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ABSTRACT

The growing popularity of social networks has generated interest-
ing data management and data mining problems. An important
concern in the release of these data for study is their privacy, since
social networks usually contain personal information. Simply re-
moving all identifiable personal information (such as names and
social security number) before releasing the data is insufficient. It
is easy for an attacker to identify the target by performing differ-
ent structural queries. In this paper we propose k-automorphism
to protect against multiple structural attacks and develop an algo-
rithm (called KM) that ensures k-automorphism. We also discuss
an extension of KM to handle “dynamic” releases of the data. Ex-
tensive experiments show that the algorithm performs well in terms
of protection it provides.

1. INTRODUCTION

Social network applications, such as hi5 (hi5.com), facebook
(facebook.com), and myspace (myspace.com), have become pop-
ular for sharing information. As a consequence, the amount of so-
cial network data has grown rapidly, and this offers rich opportuni-
ties for data mining and analysis, for example, to find community
groups and their evolution [2, 10]. However, social network data
usually contain users’ private information; it is important to pro-
tect these information in any sharing and mining activities. There
are well-known examples of unintended release of private informa-
tion in released (also called published) data, causing organizations
to become increasingly conservative in releasing these data sets.
Realization of the promise of social networks requires addressing
these concerns. Before publishing all these data for analysis, data
mining, and other purposes, it is necessary to ensure that the pub-
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lished data will not contain any private information.

In this paper, we focus on the “identity disclosure” problem [13],
which is one possible privacy leak concern when a social network
is published. Formally, given a published social network G*, if an
adversary can locate the target entity ¢ as a vertex v of G* with a
high probability, we say that the identity of ¢ is disclosed. A naive
anonymization method would remove all personal identifiable in-
formation before publishing the network, such as names and social
security numbers (SSN). However, even when a network is pub-
lished without any identity information, it is still possible to locate
the target with a high probability based on some structural infor-
mation around the target [7]. In fact, once it can be determined that
a published vertex v of G* corresponds to target ¢, all sensitive at-
tributes associated with v can be recognized as ¢’s private informa-
tion. In other words, all the private information about ¢ is released
to the adversary, such as the bank account balance in a financial net-
work or infected diseases in a disease spread network. Moreover,
based on disclosed identities, some sensitive link information can
be easily derived as well. For example, if we can locate two targets
t1 and t2 in G, it is straightforward to figure out whether there
is an edge between ¢1 and t2. The relationship between ¢; and ¢
may be sensitive and private. Therefore, “identity disclosure” is a
critical factor to consider in publishing privacy-preserved network
data.

In order to identify private information in released data, an ad-
versary usually launches different queries using some background
knowledge. For example, in tabular data publication, the quasi-
identifier attributes (the minimal set of attributes that can be joined
with external information to re-identify individual records) can be
used as background knowledge. Similarly, any topological struc-
ture of the network can be utilized to identify the target in the
released network. There can be four types of structural attacks
in this environment [7, 23, 13]: degree-attack, sub-graph attack,
1-neighbor-graph attack, and hub-fingerprint-attack. We discuss
these in detail in Section 2; the following example demonstrates
the problem using one of these types.

Example 1. Given a social network G in Figure la, Figure 1b
shows the naive anonymized network G’ obtained by removing all
individuals’ names in G. We assume that the target entity is Bob.
Note that, the numbers beside vertices in Figure 1 are not vertex la-
bels, but vertex IDs that we introduce to simplify description. From
Figure 1b, we can observe that if we know that Bob has four neigh-
bors (i.e. degree attack), we can uniquely identify that Bob is vertex
7in G'.0

This simple example shows that a naive privacy-preserved pub-
lished network (one where the identities are removed) is still sus-
ceptible to these structural attacks. A number of recent works study
privacy-preserving network publication [7, 23, 13]. However, these
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Figure 1: Anonymized Networks

suffer from the following limitations.

1) All but one [7] of the proposals consider only a single type
of attack [23, 13]. Furthermore, we do not know of any technique
that can guarantee the privacy of a released network under a sub-
graph attack (1-neighbor sub-graph attack [23] is a special case of
sub-graph attack). In practice, it is not realistic to assume that an
attacker would launch only one type of attack (i.e. an adversary has
only one type of structural information about the target). One has
to assume that there will be simultaneous multiple attacks and the
techniques need to be resilient to all of them.

2) The only solution that can handle multiple attacks [7] intro-
duces considerable uncertainty into released networks. Since the
released network only contains a summary of structural informa-
tion about the original network, users have to generate some ran-
dom sample instances of the released network for further analysis.
The samples come from a large number of possible worlds, which
introduces much uncertainty, making subsequent analysis difficult.

3) Existing methods do not consider dynamic releases. This is
important in evolutionary networks and dynamic social network
analysis [2, 10]. For example, given a series of online trading net-
works, such as eBay (eBay.com), based on community evolution in
these networks, we can predict the trend of consumers’ purchasing
behavior. These applications require republishing data at different
times to support dynamic analysis. However, all existing privacy-
preserving network publication methods consider only “one-time”
release. Even though each released network G} at time T} can guar-
antee privacy individually, an adversary can still identify the target
with a high probability by collecting the information from multiple
releases.

Considering the above limitations, we propose a systematic method

for privacy-preserving publishing of social network data. The tech-
nique has three advantages.

1) It can guarantee privacy under any structural attack. In our
method, we do not assume one type of attack. We assume that
an adversary can have complete information about the target, such
as degree, neighbors, shortest-distances from hubs and so on. Our
method can guarantee privacy, even though an adversary can launch
multiple and different types of structural attacks.

2) The released network has no uncertainty. The released net-
work generated by our method can provide not only a summary
of the structural information regarding the whole network, but also
structural information about each individual vertex.

3) It can guarantee privacy under dynamic releases. Even though
an adversary can have historical information about the target, the
target cannot be identified in our released networks.

The intuition of our proposed method is the following: Assume
that there are k-1 automorphic functions F, (a=1,...,k-1) in the
released network G, and for each vertex v, F,, (v) # Fa,(v)
(a1 # ag2). Thus, for each vertex v in G”, there are always k-
1 other symmetric vertices. This means that there are no structural
differences between v and each of its k-1 symmetric vertices. Thus,
it is not possible to distinguish v from the other k-1 symmetric ver-
tices using any structural information. Therefore, the target cannot

Table 1: Meanings of Commonly Used symbols

G The Original Network

G’ The Naive Anonymized Network

G” The Anonymized Graph after Partition and Alignment.
G* The Anonymized Graph after KM algorithm

Gijb.‘ The Anonymized Graph after GenID algorithm at time 7.
U; A group of blocks.

Py A block in group U;

be identified with a probability higher than .

However, finding the automorphic functions F, is a key problem.
In this paper, we develop three techniques, namely graph partition-
ing, block alignment and edge copy.

In order to address the privacy disclosure in dynamic releases,
we propose “vertex ID generation” technique. In our method, the
intersection of query results in different publications of the same
network G always has at least k candidates. Thus the probability
of identification is kept at %

In summary, we make the following contributions:

1. We propose “k-automorphism” model for privacy preserving
network publication, which can guarantee privacy under any
structural attack.

2. We propose a systematic method to protect the released so-
cial network data from all structural attacks. Specifically, we
propose an algorithm to convert original network G into k-
automorphic network G*, which is then released.

3. We consider dynamic releases of networks. In order to avoid
privacy disclosure in re-publication of networks, we propose
vertex ID generation technique.

4. Extensive experiments and comparisons show the superiority
of our methods.

The remainder of the paper is organized as follows. Background

knowledge and related work are discussed in Section 2. k-automorphism

model is proposed in Section 3. We propose KM algorithm in Sec-
tion 4. The privacy protection in dynamic releases is discussed in
Section 5. We evaluate our method in Section 6. Section 7 con-
cludes the paper.

2. PRELIMINARIES AND RELATED WORK

We first briefly review the terminology that we will use in this
paper. Note that, for ease of presentation, we use the terms “graph”
and “network” interchangeably, as well as the terms “release” and
“publish”. Table I lists the symbols used in this paper. For most
of the paper, we only consider non-labeled networks. A network
(V, E) is defined in the usual manner, where V' is the set of vertices
and F is the set of edges.

DEFINITION 2.1. Graph Isomorphism. Given two graphs (Q =
(Vg, Eq ) and G = ( Vg, Eg ), Q is isomorphic to G, if and only
if there exists at least one bijective function f: Vo — Vg such that
for any edge (u,v) € Eq, there is an edge (f(u), f(v)) € Eq.

DEFINITION 2.2. Graph Automorphism. An automorphism of
a graph G = (V, E) is an automorphic function f of the vertex set
V, such that for any edge e = (u,v), f(e) = (f(u), f(v)) is also
an edge in G, i.e., it is a graph automorphism from G to itself under
function f. If there exist k automorphisms in G, it means that there
exists k-1 different automorphic functions.

DEFINITION 2.3. Sub-Graph Isomorphism. Given two graphs
Q and G, if there exists at least one sub-graph X in graph G such
that Q is isomorphic to X under the bijective function f, graph Q
is sub-graph isomorphic to graph G. We call X a sub-graph match
(match for short) of Q in G. The vertex f(u) in G is called the
match vertex with regard to vertex u in Q.



2.1 Structural Attack

DEFINITION 2.4. Query. Given a social network G, a query Q)
refers to any information that an attacker can use to extract private
information from G. The result of Q is a set of vertices V' C V.
Each v; € V' is called a match vertex.

DEFINITION 2.5. Structural Attack. Given a released network
G”*, if a query Q over G* launched by an attacker has a limited
number of match vertices in G*, then target t might be uniquely
identified. If QQ is based on the structural information about t in
G™, this is called a structural attack.

The definition of a query @ in this paper is restricted. Obviously,
an attacker can also launch a query @ based on non-structural in-
formation (such as vertex label) to identify the target. In this paper,
we only consider structural attacks. Four types of structural attacks
have been identified in network data publication [7, 23, 13]. We
illustrate these attacks through Figures 1 and 2.

1) Degree Attack. Assume that an adversary knows that Bob has
four neighbors. According to the released network in Figure 1b, the
adversary can identify Bob uniquely, since only vertex 7’s degree
is four. Vertex refinement attack [7] is a generalized type of degree
attack. It assumes that an adversary can know the number of the
target’s n-hop neighbors, where n > 1.

(c) Qs
Figure 2: Query Graphs

2) Sub-graph Attack. Assume that an adversary knows that query
Q4 (in Figure 2d) exists around Bob, and vertex I in QQ4 corre-
sponds to Bob (as in Figure 1, Roman numerals beside vertices in
Figure 2 are vertex IDs, not vertex labels). Since there is only one
match of Q4 in the released network, Bob can be uniquely identi-
fied.

3) 1-Neighbor-Graph Attack. Assume that an adversary knows
Bob’s neighbors, and the connections among Bob and his neigh-
bors, which is denoted by Q1 in Figure 2a. There is only one match
of @1 in the released network. Thus, Bob’s privacy will be compro-
mised. As noted earlier, 1-neighbor-graph attack is a special case
of sub-graph attack.

4) Hub Fingerprint Attack. Assume that some hub vertices have
been identified in the released network. If an adversary knows the
distances between Bob and these hubs, Bob may also be identified.

2.2 Information Loss and Utility

In privacy preserving data publishing, it is necessary to balance
usually conflicting concerns: privacy protection and information
loss. Before we discuss our method in detail, we first propose mea-
sures of information loss and utility that we employ. In this work,
we use the anonymization cost to quantify information loss.

DEFINITION 2.6. Anonymization Cost. Given an original net-
work G and its anonymized version G*, the anonymization cost in
G™ is defined as

Cost(G,G*) = (E(G) UE(G*)) — (E(G) N E(G*))
where E(Q) is the set of edges in G.

The rationale of using anonymization cost to measure the in-
formation loss in G* is that a lower anonymization cost indicates
that fewer changes have been made to the original graph G. Fur-
thermore, some techniques also use statistical network measures to

evaluate the utility of released network [23, 13, 7], such as degree
difference, average shortest-paths and cluster coefficient. We also
use these statistical measures in our experiments.

2.3 Related Work

Privacy-preserving data publication has received increasing in-
terest in database community [7, 13, 15, 16, 18, 19, 23, 9, 14, 6,
4, 3]. Most previous work focus on tabular-data publication. With
the increasing popularity of social network applications, analysis of
these data has also started to attract attention. How to publish so-
cial network data for data mining and analysis without leaking any
privacy information is an interesting problem that has been studied
[7,13,23,1,5,8, 21].

A number of recent works study privacy-preserving network pub-
lication [7, 13, 23]. As noted earlier, all of these except one [7]
assume that an adversary launches only one type of attack. For ex-
ample, Zhou and Pei study how to protect released networks from
1-neighbor-graph attack [23], and degree attack is addressed by Liu
and Terzi in [13]. However, in practice, an attacker can launch
multiple attacks to identify the target and the techniques need to be
resilient in the face of multiple attacks.

As an example, given an original network G in Figure la, ac-
cording to existing methods [23, 13], we get an anonymized net-
work G in Figure 1c. In G, there are always at least 2 vertices
whose degrees are d, for any d. Furthermore, for any vertex v and
its 1-neighbor graph NG(v), there always exists another vertex v’,
whose 1-neighbor graph NG(v') is isomorphic to NG(v). Con-
sequently, G can guarantee privacy under both degree attack and
1-neighbor sub-graph attack. However, if we know that query Q4
(Figure 2d) exists around target Bob, Bob’s identity will still be
compromised, since there is only one match of Q4 in G.

Hay et al. [7] propose “automorphically equivalent” and discuss
multiple attacks. However, the solution introduces considerable un-
certainty in released networks. Given the same original network G
in Figure 1a, according to their graph generalization method, G is
partitioned into two blocks. Each block is condensed into one super
node, and the edges between two blocks are condensed into super
edges, as shown in Figure 3. The number of edges in the super node
X is denoted as X’s weight d(X, X), and the number of edges
between X and Y is denoted as the super edge (X,Y")’s weight
d(X,Y). Although this method can guarantee privacy in the re-
leased network, there is much uncertainty in the released network.
Since users cannot know the structural information in each super-
node, they need to generate samples of the super-graph for further
analysis. Authors point out that the number of possible worlds for
samples is:

wl =TT (3R5) T ()

Xev X,Yev

Obviously, the large number of possible worlds (/W (G)|) intro-
duces much uncertainty in the released network, which complicates
the use of the released data. It also leads to large information loss,
such as structural information about each vertex in original net-
works.

Besides identity disclosure that we focus on, protecting sensitive
links among the individuals in the anonymized social network has
also received attention. Ying and Wu in [21] study how anonymiza-
tion algorithms that are based on randomly adding and removing
edges change the spectrum of the network. The “link-disclosure”
problem they define is orthogonal to “identity disclosure” problem
discussed in this paper. Frikken and Golle [5] study how to pro-
tect privacy, if a group of authorities can jointly reconstruct a entire
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Figure 3: Graph Generation Method

graph GG by assembling their own pieces of G. The problem is
different from ours, since we only consider centralized data publi-
cation.

3. K-AUTOMORPHISM

In order to guarantee privacy from any structural attack, we pro-
pose the following concept.

DEFINITION 3.1. K-automorphic Network. Given a network
G, (a) if there exist k-1 automorphic functions F, (a=1,...,k-1) in
G, and (D) for each vertex v in G, Fo, (v) # Fo,(v) (1 < a1 #
az < k — 1), then G is called a k-automorphic network.

Obviously, if G is a k-automorphic network, for any vertex v in
G, we cannot distinguish v from its £ — 1 symmetric vertices based
on any structural information. Thus, an adversary cannot identify
v from G with a probability higher than % Therefore, the problem
that we want to solve in this paper is defined as follows:

Given an original network G, find a network G*, where G is
a sub-graph of G* and G* is a k-automorphic network. G™ is
published as G’s anonymized version.

We require that G is a sub-graph of G*. Thus, all link informa-
tion in the original network GG should be preserved in its anonymized
version G*. Furthermore, in order to minimize anonymization cost
(Definition 2.6), and to ensure that the anonymized network is as
similar to the original as possible, we require that | E(G™) — E(G)|
is minimized, where | E(G))| is the set of edges in graph G.

In this paper, we propose a systematic method to convert a so-
cial network G into a k-automorphic network G*. Although our
method addresses all structural attacks, for clarity, we only use sub-
graph attack as an example to show how we protect the privacy in
released network data. We prove in Theorems 4.3 and 4.4 that the
released network G™ produced by our algorithm is a k-automorphic
network, which can resist any structural attack.

Given a sub-graph query @, if there are k£ (k > 1) matches
of @, no adversary can identify the target uniquely. Recall Ex-
ample 1, where a naive anonymized network G’ was generated
by removing all names from the original network GG (Figure 1b).
Given a sub-graph Q2 in Figure 2b, there are two matches in G’.
Thus, using query D2, an attacker cannot identify Bob uniquely.
However, k-match is not sufficient to avoid identity disclosure. If
these k matches have some shared vertices, the privacy associated
with the shared vertices may still be compromised. For example,
an adversary may know that query @3 in Figure 2c exists around
Bob. There are eight matches of Q3 in the social network G':
(73 6> 97 87 1? 5)’ (75 67 97 87 5? 1)7 (7’ 67 87 93 1’ 5)’ (77 67 83 9, 57 1)’
(7,6,10,8,1,5), (7,6,10,8,5,1), (7,6,8,10,1,5) and (7,6, 8,
10,5, 1). However, these eight matches have the shared match ver-
tices (i.e. vertices 6,7 in G’ ) with regard to vertex I and II in query
Q3. As shown in Figure 2c, vertex I corresponds to target Bob in
query (Qs. In this case, although @3 has eight matches, an adver-
sary can still identify Bob in G’ uniquely. To overcome the limits
of k-match, we define the concept of different matches as follows:

DEFINITION 3.2. Different Matches. Given a sub-graph query
Q and two matches m1 and ma of Q in a social network G, where
m1 and my are isomorphic to Q under functions f1 and f2, respec-
tively, if there exists no vertex v (in query QQ) whose match vertices
in m1 and mq are identical, (i.e. f1(v) = f2(v)), we say that m1
and my are different matches.

Consider two matches m1 = (7,6,9,8,1,5) and ma2 = (7,6, 9,
8,5,1) of query Q3 in Figure 2c. For vertex I in query Qs, the
match vertices of vertex I in m; and ms are both vertex 7 in G'.
Thus, m1 and mo are NOT different. On the other hand, for two
matches ms = (7,6,9,10,8) and ms = (4,5,1,2,3) of query
Q2, there exists no vertex v (in query (J2) whose match vertices in
m1 and my are identical. Thus, these two matches are different.

Therefore, in order to avoid identifying the target from the re-
leased network G, we propose k-different match principle.

DEFINITION 3.3. k-different match principle. Given a released
network G* and any sub-graph query Q, if (a) there exist at least
k matches of Q in G*, and (b) any two of the k matches are dif-
ferent matches according to Definition 3.2, then G* is said to obey
k-different match principle.

4. K-MATCH (KM) ALGORITHM

Obviously, if a released network G™ satisfies k-different match
principle, given any sub-graph query (), no adversary can identify
the target with a probability higher than % In this section, we pro-
pose our algorithm to find an anonymized network G* that satisfies
k-different match principle. We also prove that G* obtained by our
algorithm is a k-automorphic network and G is a sub-graph of G*.
Thus, G* can guarantee privacy under any structural attack.

4.1 Overview

We illustrate the main ideas of KM algorithm using Figure 4.
Assume that we need to guarantee that the released network G*
satisfies 2-different match (i.e. £ =2). First, we partition the orig-
inal network G into 2 blocks, Pi1 and P2, as shown in Figure 4b.
Then, we perform graph alignment on P;; and P2 to obtain two
alignment blocks Pj; and Py, (adding edge (2,4)), where Py is
isomorphic to P{,. The details of graph alignment are discussed
shortly. Obviously, if a match of query () is contained in alignment
block P;, (or P5), it must also be contained in the other alignment
block Pj, (or Py;). This means that, if a match of query @Q can be
contained in some block of the anonymized network G*, there must
exist at least 2 matches of Q in G™.

Block Alignment Edge Copy

(a) Naive anonymization
Network G'

(b) Graph Partition and
Alignment G

(c) Edge Copy G*

Figure 4: Graph Partition and Edge Copy

However, the anonymized network after graph partition and align-
ment is still insufficient to satisfy the k-different match principle.
For example, given query Q4 in Figure 2d, there is still only one
match of Q4 in the anonymized network in Figure 1b. This is be-
cause the match crosses two blocks. In order to handle the problem,
we propose the “edge-copy” technique (Section 4.3).

Since block Py is isomorphic to P{, under function f, for each
vertex v in P[;, there exists a corresponding vertex f(v) in Py.



There is a crossing edge between vertex 1 (in block Pj;) and ver-
tex 6 (in block P{,) in Figure 4b; thus, we need to introduce an-
other edge between vertex f(1) (that is vertex 9 in block P[y)
and f71(6) (that is vertex 5 in block Pj;). Figure 4c shows the
anonymized network after edge-copy. Given the same query (4,
there are two matches m1 = (7,6,9,10,8,1,5) and ma = (4,5, 1,
3,2,9,6). Although these two matches have some shared vertices,
they correspond to different vertices in query (). Thus, according
to Definition 3.2, these two matches are different.

The K-Match algorithm (KM for short) in Algorithm 1 imple-
ments the approach we propose. We start by removing all iden-
tity information from the original network G resulting in the naive
anonymized network G’ (line 1 in Algorithm 1). We then parti-
tion G’ into n blocks and cluster these blocks into m groups U;,
(i = 1,...,m), where each group U, has at least k£ blocks (line
2). For each group, we perform graph alignment (we also use
the term “block alignment” interchangeably) to obtain alignment
blocks (lines 3-4). We replace original blocks by alignment blocks
to obtain network G”’(line 5). Then, we perform edge-copy to get
G™(line 6), which is reported as the anonymized network (line 7).
The details of each step will be discussed shortly.

Obviously, different partitionings of the original network G and
different block clusterings lead to different released networks G*
and different anonymization costs. We delay the discussion of find-

ing a “good” partitioning and block clustering to minimize anonymiza-

tion cost until Section 4.4.

According to KM Algorithm, each group U; has k; blocks, where
ki > k. For ease of presentation and without loss of generality, we
assume in the remainder that each group has exactly k blocks.

Algorithm 1 K-Match (KM) Algorithm

Require: Input: An original graph G and the parameter k.
Output: The anonymized network G*, which is a k-auto-morphism
network.

1: Generate G’ by removing all identity information from G.

2: Partition G’ into n blocks and cluster the blocks into m groups U;,
(i = 1,...,m), where each U; has at least k blocks P;;, (j = 1, ..., k;
and k; > k). (see Algorithm 5 in Section 4.4)

3: for each group U; do

4:  perform graph alignment on all blocks P;; in U; to obtain alignment

block P'Llj' (see Algorithm 2 in Section 4.2)
5: Replace each block P;; by its alignment block P/, to obtain

anonymized network G”’.

6: For all crossing edges, perform edge-copy to obtain anonymized net-
work G*. (see Algorithm 4 in Section 4.3)

7: Output G*.

4.2 Block (Graph) Alignment

For each group U; that is obtained following partitioning and
clustering, we perform graph alignment operations on all blocks
P;; in U;. Specifically, each block P;; is transformed into align-
ment block Pj;, where all P;; are isomorphic to each other. Fur-

thermore, P;; is a sub-graph of P;;.

DEFINITION 4.1. Alignment Vertex Instance. Given a group
U; with blocks P;j, 7 = 1,...,k, assume that alignment blocks
Pj; = (Vi;, Ei;) are the blocks obtained after graph alignment,
namely, Vj Pij is a sub-graph of P}; and all P}; are isomorphic to
each other.

Due to graph isomorphism, given an alignment block Pi'j, for
each vertex v in Pi'j, there must exist k — 1 symmetric vertices
in other k — 1 blocks respectively. The set containing v and v’s
symmetric vertices form alignment vertex instance I, where |I| =

k. All alignment vertex instances are collected to form alignment
vertex table (AVT).

Example 2. We illustrate Definition 4.1 using Figure 5. The
naive anonymized network G’ in Figure 4a is partitioned into 2
blocks P11 and P2, which are clustered into one group U, . Figure
5 shows a graph alignment between two blocks P1 and Pi2 (note
the addition of edge (2,4) in P{; in order to get graph isomorphism
between P{; and Pj,). Since P{; is isomorphic to P{,, for each
vertex v in Pj; (or P{5), there exists a symmetrical vertex u in P
(or P[y). Therefore, each (v,u) is an alignment vertex instance
1. Note that in this example, k& = 2; thus, each vertex v has one
symmetric vertex in the other block. Figure 5 shows AVT, which
contains all alignment vertex instances.

wN‘m.J;.—-
OO‘O\\]\O

f=1

Alignment Vertex
Table (AVT)
©

(@ (b)

Figure 5: Block Alignment

DEFINITION 4.2. Alignment Cost. Given a group U; with blocks
P, 3 = 1,...,k, assume that Pi’j are the blocks obtained after
block alignment. The cost of block alignment in group U; is defined
as follows:

AlCost(U;) = Y¥_, Min(EditDist(P;;, P};))
where EditDist(P;j, Pj;) is defined as the number of graph edit
operations (insert vertex/edge, delete vertex/edge) required to trans-
form Pyj into Pj;.

Since P;; is a sub-graph of P}, EditDist(P;;, P};) = |E(P];) —
E(P;j)| , where E(P;;) is a set of edges in P;;. The optimal block
alignment in one group U; with k blocks means that AlCost(U;)
is minimal.

THEOREM 4.1. Finding the optimal block alignment for one
group U; with k blocks is NP-hard.

PROOF. (Sketch) Minimal graph edit distance problem can be
reduced to finding the optimal alignment. The former is a classical
NP-hard problem [22]. []

Due to the hardness of block alignment, we propose an heuristic
algorithm (Algorithm 2) to find a good alignment (not necessarily
optimal) for k blocks in one group U;. At the beginning of Algo-
rithm 2, we call Algorithm 3 to build the AVT, which contains all
alignment vertex instances. According to AVT, for each vertex v,
we can find k — 1 symmetric vertices in the other £ — 1 blocks.
If there is an edge between vy and v2 in a certain block P;;, we
need to introduce an edge between v;’s symmetrical vertices and
v2’s symmetrical vertices in the other k — 1 alignment blocks in the
same group Uj;.

Thus, the key problem is how to build AVT. Given a group U;
with blocks P;;, 7 = 1,...,k, Algorithm 3 implements our ap-
proach. Initially, we find k vertices v;; from k blocks P;; respec-
tively, which have the same vertex degrees d. If there are multiple
choices for d, we choose d with the largest value. If there is no ver-
tex in one block P;; with the same degree as the selected vertices
in the other blocks, we choose a vertex with the largest degree in
P;;. The set of these k vertices form the initial alignment vertex
instance. We next perform breath-first search starting from v;; in
each block P;; in parallel. During this process, we always pair up
k vertices (in k blocks P;; respectively) with similar degrees. For



some vertex v;; in P;;, if we cannot find the corresponding vertex
in the other blocks, we will introduce a dummy vertex, which has
the same label as the corresponding vertex. Finally, we get an AVT
containing all alignment vertex instances.

Algorithm 2 GraphAlignment: Block Alignment for k Blocks
Require: Input: A group U; with k Blocks P;;, where j = 1,..., k
Output: Alignment blocks P/ i where j =1, ..., k.
1: Call constructAVT algorithm (see Algorithm 3) to obtain AVT =
construct AVT(Uy).
: Initialize k blocks P/ ;> where j =1, k.
cforj=1,...,kdo
for each edge (v1, v2) in P;; do
Insert edge (v1,v2) into block Pi’j, and edges between v1’s sym-
metrical vertices and v2’s symmetrical vertices in other k£ — 1
alignment blocks respectively.
6: Report all alignment blocks Py, j = 1, ..., k.

1,

Algorithm 3 constructAVT(U;), where j = 1,...,k: Built AVT for a
group with k blocks P;;, where j = 1,..., k

1: Setall vertices in each P;; as “un-visited”, initialize AVT

2: Find v;; in each block P;j, where all degree(v;;) = d. If there are
multiple choices for d, choose d with the largest value. If there are
no choices for d, choose v;; with the largest degree from block P;;
respectively

. The set of all v;; form the initial alignment vertex I instance in AVT.

. Perform breath-first search (BFS) starting from v;; in each P;; in par-
allel.

: During BFS, k vertices from k blocks with similar vertex degrees are
collected to form an alignment vertex instance in AVT.

6: Report AVT.

[V N SN O]

The number of the iterations between lines 3-5 in Algorithm 2
depends on the total number edges in blocks P;j;, j = 1,..., k.
Thus, time complexity of Algorithm 2 is O(Z;i}fl E(P;;)|)- Since
BFS search time complexity in block P;; is O(|E(Pi;)|4+|V (Pi;)|),

the time complexity of Algorithm 3 is O(Max (| E(P;;)|+|V (Pi;)]))-
After graph alignment, we replace each block P;; in naive anonymized

network G’ (line 5 in Algorithm 1) by its alignment block P;;. In
this way, we can obtain an anonymized network G"’. Obviously,
given a sub-graph query @, if a match of @ is contained in a cer-
tain block P{j, @ is also contained in the other £ — 1 alignment
blocks in the same group U;. This means that () has at least k dif-
ferent matches in G”. As discussed in Section 4.1, the anonymized
network G’ after graph partition and block alignment still com-
promises some privacy. For example, if all matches of query Q
crosses at least two blocks, we cannot guarantee that G satisfies
the k-different match principle. Consider G in Figure 4b that is
obtained after block alignment. Query (4 in Figure 2d has only
one match in G”. Thus, G” does not satisfy 2-different match
principle. This can be addressed by the edge-copy technique that is
described in the next section.

4.3 Edge Copy

According to line 2 in Algorithm 1, there are m groups U,
i = 1,...,m. For each group U;, after block alignment, we have
k alignment blocks P{j, (j = 1,...,k). Furthermore, according
to Algorithm 3, each group U; has an AVT A;. Union of A;,
i = 1,...,m, are collected to form the overall AVT for the whole
graph.

The next step is to process the crossing edges between two blocks
in G”. As discussed in Section 1, the intuition behind our work is
to find k-1 automorphic functions F,. According to these func-

tions, we can convert the original graph G into a k-automorphic
graph G™, which guarantees privacy under any structural attack.

We define function F, (¢ = 1,...,k — 1) based on AVT. We
treat alignment vertex instance I in AVT as a circularly-linked list.
Specifically, we use I.at(a) to denote the a-th vertex in instance
I. We define v.next=I.at(a + 1), if a < |I]| — 1; else v.next =
I.at(1), where |I| is the number of vertices in I.

DEFINITION 4.3. For each vertex v, we assume that v is in the
instance I in AVT. v’s automorphic function Fo, (a = 1,...,k — 1)
is defined as follows:

1) Fy(v)=v.next;
2) Fo(v)=F(q—1)(v).next, where a > 1.

We illustrate F, using Figure 5. Since k=2 in Figure 5, each
instance has two vertices, and we have one automorphic function.
Thus, F1 (1) = 9 and F1(9) = 1. Similarly, for vertex 4, F1(4) =
7and F1(7) = 4.

In order to guarantee k-automorphism under functions Fy, we
need to “copy” crossing edges which are defined as follows.

DEFINITION 4.4. Boundary Vertex and Crossing Edge. Given
a vertex v in a block P, v is a boundary vertex if and only if v has
at least one neighbor vertex that is outside of block P. An edge
e = (v,u) is called a crossing edge if and only if v and u are
boundary vertices in two different blocks.

Assume that there is a crossing edge e = (v1,u1). According
to alignment functions, we introduce & — 1 edges between k — 1
pairs (Fu(v1), Fa(u1)) (@ = 1,...,k — 1). For example, there is a
crossing edge (1,6) in G’ in Figure 4b. Since k = 2, we introduce
another edge between (F1(1), F1(6)) (ie. (9,5)). This results
in the network G™ (Figure 4c), which satisfies 2-different match
principle. Note that, if there exists an edge between F,(v1) and
Fo(u1) in the original network G, we will not introduce an extra
edge (Fy(v1), Fa(u1)).

Algorithm 4 Edge Copy Algorithm

Require: Input: The original network: G; The network after graph parti-
tion and block alignment: G’; Alignment Vertex Table: AVT
Output: The anonymized network G*.

: Duplicate G” into G* and remove all crossing edges in G*.

: for each crossing edge (v, w) in the original network G do

Add edge (v, u) and (Fg(v), Fo(u)) (@ =1,...,k — 1) into G*.

: Report G* as release network.

There are O(| E(G)|) edges to be copied. Thus, the number of
iterations of lines 2-3 in Algorithm 4 is O(|E(G)|). Therefore, the
time complexity of Algorithm 4 is O(|E(G)|).

4.4 Graph Partitioning

Algorithm 1 relies on the partitioning of the naive anonymized
network G’ into n blocks that are clustered into m groups U;, (i =
1,...,m). As noted earlier, different partitionings and block clus-

terings will lead to different anonymization cost Cost(G, G*)(defined

in Definition 2.6).

In this section, we discuss how to find a good graph partition-
ing and block clustering to minimize Cost(G,G*). Since G is
a sub-graph of G*, Cost(G,G*) = |E(G") — E(G)|, namely,
Cost(G, G*) indicates the number of edges introduced by the KM
algorithm. According to KM, we introduce edges in both block
alignment (Algorithm 2) and edge copy (Algorithm 4). The ef-
fect of graph partitioning is quite difficult to quantify. For exam-
ple, if we partition G into fewer blocks, there are fewer crossing
edges to be copied. On the other hand, fewer blocks imply that
the size of each block is large. Thus, we need to introduce more
edges to perform block alignment. The optimal graph partitioning



of G implies that KM algorithm can produce a released network
G™ where |E(G™) — E(G)| is minimal. Finding the optimal graph
partitioning is NP-complete, since we can reduce a NP-complete
problem (graph partition with min-cut) to this problem. Thus, we
instead propose a heuristic partitioning algorithm. Theorem 4.2
shows the relationship between C'ost(G,G™) and graph partition-
ing and block clustering.

DEFINITION 4.5. Givena group U; with blocks P;;, j = 1, ..., k,
anonymization cost of group U; is defined as follows:

Cost(U;) = AlCost(U;)+0.5%(k—1)* Z?:1 |CrossEdge(P;j)]
where AlCost(U)is defined in Definition 4.2 and |CrossEdge(P;;)|
is the number of crossing edges associated with block P;;.

In Definition 4.5, AlC0st(U;) denotes the number of edges in-
troduced during block alignment. For each crossing edge e =
(v,u), we need to introduce k — 1 copy-edges (Fo(v), Fo(u)).
Each crossing edge is associated with two blocks. Thus, 0.5 = (k —
1) > ;?:1 |CrossEdge(P;;)| denotes the number of edges intro-
duced into group U; during the edge copy process.

THEOREM 4.2. Assume that a network G is partitioned into n
blocks that are clustered into m groups U;, where each group U;
has k blocks. Let G* be an anonymized network produced by KM
algorithm. Then

Cost(G,G*) =Y, Cost(U;)
where Cost(G,G*) and Cost(U;) are defined in Definitions 2.6
and 4.5, respectively.

PROOF. (Sketch) The number of edges that KM algorithm in-

troduces equals to the sum of introduced edges in each group U;,
i=1,..m. [
According to Theorem 4.2, we propose a greedy method to find a
good graph partitioning and block clustering. In each step, we try to
find the group U; with the minimal C'ost(U;). Before introducing
our method, we cite the following definition.

DEFINITION 4.6. Frequent Sub-graph [11]. Given a large graph

G and a minimal support min_sup, a graph gy is called a frequent
sub-graph of G, if and only if g5 has at least min_sup matches in
G, where any two matches are edge-disjoint.

Algorithm 5 Graph Partitioning and Block Clustering

Require: Input: The naive anonymized G’ and k.

Output: a set of groups S = {U;}, (i = 1, ..., m), where each group

U; has k blocks P;j, (5 = 1, ..., k).
1: repeat
2:  Find frequent sub-graphs {g¢} in G’ by setting minimal support
min_sup = k. Find the frequent sub-graph g; with the largest
number of edges. Each match of gy is extracted from G’ as one
block P,L g
The set of all blocks P;; from one group U7.
repeat

set U; = U/.

for each block P;; in U; do

Expand block P;; by one hop.

The set of expanded blocks form group U7.
until Cost(U;) < Cost(U])
10: G’ =G’ — Uj, andinsert U; = {P;;} into answer set S.
11: until |E(G)|=0
12: Report S = {U;},i =1,...,m.

wodankw

Algorithm 5 implements our graph partitioning and block clus-
tering. First, we find all frequent sub-graphs R = {gs} in naive
anonymized network G by setting min_sup = k. Then, we choose
the frequent sub-graph gy with the largest number of edges in R.
The rationale behind the choice is that we want to partition G’ into

as few blocks as possible in order to minimize the number of cross-
ing edges. All of g7’s matches are extracted from G’ as the initial
blocks (line 2). These blocks are clustered to one group U; (lines
3,5). The blocks in group U; are denoted as P;;. It is straightfor-
ward to see AlCost(U;) = 0, since these blocks are isomorphic to
each other. If a vertex v is contained in more than one block (v is
randomly arranged into one of them), we need to introduce dummy
vertices for alignment, in which case AlCost(U;) # 0. However,
AlCost(U;) is still small, since these blocks have high structural
similarity. According to Definition 4.5, we can get Cost(U;) at
this moment. Then, we expand all P;; in parallel. Let neighbor P;;
denote all vertices that are one hop from boundary vertices in P;;.
All vertices in Neighbor(P;;) are inserted into P;; (line 7). If a
vertex v is contained in more than one Neighbor(P;;), v is ran-
domly inserted into one of them. We align the new inserted vertices
from each block P;; by degree similarity. We may need to intro-
duce dummy vertices in the process. After expansion, AlCost(U;)
increases, since we need to introduce edges to align the new merged
vertices. If all updated blocks P;; have fewer crossing edges than
the original blocks, the number of introduced edges during edge
copy will decrease. Block expansion continues if the overall group
cost Cost(U;) decreases. Otherwise, it stops (Line 9). We remove
all blocks P;; in U; from the naive anonymized network G’ (line
11),i.e, @’ = G’ — U;. Note that, we choose ‘edge-based’ parti-
tioning. Specifically, all crossing edges of block F;; are chosen as
‘separator’ to separate P;; from other parts of G.

We then iterate the above process until |[E(G’)| = 0 (line 11).
Note that G’ is a non-labeled graph; thus, we always find frequent
sub-graphs if |[E(G")| > k. In the last iteration, the frequent sub-
graph may be an edge or an isolated vertex.

Finally, G’ is partitioned into m blocks which are clustered into
m groups U;. Each group U; has at least k blocks.

4.5 Analysis and Discussion

Although we illustrate our methods only using sub-graph at-
tacks, we prove that network G™ released by the KM algorithm is
a k-automorphic network, which can guarantee privacy under any
structural attack as defined in Definition 2.5. Lemma 4.1 is used in
the main Theorem.

LEMMA 4.1. The k — 1 functions F, (a = 1, ...,k — 1) defined
in Definition 4.3 are automorphic functions in the released graph

G™ generated by K M algorithm. Furthermore, for each vertex v
in G*, Fo, (v) # Fa,(v), where a1 # as.

PROOF. (sketch) For each vertex v and each function F, (a =
1,...,k — 1), there is a mapping vertex Fy,(v) (see Definition 4.3).
For two adjacent vertices v1 and vz in G*, there is an edge between
U1 and V2.

If v1 and v2 are in the same block, according to AVT, we know
that Fy,(v1) and F,(v2) are also in the same block. Due to block
alignment, the two blocks are isomorphic to each other. Therefore,
there is also an edge between Fy(v1) and F,(v2).

If v1 and w2 are in different blocks, then edge (v1, v2) is a cross-
ing edge. Due to edge-copy, there is also an edge between F, (v1)
and F,(v2).

Therefore, for any edge (v1, v2), there is always an edge F,(v1)
and F,(v2) under F,, a = 1,...,k — 1. According to Definition
2.2, F, is an automorphic function.

Furthermore, according to Definition 4.3, for each vertex v, if

a1 # az, Fa, (v) # Fay (v). O

THEOREM 4.3. Given an original network G, the anonymized
network G* produced by KM algorithm is a k-automorphic net-
work. Furthermore, G is a sub-graph G*.



PROOF. (sketch) According to Lemma 4.1 and Definition 3.1,
we know G™ is a k-automorphic network. Furthermore, according
to KM algorithm, all edges in G are preserved in G*. Thus, G is a
sub-graph of G*. [J

According to k-automorphism, we know that the released net-
work G can guarantee privacy under any structural attack.

THEOREM 4.4. For any structural attack, an adversary cannot
identify the target with a probability higher than % in any network
G that is released by K M algorithm.

PROOF. According to Lemma 4.1, we can find k£ automorphism
in G*. Thus, for each vertex v in G*, there always exist k-1 sym-
metric vertices. We cannot distinguish v from its other k-1 sym-
metric vertices based on any structural information. Therefore, for
any structural query, the released network G* produced by K M al-
gorithm always contains at least k& symmetric vertices, or contains
null. Thus, an adversary cannot identify the target with a probabil-
ity higher than +. [

There is a well-known trade-off between “privacy” and “accu-
racy” for all anonymization techniques. As the network is modified
to achieve anonymization, it diverges from its original form due
to the addition of vertices and edges. Therefore, there is a diver-
gence of the results of an analysis on G* from that on G. This
inaccuracy occurs at varying degrees. In this work, we want to pre-
serve all edges in the original network and guarantee privacy under
any structural attack. To achieve this, KM algorithm introduces
new edges. Actually, according to KM algorithm, the number of
edges that we introduce to achieve k-automorphism is bounded to
(k — 1) % |[V(E)|, where |V (E)| is the number of edges in the
original graph G.

There exist many non-trivial automorphism partitions of vertices
in real networks [20]. “Automorphism partition” is similar to the
concept of “AVI” (Definition 4.1) in our paper. An AVIis an “au-
tomorphism partition” with no less than k vertices. Essentially, it
is only necessary to insert noisy edges to handle “automorphism
partition” with fewer than k vertices. The high symmetry property
[20, 12, 17] of real networks guarantees that KM algorithm intro-
duces fewer noisy edges to satisfy k-automorphism model and the
worst case bound is unlikely to be reached.

In theory aspect, the utility of KM algorithm depends on how
symmetrical the original graphs are. If there are many automor-
phism partitions [20] with no fewer than k vertices in original graph,
we will introduce few noisy edges. The utility of KM will be good
in this case; otherwise, the utility will degrade. Many real networks
are known to have high symmetry property [20, 12, 17].

S. DYNAMIC RELEASES

So far, we only consider “one-time” release of network data.
However, this is not satisfactory for evolutionary networks and dy-
namic social network analysis [2, 10]. In these cases, it is neces-
sary to re-publish network data periodically. This poses additional
challenges. Specifically, even though each publication may satisfy
k-automorphism, an adversary can still identify the target with a
high probability when a sequence of releases of the network are
analyzed together. Therefore, to support dynamic network analy-
sis, it is necessary to be able to find connection between multiple
releases of the network while ensuring privacy (specifically, the en-
forcement of k-automorphism) in these releases. These goals are
usually conflicting and introduce complications.

Example 3 As shown in Figure 6, given a social network G, we
need to publish G at times 77 and 7>. According to KM algo-
rithm, we get two released networks at times 77 and 75, denoted

as G7 and G3, respectively. Although both G7 and G35 individu-
ally satisfy 2-automorphism, an adversary can still identify target
Bob uniquely. Assume that an adversary knows that sub-graph Q4

Time : T

Original
Networks:

Released *
Networks:

Figure 6: Dynamic Release

(see Figure 2d) exists around target Bob at both time 7 and 75.
According to sub-graph attack Q4 at time 77, an adversary knows
that there are two candidates vertices {4, 7} for Bob in G7. Simi-
larly, at time 1%, there are still two candidates {2, 7} for Bob. Since
Bob exists at both 71 and 7%, it is straightforward to determine that
vertex 7 corresponds to Bob.

To remedy the above problem, a naive method is to remove all
vertex IDs, or permute vertex IDs randomly (namely, a given vertex
ID does not correspond to the same entity in different publications).
However, if all vertex IDs are removed or vertex IDs are randomly
permuted, we cannot locate the same individuals in different pub-
lications of this network. It becomes impossible to conduct proper
data analysis. In this section, we propose vertex ID generalization
technique to reduce the risk of identifying the target in dynamic
releases, while preserving vertex IDs as much as possible.

5.1 Vertex ID Generalization

For ease of presentation, in this subsection, we assume that there
are no vertex insertions or deletions in different releases of the net-
work. This means that the set of all vertex IDs remains unchanged
in different publications of the same network.

Recall that we define k£ — 1 functions F,, (a = 1,...,k — 1) in
Definition 4.3 based on AVT, which are £ — 1 automorphic func-
tions in G* (see Lemma 4.1). Given a structural query @, if a ver-
tex v satisfies query @, vertices F,(v) (defined in Definition 4.3),
a=1,..., k—1,also satisfy Q. Thus, we can get at least k results
for any structural query Q.

DEFINITION 5.1. For a vertex v in a released network G at
time Ty, the set of v’s corresponding vertices Fo(v), a =1, ...,k —
1, and v are called v’s associated query result set at T}, denoted as
Res(v, Gy).

It is straightforward to show |Res(v, G} )| = k, where G} is gen-
erated by the KM algorithm at time 7.

LEMMA 5.1. Given a series of publications Q = {G;i} of a
network G, (t = 1,...,8), a vertex v cannot be identified with a
probability higher than % if the following holds:

|Res(v,G}) N Res(v,G3) N...N Res(v,G%)| =k

We illustrate Lemma 5.1 by Example 3 in Figure 7, where k =
2. For vertex 1, according to AVT A; and As, Fi(1) = {9} in
both G and G5. Thus, Res(1,GT) = Res(1,G5)= {1,9}. An
adversary cannot distinguish these two vertices 1 and 9. However,
for vertex 7 in the network, F1(7) = {4} in G7 and F(7) = {2}
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in G5. Therefore, Res(7, G1)={4, 7} and Res(7,G3) ={2,7}. If
an adversary knows that the target exists at both times 74 and 75,
and launches sub-graph attack @4 (in Figure 2d) to G7 and G35, it
is easy to locate the target as vertex 7. The following lemma gives
the sufficient condition for a vertex v to be unidentifiable from a
series of publications of the same network.

LEMMA 5.2. Given a series of publications Q = {G;} of a
network G, (t = 1,...,s), a vertex v cannot be identified with a

probability higher than % if the following holds:
Res(v,G7) N Res(v,G5) N ...N Res(v, G%) = Res(v,GY)
where |Res(v, G7)| = k.

Lemma 5.2 shows the intuition of the proposed “vertex ID gen-
eralization” method in dynamic releases. First, we illustrate our
method through Example 3. Assume that we have obtained 2-
automorphic networks G and G5 produced by KM algorithm (Fig-
ure 6) along with AVT A; and A, (Figure 7). Based on A;, we can
define k£ — 1 automorphic functions in G7. Similarly, we can de-
fine other k£ — 1 automorphic functions in G5 based on Az. Then,
we generate an anonymized network G, where each vertex in G
is assigned a generalized vertex ID (see generalized vertex ID ta-
ble GIDT in Figure 7). For each record r in GIDT, r.OriID is
its original vertex ID, and r.GenlID is its generalized vertex ID.
Initially, each generalized vertex ID has only one element, that is
r.GenID = {r.OriID}.

In order to protect released networks in dynamic releases, we
perform the following vertex ID generalization process. We know
Res(7,G7) = {4,7} and Res(7,G5) = {2, 7}. In order to avoid
the disclosure of vertex 7, according to Lemma 5.2, we need to
guarantee that Res(7,G1) N Res(7,G3) = Res(7,G7) = {4,7}.
Thus, in the released network G, we need to insert 4 into 2’s gen-
eralized vertex ID, that is 2.GenID = {2,4}. Figure 7 shows all
generalized vertex IDs at time 75. To release anonymized network
at time 1%, for each vertex v, we attach v.Genl D as its vertex ID.

The GenlD algorithm in Algorithm 6 implements our approach,

which only depends on the two AVTs A; and Ay, and the anonymized

networks G and G} (obtained by KM algorithm at times 737 and
T:). First, we initialize the generalized vertex ID table GIDT (line
1 in in Algorithm 6). We define k — 1 automorphic functions F}
inGi,a=1,....,k — 1, based on A; (line 2). Similarly, we define
k — 1 automorphic functions F! in G, a = 1,...,k — 1, based
on Ay (line 3). Then, for each vertex v in G, if F (v) # F(v),
a = 1,...k — 1, we insert vertex ID F(v) into F:(v)’s gener-
alized vertex ID, that is F%(v).GenID (lines 4-7). Next, for each

vertex v in G, we replace the vertex ID v.Oril D by its general-
ized ID v.GenlID to get network G (lines 8-9). We publish G
as a released network at time 73 (line 10).

After GenlD algorithm, each network G7 is transformed into a
k-automorphic network G} with generalized vertex IDs. The fol-
lowing theorem proves that G} will not leak any privacy under dy-
namic releases. Notice that, at time 771, G is the same as G7. We
do not distinguish G5 and G7 in the following discussion.

Algorithm 6 Generalize Vertex ID For Released Network G

Require: Input: AVT A; for the network G}, and AVT A; for the net-
work G¥.
Output: The anonymized network after vertex ID generalization: Gi;‘
1: Initialize table GIDT.
2: Based on Aj, define & — 1 automorphic functions Fa1 in G}, a =
1,..,k—1.
3: Based on A;, define k — 1 automorphic functions F! in G5, t =
1,..,k—1.
4: for each vertex v in G do
5. fora=1,...,k—1do
6: if Fi} (v) # F{(v) then
7: Insert F} (v) into F(v).GenID.
8: for each vertex v in G do
9 Replace v.OriI D by its generalized vertex ID v.GenlID.
10: Report G.

THEOREM 5.1. Given a series of publications Q = {G} (t =
1,...,8), where G} is generated by GenlID algorithm at time Tt, it
is not possible to identify v in Q with a probability higher than %

PROOF. (sketch) Consider any publication G} at time T3, ¢ # 1.
According to GenID algorithm, for each v in G, we know that
Res(v,G}) O Res(v,GY). Thus, Res(v,G;) N Res(v,Gy) =

Res(v, G%). Therefore, Res(v, GT)NRes(v, G3)N...NRes(v, G3) =

Res(v, G7). According to Lemma 5.2, Theorem 5.1 holds. [

In Section 2.2, we stated that we use anonymization cost to mea-
sure the information loss. In fact, the anonymization cost can nicely
estimate the structural information loss since it counts the number
of edges that we change before and after anonymization. However,
the anonymization cost is not suitable for measuring the informa-
tion loss of vertex ID generation, since this generalization relates to
the content of a vertex ID. Therefore, we propose a new measure,
called average generalized vertex ID size, to quantify the informa-
tion loss caused by vertex ID generalization.

DEFINITION 5.2. Given a released network G produced by
GenlD algorithm, average generalized vertex ID size, denoted by
AvgIDSize(GY), is defined as follows:

veV (G

) . ) [v.GenID|
AvgIDSize(Gy) = TaEhR]

where V (G7) is the set of vertices in G7.

The above definition indicates that the larger the AvglDSize
(G7), the higher is the information loss. We prove that the infor-
mation loss caused by GenlD algorithm is bounded.

THEOREM 5.2. For any publication G at Ty, where G is pro-
duced by GenlD algorithm, the following holds

1 < AvgIDSize(GF) < k

PROOF. Proof is based on Algorithm 6. Due to space limitation,
we omit the details. []
The above theorem implies that the information loss in dynamic
releases can be controlled by k.



5.2 Vertex Insertion and Deletion

In practice, some vertex insertions and deletions will occur in
different publications Gy. If an adversary knows that the target
exists in G7 but not in G3, it is easy to identify the target. We
propose the following techniques to handle this problem. There are
two cases:

1) (Deletion) There is a vertex ID v that exists in G, but not in
G7, where t # 1. In this case, we find an arbitrary vertex ID u that
exists in both G and G;. We insert v into u’s generalized vertex
ID (i.e. u.GenID)in G7}.

2) (Insertion) There is a vertex ID v that exists in GG but not in
G'7. Assume that instance I contains v in AVT A;. For each vertex
w in I, we insert v into u.GenID in Gf. This means that the new
vertex ID exists in at least k vertices in G .

Although the above method only considers the released network
G171 attime 71 and G} at time T3, an adversary still cannot identify
the target based on G}, and Gy, , where 1 < 11 < ta.

THEOREM 5.3. Based on any two historical publications G,
and Gy, (1 < t1 < t2), an adversary cannot identify the target

with probability higher than % even if the adversary knows the in-
formation about insertion or deletion of a vertex.

PROOF. Proof is based on our insertion and deletion method.
Due to space limitation, we omit the details. [

THEOREM 5.4. Consider the publication G at Ty. The num-
ber of vertices that exist in Ty but not in Ty is denoted by |Ins|;
the number of vertices that exist in T but not in T is denoted by
|Del|. The average generalized vertex ID size in G has the fol-
lowing bounds.

1 < AvgIDSize(G) < k + (k—Dx|Ins| 4 _|Del]

V(G IV(GHI
<% 1456
_ V(G
where 6 = UCAIE

PROOF. Proof is based on our insertion and deletion method.
Due to space limitation, we omit the details. []

Usually, in evolutionary networks and dynamic social network anal-
ysis, the number of inserted and deleted vertices (i.e. |Ins| and
| Del|) is very small, compared with the number of vertices in the
original network (i.e. |V (G7)]).

6. EXPERIMENTS

In this section, we evaluate our methods using both synthetic
and real data sets, and compare them with the existing state-of-the-
art techniques, such as k-degree anonymity [13], 1-neighborhood-
diversity [23] and graph generalization method [7]. These methods
are denoted as “Against-Degree” [23], “Against-1Neighbor” [13]
and “Generalization” [7] respectively. ~ All of the methods have
been implemented using standard C++. The experiments are con-
ducted on a P4 3.0GHz machine of 1G RAM running Windows XP.

6.1 Datasets

1) Real Datasets: Prefuse graph: (http://prefuse.org/). This
dataset has 129 nodes and 161 edges.

Co-author graph: (http://liinwww.ira.uka.de /bibliography). The
dataset consists of 7955 authors of papers in database and theory
conferences. It has 10055 edges.

2) Synthetic Datasets: We use software Pajek (http.// vlado.finf.uni-

lj.si/pub/networks/pajek/) to generate two kinds of random graphs.
The default number of vertices in synthetic dataset is 1000.

Erdos Renyi Model: This is a classical random graph model. It
defines a random graph as NV vertices connected by M edges that

are chosen randomly from the N (N — 1)/2 possible edges. In our
experiments, we set N=1000 and M =5000. This dataset is denoted
as “ER”.

Scale-Free Model: A scale-free network is a network whose de-
gree distribution follows a power law, at least asymptotically, i.e.
for degree d, its probability density function is P(k) = d~ 7. Usu-
ally, 2.0< v <3.0. In our experiments, we set the number of ver-
tices to be 1000 and y=2.5. This dataset is denoted as “SF”.
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Figure 10: Number of Matches in Vertex Refinement Attack

6.2 Power of Privacy Protection

We evaluate released networks G* produced by the KM algo-
rithm under different attacks. The default value of k is 10. First,
for any degree d in released network G*, we report the frequency of
vertices with degree d in G*. As depicted in Figure 8, the minimal
frequency is 10. This means that G* can guarantee privacy under
degree attack.

We test our method in sub-graph attacks. We assume that an ad-
versary knows some local structure around a target. We randomly
extract some sub-graphs from original network G as query graphs.
Figure 9 shows the number of matches of () in released networks
G”. With increasing |E(Q)| (i.e. the number of edges in Q), the
number of matches decreases. When |E(Q)| > 12 in Figure 9a
in Prefuse dataset, there are less than 10 matches in released net-
works produced by “Against-DA” and “Against-1NG”. This means
that there are privacy leaks in these released networks. The reason
is that these two algorithms only consider a single type of attack,
i.e. degree-attack or 1-neighbor-graph attack, respectively. Due
to k(=10)-automorphism in our released network, given any sub-
graph query, the number of matches is never less than 10. We ob-
tain similar results in co-author dataset and synthetic datasets, as
shown in Figure 9.

These results demonstrate that existing methods cannot be re-
silient to multiple attacks. Due to k-automorphism in our released
network, an adversary cannot distinguish a vertex from the other
k — 1 symmetric vertices. Thus, our method can guarantee privacy
under any structural attack.

Similarly, under vertex-refinement attack in Figure 10, our method
can guarantee privacy; however, methods in [23] and [13] cannot
resist vertex-refinement attack. Due to space limitation, we omit
some of the results, such as the results on other datasets and the
results under hub-fingerprint attacks. However, all results confirm
the strong power of our privacy protection method.

We do not compare our method with graph generalization method
[7]. For this method, we need to generate different sample instances
from the generalized network. Individual sample instances cannot
resist structural attacks. Generalization method protects the pri-
vate information by introducing “uncertainty”. Specifically, users
cannot know which sample instance corresponds to the original net-
work. As discussed earlier, “uncertainty” also limits its use in prac-
tice. For example, it cannot answer queries that find the shortest-
path distance between two given vertices.

6.3 Utility Evaluation
We test G* produced by the KM algorithm using three statistical
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measures: (TDD) in Figure 11, average shortest-path length (ASP)
in Figure 12, and average cluster co-efficient (ACC) in Figure 13.
Note that, the dashed lines in Figures 12 and 13 denote the values
of ASP and ACC in original networks, which do not changes with
increasing of k.

We also compare the KM algorithm with the “Against-Degree”
[23], “Against-1Neighbor” [13] and “Generalization” [7] methods.
We vary k from 5 to 20. In “Against-Degree”, there are a num-
ber different ways to generate k-degree anonymous network. We
use DP+Supergraph method, which is reported as optimal [23].
In “Generalization”, we randomly generate 200 samples for util-
ity test, which is the same as the methods in [7].

We do not compare our method with graph generalization [7] in
TDD. In graph generalization method, samples are generated based
on the degree information in published generalized network. Thus,
TDD in graph generalization method [7] is 0. Our method outper-
forms graph generalization method in the two other measures, ASP
and ACC. Furthermore, the utility of the generalized network de-
pends on the generated samples. If the samples are similar to the
original network, the utility will be good. However, samples are
randomly generated from a large number of possible worlds. Thus,
it is difficult to generate similar samples with the original network.

As opposed to the “Against-Degree” and “Against-1Neighbor”
algorithms, KM algorithm does not guarantee the best utility of re-
leased networks. For example, although TDD of KM is the least
in Prefuse dataset, this not the case in co-author dataset. How-
ever, both “Against-Degree” and “Against-1Neighbor” can only re-
sist a single type of attack. The released networks produced by
“Against-Degree” and “Against-1Neighbor” may leak private infor-
mation under some other structural attacks, for example, sub-graph
attack in Figure 9.

Generally speaking, the utility value of our method is better than
“Against-1Neighbor”, and not as good as “Against-Degree”. How-
ever, our method does not assume a single type of attack, and pro-
tects released network from multiple structural attacks. Therefore,
it provides much stronger privacy protection than the others. Strong
privacy protection and good utility are always conflicting goals.

6.4 Scalability Test

We test the scalability of KM algorithm in synthetic datasets. We
vary |V| (the number of vertices) from 2000 to 10,000. The default
value of k& = 10. Figure 14 shows that our algorithm has good
scalability.

6.5 Performance Under Dynamic Releases

We also tested our vertex ID generalization with default £ = 10.

Given two original networks G and G, at times 7 and T}, the
|E(GGE)—E(Gy)|

[E(G1)] :
generate G+, we randomly delete 0.5 x a x |E(G1)| edges from
G1, and then sequentially add 0.5 x « x |E(G1)| random edges.
We vary a from 0.01 to 0.1. We define average generalized vertex
ID size in Definition 5.2 to evaluate information loss in dynamic
releases. The average generalized vertex ID size increases with

change ratio « is defined as o = In order to

a(Figure 15). We change 10% of the edges in G1, the average
generalized vertex ID size is 1.93 in Prefuse data and 8.03 in co-
author data. However, the increase of average generalized vertex
ID size is bounded (Theorems 5.2 and 5.4).

7. CONCLUSIONS

Due to increasing social network applications, privacy concerns
in social networks have become increasing important. In this pa-
per, we propose a systematic model, called k-automorphic network,
to avoid identity disclosure in released networks. Given an original
network G, our algorithm converts G into a k-automorphic network
G™, which is then published. Our method can guarantee privacy
under any structural attack. In order to support dynamic social net-
work analysis, we also address dynamic releases of the network.
It is straightforward to push attribute generalization method [16]
into KM algorithm to handle networks with vertex attributes (i.e.
labeled graphs).
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