (v, 1), we can report
Dist(v, q) directly (Lines 2-3). Otherwise, if the leaf node area f.des in SP (v, 1) con-
tains q, we recursively call DisQ(f, q) to compute Dist(f, q) (Line 5). Finally, we
report Dist(v, q) = Dist(v, f) + Dist(f, q) (Line 6).

Algorithm 2 Shortest-Distance Query
DisQ(v, q)

Require: Input: v and q: two vertices in graph G; SP (v): all 1-Hop SP-Trees
Output: Dist(v, q): the shortest distance between the two vertices v and q.

1: if vertex q is a leaf node in SP (v, 1) then
2: Return Dist(v, q)
3: else
4: There is leaf node f in SP (v, 1), and f.des contains q.
5: Call DisQ(f, q) to compute Dist(f, q)
6: Return Dist(v, f)+Dist(f, q).

Theorem 4. The time complexity of DisQ(v, q) Algorithm (see Algorithm 2) in the
worst case is O(H), where H is the number of maximal hops between any two vertices
in graph G.

Proof. Algorithm 2 is a recursive algorithm. Since the number of maximal hops be-
tween any two vertices is H , we recursively call DisQ(v, q) at most H times. In each
iteration, the time complexity is O(1). Therefore, the time complexity of Algorithm 2
is O(H).

3.3 Putting It All Together: SSP Query Algorithm

We propose SSP-query algorithm in Algorithm 3, which calls SSP pruning algorithm
(Algorithm 1) to obtain candidates in CL (Line 1). After that, Algorithm 2 is executed
to compute Dist(v, q) (Line 4). Skyline vertices are obtained by BNL algorithm [2]
(Line 5). Finally, we report the final results RS (Line 6).
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Algorithm 3 SSP Query Algorithm
Require: Input: G: a large graph; Q: a set of query vertices Q = {qi} Output: RS: the final

skyline vertices.
1: call SSP Prune(G, Q) (Algorithm 1) to obtain candidate set CL.
2: for each candidate vertex v in CL do
3: for each query vertex qi do
4: call DisQ(v, q) (Algorithm 2) to compute Dist(v, q).
5: perform BNL algorithm to find skyline vertices, and insert them into answer set RS.
6: Report RS.

4 Experiments
In this section, we evaluate our methods over both real data sets and synthetic data sets.
Although several efficient dynamic algorithms have been proposed, such as B2S2 and
VS2 [16] in spatial data and EDC and LBC algorithm [6] in road network, they cannot
be applied to general graph data as discussed in Section 1. The two algorithms (EDC and
LBC algorithms) proposed in [6] are not applicable to a DSG-query, since they employ
Euclidean distances as lower bounds of shortest path distances in a road network. There
is no coordinate associated with each vertex, thus, it is impossible to employ Euclidean
distances as lower bounds of shortest path distances in general graphs. Therefore, we
exclude them from comparisons. We compare our methods with MSQ algorithm [4],
since MSQ can work on any metric space and the distance function Dist(v, q) in a
graph is also a metric function. We also compare our algorithm with CE algorithm
[16]. Although CE algorithm is proposed for skyline queries in road networks, it does
not utilize special properties of road networks, suggesting that CE can handle dynamic
skyline queries in general graphs. CE runs Dijkstra’s algorithm from each query vertex
in parallel until that at least one vertex is done by all query vertices. All un-visited
vertices can be pruned safely. Furthermore, in the experiments, we also run linear scan
for a DSG query as the straightforward approach, denoted as LS algorithm. Specifically,
we first perform Dijkstra’s algorithm [5] from each query vertex qi to obtain Dist(v, qi)
for each vertex v in graph G. After that, we perform BNL algorithm [2] to find results
from all vertices in graph G. All experiments are implemented using standard C++ and
conducted on a P4 1.7GHz machine with 1G RAM running Windows XP.

Data Sets: a) S.cerevisiae Dataset: This dataset (http://dip.doe-mbi.ucla.edu) is an
undirected graph G in which each vertex represents a protein and each edge represents
interactions between two proteins. There are 4934 vertices and 17346 edges in G. In
experiments, we set all edge weights to be “1”.
b) DBLP Dataset: This dataset is the well-known publication data from DBLP (dblp.uni-
trier.de/xml/). We construct a co-author network G: every author is denoted as a vertex
in G; and an edge is introduced when the corresponding two authors have at least one
co-authored paper. We consider 100 important conferences in different areas to con-
struct G. On the whole, there are about 100K vertices and about 400K edges in G. We
also set all edge weights to be “1”.
c) Synthetic Dataset: We use the graph generator gengraph win ( www.cs.sunysb.edu/ al-
gorith/implement/ viger/distrib/). In experiments, we generate a large graph G with 10K
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vertices satisfying power-law distribution. The edge weights in G satisfy random distri-
bution between [1, 1000]. We denote the synthetic data set as Powerlaw10K.

We generate query sets by similar methods to those employed in previous stud-
ies [16, 4]. We first randomly choose a vertex o in graph G, then retrieve Max{λ ×
|V (G)|, n} vertices in G that are the closest to o, and finally randomly select n vertices
from them as query vertices. λ is a parameter within (0,1), |V (G)| is the number of
vertices in G, and n is the number of query vertices. Intuitively, large λ leads to a large
diameter of query vertices in G. We evaluate query performance under different λ in
Section 4.
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Fig. 6. Candidate Size vs. Data Size
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Fig. 7. Number of Dominance Checks vs. Data Size
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Fig. 8. Response Time vs. Data Size

Query Performance vs. Data Sizes In this subsection, we test our algorithm (denoted
as SSP) under different data sizes, and compare it with MSQ and LS over both real
datasets and synthetic datasets. In this set of experiments, we set n = 5, and λ = 0.003.

Fig. 6 shows the pruning power of different methods. SSP has the highest pruning
power. Furthermore, the pruning power of SSP is stable in all datasets, and scales well
with increasing data sizes. MSQ does not work well, especially in large graphs. This
is because the pivots in graph G cannot provide the tight bound for the shortest-path
distance Dist(v, q). The candidate size in CE algorithm is larger than that in SSP-
algorithm. In CE, we need to expand each query point in ascending order of their short-
est path distance to this query point (in parallel). The expansion process stops when
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there exists at least one vertex that is visited by all query points. Therefore, as men-
tioned in [6], CE may result in many candidates and cause unnecessary shortest-path
distance computation.

Fig. 7 illustrates the number of dominance checks in different methods during DSG-
query. With increasing data size, the number of dominance checks also increases in all
algorithms. SSP requires fewer dominance checks than other algorithms by orders of
magnitude, which again confirms the superior efficiency of SSP.

Fig. 8 shows the total response time in different methods. MSQ, CE and LS all need
to perform Dijkstra’s algorithm [5] from each query vertex qi. The time complexity
of Dijkstra’s algorithm is O(|V (G)|2). In CE algorithm, we also need to expand each
query vertex by Dijkstra’s algorithm. The cost of running Dijkstra’s algorithm consti-
tutes the major portion of the response time. Figure 6 shows that |CL| is about 1

10 of
|V (G)|. Thus, SSP’s total response time outperforms MSQ, CE and LS by orders of
magnitude, as observed in Figure 8.
Query Performance vs. Query Size In this set of experiments, we evaluate SSP under
different query sizes. Specifically, we set the number of query vertices n = 2, 3, 5, 8, 10,
and λ = 0.003. As in traditional skylines, with increasing dimensions (i.e. the number
of query vertices), the number of skyline vertices as well as the number of candidates
grow. Fig. 9 shows that SSP still has the highest pruning power under different query
sizes, consequently, the number of dominance checks is smaller than in other methods
(Fig. 10). Figure 11 further shows that the total response time of SSP is the smallest
among all methods under various query sizes.
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Fig. 9. Candidate Size vs. Query Size
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Fig. 10. Number of Dominance Checks vs. Query Size

Query Performance vs. Query Distribution In this subsection, we test SSP under
different query vertex distributions. Obviously, large λ means a large diameter of query
vertices in G. In this set of experiments, we set λ = 0.001, 0.002, 0.003, 0.004, 0.005,
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Fig. 11. Total Response Time vs. Query Size

and the number of query vertices n = 5. Fig. 12 shows that, with increasing query di-
ameter, the cardinality of candidates in SSP also increases. This means that the pruning
power of SSP decreases. The reason can be explained as follows: When query diame-
ter is large, the probability that all query vertices are in one node area f.des is small.
Actually, MSQ’s and CE’s pruning powers also decrease when query diameter is large.
However, the decrease in SSP’s pruning power is smaller than MSQ’s and CE’s, as
shown in Fig. 12. Fig. 13 and 14 show that the number of dominance checks and total
response times increase with increasing of query diameter in both SSP and MSQ. This
can be explained by the decreasing pruning power in Fig. 12.
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Fig. 12. Candidate Size vs. λ
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Fig. 13. Number of Dominance Checks vs. λ
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Evaluating Pruning Power Analysis We evaluate the pruning power analysis in The-
orem 3 in Fig. 15. We use Equation 2 to compute the cardinality of pruned space
(Pruned) under different query sizes. The theoretical candidate size is |V (G)|−Pruned.
Fig. 15 shows that the theoretical candidate set size is a good approximation of the real
candidate set size in SSP pruning, which confirms the effectiveness of our analysis
about SSP pruning power in Theorem 3.
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Fig. 15. Evaluating Pruning Power Analysis in Equation 2

5 Related Work
Borzsonyi et al. have introduced the skyline operator [2], and have proposed block
nested loops (BNL) and divide-and-conquer (D&C) algorithms [2] to execute them.
Tan et al. [17] propose Bitmap and Index skyline processing algorithms. Kossmann et
al. propose Nearest Neighbor (NN) method to process skyline queries progressively
[11]. Papadias et al. introduce another efficient progressive algorithm named Branch-
and-Bound Skyline (BBS) [13]. Recently, Lee et al. [12] propose a new method to
answer skyline queries. The most related works to ours are dynamic skyline [13], spa-
tial skyline [16], multi-source skyline on the road networks [6], and dynamic skyline
queries in metric space [4]. Papadias et al. [13] first introduce dynamic skyline prob-
lems. Recently, Chen and Xiang have proposed MSQ algorithms for dynamic skyline
problems [4], where the dimension functions can be any metric function. Although the
shortest path distances in graphs that we use in our work is also a metric function,
their methods are not optimized for large graphs. As the experimental results show,
our methods outperform MSQ algorithm by orders of magnitude, in terms of both the
number of dominance checks and online response time. Sharifzadeh and Shahabi [16]
propose spatial skylines, where only Euclidean distances are considered as dimension
functions. Thus, their pruning strategies cannot be applied into graph problems. Deng
et al. [6] consider dynamic skylines in road networks, where Dist(o, qi) is defined as
the shortest-path distance between o and qi in the road network. However, their prob-
lem definition is different than ours, since each vertex in the graphs that they consider
has a coordinate. Euclidean distance is used as lower bounds of shortest-path distances
in a road network. Obviously, it is impossible to utilize the bounds in general graphs.
Therefore, their pruning strategies cannot be applied to DSG-query.

Dijkstra’s algorithm [5] is a classical single-source shortest-path algorithm, which
extends graph G from source q until all vertices are reached, if graph G is connected.
Given two vertices q and d, in order to answer shortest-path query (SP query for short),
we can perform Dijkstra’s algorithm from vertex q until vertex d is visited. However,
it is inefficient to employ Dijkstra’s algorithm to answer SP query in a large graph,
since we have to visit a large number of vertices before we reach the desired destination
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vertex d. Therefore, materialization techniques should be applied to speed up online
query. Lim and Chan [3] propose DiskSP algorithm to answer SP queries. Based on
graph partitions, they propose super-graph. Jing et al in [9] propose Hierarchical En-
coding Path View (HEPV) for SP query. Another hierarchical graph model called HiTi
is proposed by Jung and Pramanik [10]. Actually, any efficient SP -query algorithm can
be utilized in the refinement process of DSG-query, which is orthogonal to our prun-
ing strategies. There are a lot of work on spatial networks [15, 14]. Generally speak-
ing, these methods always utilize some spatial properties for processing. For example,
Samet et al. [15] propose a best-first algorithm to find the k nearest neighbors in a spatial
network. Data objects are indexed by quadtrees, which is a spatial indexing structure.
For general graph problems, it is impossible to employ these spatial properties, such as
spatial indexing, spatial coherence, Voronoi Diagrams and Euclidean distances, since
vertices in general graphs have no coordinate. The main contributions of our work are
that we only employ graph properties to develop pruning rules and process DSG-query.

Ranked keyword search queries on a graph (such as BLINKS and BANKS algo-
rithm [8, 1]) need to retrieve the top-k answers according to some ranking criteria, where
each answer is a substructure of the graph containing all query keywords. However,
these algorithms adopt “expanding” strategy. As shown in experiments, the “expand-
ing” strategy is quite expensive in our problem.

6 Conclusions
In this paper, we propose dynamic skyline queries in graphs (DSG-query for short).
For DSG-query, we propose a novel pruning strategy, that is shared shortest path (SSP)
pruning. Based on SSP Pruning, we build careful-designed indexing structures. Exten-
sive experiments confirm the effectiveness of our methods.
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