
XCOMP: AN XML COMPRESSION TOOL

By

Weimin Li

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2003

c©Weimin Li 2003

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other instituions

or individuals for the purpose of scholarly research.

Signature of Author

I further authorize the University of Waterloo to reproduce this thesis by

photocopying or by other means, in total or in part, at the request of other institutions

of individuals for the purpose of scholarly research.

Signature of Author

ii

The University of Waterloo requires the signatures of all persons using or

photocopying this thesis. Please sign below, and give address and date.

iii

Table of Contents

Table of Contents iv

Abstract vi

Acknowledgements vii

1 Introduction 1

1.1 Overview . 1

1.2 Why is XML Compression Important? 4

1.3 Problem Definition . 8

1.4 Novelties . 10

1.5 Thesis Organization . 12

2 Background of Data Compression and Related Work 13

2.1 Information Theory . 13

2.1.1 Lossless Compression . 13

2.1.2 Variable-Length Source Coding 14

2.1.3 Entropy . 17

2.2 Compression Techniques . 18

2.2.1 Huffman Code . 18

2.2.2 Universal coding . 22

2.3 XML Compression . 25

2.3.1 XMill . 25

2.3.2 Millau . 27

2.3.3 XGrind . 29

3 XComp Compression 31

3.1 XComp Compression Model . 31

3.1.1 XML Document Structure . 31

iv

3.1.2 Separating Structure From Data 34

3.1.3 Grouping Data . 38

3.2 System Architecture . 39

3.3 Parser . 44

3.4 Containers . 47

3.5 Dictionary Manager . 50

3.5.1 Handler Algorithms . 50

3.5.2 Dictionary Table . 55

3.6 Compression Engine . 59

4 Experimental Evaluation 60

4.1 Experimental Framework . 60

4.1.1 Methodology . 60

4.1.2 Classes of Experiments . 61

4.1.3 Platform . 62

4.1.4 Data Source . 62

4.1.5 Comparative Compression Tools 64

4.2 Parameter Tuning Experiments . 64

4.3 Comparison Experiments . 68

4.3.1 Compression Ratio . 68

4.3.2 Compression Time Comparison 71

4.3.3 Internet Transmission . 73

5 Conclusions and Future Work 76

5.1 Conclusion . 76

5.2 Future Work . 78

A XML Document Definition 80

B Light-Weight SAX Parser Interface 81

Bibliography 83

v

Abstract

XML, as a data exchange and storage format, is extremely verbose, requiring compres-

sion for efficient transmission. Although this can be addressed by a general purpose

compression tool, the effects of these tools are not satisfactory. In this thesis, an XML-

specific compression tool, XComp, is proposed that exploits XML’s self-describing

property to re-group XML data. It follows the principle of separating structure from

data, and grouping data based on semantics. The structure is encoded as a sequence

of integers, while the data grouping is based on XML tags/attributes and their levels

in the document tree. The re-organized data are compressed by existing compression

algorithms. Performance evaluation shows that XComp outperforms both general

purpose compression tools and previously proposed XML-specific compression ap-

proaches.

vi

Acknowledgements

I recognize and appreciate all of the help from many people, without which my work

could not be done.

First, I would like to thank Professor M. Tamer Özsu, my supervisor, for his many

suggestions and constant support and encouragement during this research. Even in

the recovery after a heart surgery, he kept reviewing my thesis and stimulated me

to finish my work. His hardworking spirit and persistent pursue of best solutions in

academic problems inspire me all the time.

I have been very fortune to have Dr. Grant Weddell and Dr. Frank W. Tompa

read my thesis. I thank them for their precious time and valuable feedback.

I also want to thank for the help from Benjamin Bin Yao, who helped me set up

the data set for the experiments, and Ning Zhang, who helped me figure out some

Latex problems in thesis writing.

Finally, I acknowledge the continued love and support of my wife. Her support

and encouragement always accompanied me throughout these years.

vii

Chapter 1

Introduction

1.1 Overview

XML, the eXtensible Markup Language [24], is becoming a standard format for data

storage and exchange, in particular over the Internet. It is based on and is a subset

of the first truly viable commercial markup language Standard Generalized Markup

Language (SGML) [9]. Another famous markup language is HyperText Markup Lan-

guage (HTML) [21], which is commonly used in presenting Web Pages. HTML is also

a subset of SGML. The markup refers to the method of conveying the meta-data. All

these SGML-based markup languages use tags to delimit the major components of

the meta-data, called elements. Example 1.1 shows tags and elements in a segment

of an XML document.

<Person ID="IS9095">

<FirstName>Wally</FirstName>

<LastName>Robertson</LastName>

<Address>200 University Ave.</Address>

...

</Person>

Example 1.1: An XML Segment

1

2

<FirstName>, <Person> are start-tags and </FirstName> and </Person> are

end-tags. Start-tags and end-tags with the same tag names, such as Person, appear

together as a pair. Such pair delimits an element value, i.e. <FirstName> Wally

</FirstName>. Data content or nested elements are contained between them. We

call a piece of continual data content that does not include any markups a data

item. “Wally” and “200 University Ave.” are all examples of data items. In XML

documents, data items are all presented as strings.

A marked up document can contain both data and information that tells what kind

of roles these data play in that document. Such information will help applications

in processing or presenting these data. Unfortunately, SGML and HTML have a

number of disadvantages. SGML is too large and too complicated to handle easily.

Although HTML was a success in Web page presentation, its extensibility is limited.

Its pre-defined tags are used more in describing the appearance of the data rather

than in defining the data structure. Moreover it doesn’t provide a mechanism to

create specific markup tags for the numerous types of entities in a Web page.

The variety of Internet calls for applications need an extensible, flexible and con-

cise markup language to exchange data on the Internet. Driven by this need, World

Wide Web Consortium (W3C) has created XML. The design goals [24] for XML are:

“1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.

3

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9.XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.”

The two most important virtues that make XML a success are self-description

and extensibility. In XML, the tags that delimit XML components can also be used

to describe the data contained in these components. By carefully choosing some

semantic tag names, the document creators are able to tell the document consumers

what roles these data play. For instance, a person’s information, including name

and address, can be easily extracted from the earlier XML segment because of the

meaningful tags. In this case a consumer does not need a data schema to understand

the documents; a shared XML vocabulary is enough.

Using vocabulary rather than schema gives rise to another benefit of XML —

extensibility. XML provides a basic syntax but does not define the actual tags;

the tag set can be extended by anyone for his own purpose, and a set of tags can

be combined to define complicated data structures. Unlike HTML, which describes

data and its presentation, XML separates semantics from its presentation. The self-

describing documents tell how to interpret them and leave the presentation problem

to document consumers. This mechanism makes XML documents more flexible and

extensible, especially when they are exchanged between different kinds of applications.

However, such virtues are not free. One of the disadvantages is that XML docu-

ments are verbose, requiring compression before transmission over the Internet. This

thesis deals with the problem of XML document compression. In the next section the

4

verbosity problem is explained and the necessity of compressing is discussed.

1.2 Why is XML Compression Important?

Meaningful tags make an XML document self-describing, but they also increase the

document’s size. In most cases, an element contains at most one data item. In other

words a data item usually comes with a start-tag and an end-tag, as “Wally” does

in <FirstName>Wally</FirstName> in Example 1.1. In some cases, the tags occupy

even more space than data items. We use an example document to show how XML

format increases the document’s size.

Consider the invoice record in Example 1.2, which is a sales and shipping docu-

ment including the customer’s name and address, the ordered products, and payment

information. We assume one invoice contains only one customer and several products.

<?xml version="1.0" encoding="utf-8" ?>

<Invoice ID="ST87302" date="2003-03-17" paid="true" >

<Customer ID="2376">

<Name>

<FirstName>Wally</FirstName>

<LastName>Robertson</LastName>

</Name>

<BillingAddress>

<Street>200 University Ave.</Street>

<City>Waterloo</City>

<Province>ON</Province>

</BillingAddress>

</Customer>

<ProductList>

<Product ID="HI0941" >

<name>MP3 Player</name>

5

<Price>139.99</Price>

<Units>2</Units>

</Product>

<Product ID="XP6015" >

<name>CD Writer</name>

<Price>79.99</Price>

<Units>4</Units>

</Product>

</ProductList>

</Invoice>

Example 1.2: An Invoice Record In XML Format

This document contains 19 data items and its length is 688 bytes. The data itself,

stored in plain text as in Example 1.3, has only 144 bytes. This value still can be

further reduced if we use binary format. The repeating tag characteristic makes the

XML version almost 5 times longer than the plain text version.

ST87302 2003-03-17 true 2376

Wally Robertson

200 University Ave. Waterloo ON

HI0941

MP3 Player

139.99 2

XP6015

CD Writer

79.99 4

Example 1.3: An Invoice Record In Plain Text

The verbosity of XML causes doubts about its efficiency as a data format in

exchanging and archiving data. Although individual XML files transferred on the

network may not be very large, the number of files is usually so large that the total

6

amount of data will consume a lot of bandwidth. Under the circumstances where

bandwidth is limited and data traffic is very heavy, the transmission of XML docu-

ments may become a bottleneck for those applications. When XML is used to archive

data, concerns still exist. The querying performance is also influenced by the size of

the XML data. Because of these concerns, many applications (e.g. Web logs, bio-

logical data, etc) use other, specialized data formats to archive and exchange data,

which are more economical than XML [13].

Compression of XML documents for efficient storage and transmission is thus

needed. One alternative is to use general purpose compression tools, such as compress,

zip, and gzip. Although these tools can reduce the size of an XML document, because

they were developed for general use, they can not exploit the properties of XML to

obtain the best compression results. Most of these general purpose compression tools

use Lempel-Ziv (LZ) family of algorithms [12, 30, 31] as their compression engines.

Here we only give a brief description of the Lempel-Ziv family algorithms. We will

discuss them in detail in Chapter 2.

Many lossless compression algorithms parse the source symbol string into a se-

quence of phrases, then generate codes to represent these phrases. For example,

LZ77 [30] parses the sequence 00010110000010100100100010011... into phrases as

0, 00, 1, 011, 0000, 01010, 0100, 10001, 0011, ... Then these phrases are adaptively en-

coded according to their frequencies in the sequence. The phrases with higher frequen-

cies will get shorter codes, while the phrases with lower frequencies will get longer

ones. By adaptive, we mean that an algorithm can adapt to the statistics of the

source. For example, if the algorithm has read many symbol strings 00100, it should

be able to shorten the code for string 00100. While the source statistics may change,

7

it can follow these changes by adjusting its codes and do it rapidly, so that it can be

widely applicable to different kinds of source data.

While these algorithms are applied over XML data, they just treat the data as a

piece of ordinary text data. The compressed XML document’s size is still much larger

than that of the compressed plain version. There are some places we can improve.

First of all, any well-formed XML document must have a hierarchical (tree) struc-

ture, which is constructed by tags. Each node of this tree represents an element or

attribute. This tree structure can be coded with much fewer bytes if we extract it

from the XML document. However, general purpose compression tools can’t exploit

this characteristic, instead compressing the entire document as a whole.

Secondly, in most XML documents, it is reasonable to expect that related data

have similar data type and format. It is possible to group such data together according

to the element type name. For example, in the invoice document of Example 1.2,

the element FirstName contains a person’s first name so that its data item usually

only contains English letters. Similarly Units element contains a product’s quantity

so that its data item is always a positive integer. XML’s self-description property

provides a possibility to group similar data items according to element type name and

attribute name. Compressing data items as groups will be better than compressing

them together.

Thirdly, we know that any whitespace characters, i.e. space, tab, end-of-line

character, except the ones within the content, have no semantic meaning. They

may be removed by any XML parser. This feature allows us to remove any such

whitespace characters while compressing without affecting any semantic information

this document carries. Of course, such a compression policy can not reconstitute the

8

exact original files, but it does not influence information content of the XML files.

We can improve XML compression by these strategies, only when the compressor

understands XML syntax. An XML-specific compressor is what is needed for this

purpose.

1.3 Problem Definition

Our goal in this thesis is to develop an XML-specific compressor which has good

performance in both compression ratio and transmission speed over the network. So,

reducing XML documents’ size is not the only target of the compressor. When XML

documents are transferred on the network, as described in Figure 1.1, we expect the

transmission speed to be improved if we add a compressor and a decompressor at

the sender side and receiver side, respectively. To get better overall performance,

compared with the case without compression, the total transmission time Ttotal =

Tcompress+Ttransmit+Tdecompress must be less than the time used to send the original file

directly. The cost factors that we can control are Ttotal and Tdecompress. Therefore the

compression speed is also a consideration. We expect a tradeoff between compression

efficiency and speed to get the optimal transmission efficiency.

Apart from the above targets of compression ratio and transmission speed, we

also set the following requirements for our compressor:

1. The compressor should be a universal XML compression tool. It should have

a consistent performance over any well-formed XML document, no matter its

size, its regularity (or irregularity), or its structure. In other words, it should

not favor some kinds of documents, and work badly over others.

9

NetworkSender Receiver

XML
document

(a) Without Compression

(b) With Compression

XML
document

Network

XML
document

Compressed
document

Compressor De-compressor

Sender Receiver

Compressed
document

XML
document

Figure 1.1: Transferring XML Document on the Network

2. It must work in a stream model. This means that it should work as a document

filter that reads from an input stream and outputs the result as an output

stream. The stream model allows it to consume input and produce output

in parallel. This feature can significantly improve the transmission efficiency.

Note that in this case the serial Ttotal formula is revised and needs to take into

consideration the parallelism of compression and decompression activities at the

sender and receiver sides.

3. It must compress XML data without the aid of any predefined data schema.

Document Type Definition (DTD) [24] and XML Schema [25] provide mecha-

nisms to describe the document structure so that an XML document can be

validated, e.g., element parent-child relationships are respected, attributes have

10

valid values, all referenced entities have been properly defined. Therefore the

information contained in DTD or XML Schema indicates data types of element

content and attribute value that will improve compression efficiency. However,

we can not assume that such data definition is ubiquitous. As mechanisms to

perform structural or content verification, DTD and XML Schema are not likely

to exist with every XML document that is exchanged between Internet applica-

tions. To make the compressor simple, we do not use any document definition

to improve compression.

Another problem in XML compression is direct querying that supports querying a

compressed document without decompressing it. XGrind [18] uses a two-pass Huffman

code [7] to compress at the granularity of individual element/attribute values, so that

exact-match and prefix-match queries can be executed directly on the compressed

data. Because of the reduced document size, such a compressor can improve the

query speed by saving the scanning time. In this thesis, we do not consider direct

querying. Combining the decompressor with a query engine or an XML parser is left

as future work.

1.4 Novelties

In this paper, we propose a new XML-specific compressor, called XComp that per-

forms better than general-purpose compressors Zlib [3] and other XML compressors:

XMill [13], XGrind and [18]. The basic idea behind XComp is separating struc-

ture from data and compressing them individually. The structure is encoded into a

sequence of integers, and the data are grouped according to their element tags and at-

tribute names and levels in the document tree. We do not develop a new compression

11

algorithm, but leverage the power of existing ones.

XComp can be applied to any well-formed XML document without any hints that

imply the document structure or the data types. Written in C++, it can be used, as a

file filter, by any application directly with its default settings. These default settings

have been tuned to get an optimal effect on general XML files. Of course, users can

modify these settings for specific classes of XML files to improve the results.

A novel feature of XComp is that it employs a parse-compress architecture in

which an XML document is parsed first and then its components are re-organized and

forwarded to the compression engine. During the parsing process, data are loaded

into main memory so that the compression is a main memory operation. A memory

window is applied when the document size exceeds a set value. XComp allows parsing

and compressing to be done in parallel when the document can not fit in one memory

window.

XComp improves compression by grouping related data items. Data items with

the same element tag or attribute name and appearing at the same document tree

level are compressed together. Such data usually have the same data type and similar

data values. For instance, values of attribute paid may always be true or false in

Example 1.2.

We also propose an algorithm to encode the document tree structure. There is the

option of preserving white space or eliminating it. When white space is preserved, it

becomes a lossless compression. In both cases, the XML structure is encoded into a

sequence of integers.

12

1.5 Thesis Organization

The rest of this thesis is organized as follows. Background material on compression

techniques and some related work on XML compression are introduced in Chapter

2. In Chapter 3, we present the architecture and implementation details of XComp

compressor. The experimental results are discussed in Chapter 4. Finally, in Chapter

5, we draw our conclusions of this study and outline the future avenues to explore.

Chapter 2

Background of Data Compression
and Related Work

In this chapter, we introduce the basics of information theory and two well-known and

commonly employed lossless compression techniques, Huffman code and Lempel-Ziv

compression. Some existing XML compressors are discussed in the second half of this

chapter.

2.1 Information Theory

2.1.1 Lossless Compression

Lossless compression techniques provide exact recovery of the original data from their

compressed version. Any information contained in an original file can not be lost dur-

ing compression and reconstruction. These techniques are used widely in applications

to save storage space and network bandwidth. For instance, most modems operating

at 14,400 baud or higher use Lempel-Ziv in their default configuration. Since an XML

compressor needs to preserve all data content, only lossless compression techniques

can be used. Therefore, we restrict our interests to them in this thesis.

There are generally two kinds of compression techniques. One assumes a priori

13

14

knowledge of the statistics (i.e. the probability distribution p(.) of single source let-

ters) of the data source. Huffman code [7] is an example of this class. The second type

works without such information; the encoder can adapt to the statistics of the source

when it has read enough data from the source. We call them universal compression

techniques.

2.1.2 Variable-Length Source Coding

In this and the next section, we assume that the source is a sequence of independent,

identically distributed (i.i.d.) random symbols. The i.i.d characteristic indicates the

fact that there is no statistical dependence among its successive source symbols. Given

an alphabet A = {a1, a2, ..., am}, this means that p(ai|aj), which is the probability

that the symbol following an aj is ai, equals p(ai) . This assumption precludes the

possibility that any specific symbol strings intentionally appear repeatedly in the

source, e.g. “the” has high appear frequency in an English document. We assume

that the symbols are randomly distributed, although such data sources are not fre-

quent in real world. However, we usually do not know the higher-order probability

distributions that govern pairs, triples and longer n-tuples of source symbols. Unless

otherwise noted, we shall assume i.i.d. model, not only for the above reason, but also

because i.i.d. model is relatively easy to understand yet general enough to illustrate

most of the fundamental concepts.

The essential principle of data coding is assigning short codes to frequently oc-

curring symbols and long codes to ones that occur less often. Let us consider an

example source with symbols and their probabilities as given in Table 2.1. These

symbol probabilities satisfy the requirement p1 + ... + p8 = 11.

1We use pi as a shorthand to represent p(ai)

15

Source Symbol Symbol Probability Binary Codeword
a1 0.35 000
a2 0.20 001
a3 0.15 010
a4 0.15 011
a5 0.05 100
a6 0.05 101
a7 0.03 110
a8 0.02 111

Table 2.1: Code A: Fixed-Length Binary Code

In code A, each symbol is represented by a binary string, called codeword. Since

the length of all codewords is the same, code A is a fixed-length code. Correspond-

ingly, a variable-length code has codewords with different lengths. Codes B and C,

shown in Tables 2.2 and 2.3, respectively, are both examples of variable-length code,

where symbols with higher frequency have shorter codewords. Another type of code

classification is based on the number of symbols used in codeword’s alphabet. A

D-ary code is one whose codeword’s alphabet has D symbols. Codes A, B and C are

all binary code.

Source Symbol Symbol Probability Binary Codeword
a1 0.35 0
a2 0.20 1
a3 0.15 00
a4 0.15 01
a5 0.05 10
a6 0.05 11
a7 0.03 000
a8 0.02 001

Table 2.2: Code B: Optimum Variable-Length Code

16

Source Symbol Symbol Probability Binary Codeword
a1 0.35 0
a2 0.20 10
a3 0.15 1100
a4 0.15 1101
a5 0.05 1110
a6 0.05 11110
a7 0.03 111110
a8 0.02 111111

Table 2.3: Code C: UD Variable-Length Code

We use the average codeword length to evaluate the efficiency of these codes.

Assuming li denotes the codeword length of symbol ai, the average codeword length

is given by

l =
m

∑

i=1

pili

For code A, each symbol codeword always occupies 3 digits; regardless of the

symbol probabilities, we always have lA = 3. For codes B and C we have

lB = (0.35 + 0.20)× 1 + (0.15 + 0.15 + 0.05 + 0.05)× 2 + (0.03 + 0.02)× 3 = 1.5

lC = 0.35×1+0.20×3+(0.15+0.15+0.05)×4+0.05×5+(0.03+0.02)×6 = 2.9

Code B has the shortest l among these codes. However, it has a fatal problem

in that it is not uniquely decipherable. Consider the case where we have a segment

of encoded binary sequence 11111. There is no way to decode it only according to

these binary digits, for 11111 may stand for a2a2a2a2a2 or a2a6a6 or a6a2a6 or other

strings. This sequence is ambiguous unless “commas” are introduced to delimit the

codewords. But comma is a new code symbol. Therefore, permitting the use of

comma changes the binary code to a ternary one and also increases the length of

17

encoded sequence. Any attempt to use some delimiter between the codewords will

increase l.

One solution to this problem is to let the codewords themselves be able to delimit

the encoded string. Such codes are called uniquely decipherable (UD) codes. A code is

uniquely decipherable only when the code translates any finite-length encoded string

to at most one possible source sequence. In our examples, code C is UD while code

B is not. For lossless compression, we only consider the codes that are UD.

2.1.3 Entropy

Code C is not the only UD code for our example source. In Section 2.2.1, we will see

that Huffman code is also UD and has smaller l than code C. One may ask whether

it is possible to find a UD code with the shortest l?

In late 40’s and early 50’s, Claude Shannon and others laid the foundations and

gave birth to Information Theory. In his classic paper “Mathematical Theory of

Communication” [16], Shannon introduced some notions including entropy as well

as the phrase “Information Theory”. An entropy formula was defined to qualify the

amount of information contained in a signal. The entropy of an i.i.d. source with

probability distribution {pi}, is given by

H = −
m

∑

i=1

pi log pi

The base of the logarithm determines the units of H. Usually base 2 is used, in

which case H is measured in bits. He proved that entropy sets the low bound of

lossless compression. The average codeword length of any D-ary UD code is always

at least as great as the source entropy calculated using base D. For example, for our

18

example source, H calculated with base 2 is 0.35 log2 0.35+0.2 log2 0.2+0.15 log2 0.15+

0.15 log2 0.15 + 0.05 log2 0.05 + 0.05 log2 0.05 + 0.03 log2 0.03 + 0.02 log2 0.02 ≈ 2.512.

Code C is 15.4% bigger than the entropy. The gap between l and H is known as the

redundancy of the coding scheme.

Consider another example where a source has a 256-symbol alphabet, in which

each symbol has a uniform distribution (p1 = ... = p256 = 1/256). Hence it needs

H = log2 256 = 8 bits per symbol, which exactly equals l of any code that assigns

one distinct 8-bit codeword to each symbol. In this case all such codes can reach the

lowest bound of compression. In other words, no compression effect over these codes

is available because the symbols are randomly and evenly distributed.

2.2 Compression Techniques

2.2.1 Huffman Code

Before Shannon’s time, the variable-length codes were used in telecommunication

systems, i.e. telegraph and telephone, to encode information symbols. Shannon’s

theories gave a theoretical bound that these codes could achieve. But he left open a

major question in variable-length source coding: the algorithm that finds a variable-

length code with minimum l. This work was done by David Huffman [7]. He found

such an algorithm that produces an optimal UD binary code for any given source

symbol distribution {pi}.

Given an alphabet and corresponding distribution, Huffman’s algorithm generates

a binary tree. Each leaf node in this tree is a symbol in the alphabet and each link

is labelled with 0 or 1. When the tree is constructed, each symbol codeword can be

obtained by traversing the path from the root to the leaf node. The tree is constructed

19

in a recursive way: each time two nodes with minimum probabilities are added to a

new node as its children, the sum of their probabilities becomes the probability of the

new node. This process is repeated until all symbol nodes are in the tree.

The following 5 steps show how Huffman’s algorithm is applied to our example

source given in Tables 2.1 to 2.3.

1. Label each of the eight nodes with its symbol probability as shown in Figure

2.1.

2. Merge the nodes labelled by the two smallest probabilities, in this case 0.02 and

0.03, by making them be the children of a new node.

3. Label two links as 0 and 1 arbitrarily, and set the new node’s probability as

0.02 + 0.03 = 0.05. Now we have seven nodes to merge, namely the six original

nodes that are not yet used and the ancestor node just created.

4. Find the two smallest probabilities in the seven nodes, in this case 0.05 and

0.05. Merge them and label the new node and links as in Steps 2 and 3.

5. Continue iteratively, at each step merging two nodes labelled by the smallest

probabilities among those that so far have no ancestor. Stop the process once

there is only one node without ancestor; let it be the root of the tree.

In Figure 2.1 there are two Huffman codes (other possible Huffman codes exist).

The difference results from different tie-breaking methods. Although their codeword

length sets are different, the mean codeword lengths are identical:

lHa
= (0.02+0.03)×6+0.05×5+0.05×4+(0.15+0.15+0.20)×3+0.35×1 = 2.6

lHb
= (0.02 + 0.03 + 0.05 + 0.05)× 4 + (0.15 + 0.15)× 3 + (0.20 + 0.35)× 2 = 2.6

20

0 1

0

0

0

0

0

0

1

1

1

1

1

1

a8 a7
a6 a5 a4

a3
a2 a1

0.02 0.03 0.05 0.05 0.200.150.15 0.35

0.05

0.10

0.15

0.30

0.65

1.00

0.35

a8 a7
a6 a

5
a2

a4
a3 a1

0.02 0.03 0.05 0.05 0.150.150.20 0.35

0.05

0 1
0.10

0 1

0.30

0 1

0.15

0 1
0.65

0 1

0.35

0 1

1.00

0 1

Figure 2.1: Two Huffman Trees for Source of Example

This, plainly, is a requirement for Huffman’s algorithm to be optimum. The

Huffman codes shorten l 10.3% over the previous UD code C and only exceed entropy

by 3.5%.

Huffman algorithm can be extended to create non-binary codes. For instance, to

create ternary codes, we change the binary Huffman tree to a ternary tree where every

link is labelled with a ternary symbol. At each iteration, we merge three smallest

probabilities instead of two. In this way, Huffman algorithm can be easily extended to

21

generate D-ary Huffman codes which also achieve maximum proximity to the entropy

calculated by base D.

All the codes we presented up to now are instantaneous codes that can code a

source symbol instantaneously upon its arrival, and each symbol is treated individu-

ally. This is not necessary. We often (not always) can achieve a lower redundancy by

treating symbols as pairs and then constructing a Huffman code for these pairs. If

the source alphabet size is 8, there are 82 = 64 distinct pairs. Assuming i.i.d., prob-

ability of pair aiaj over any possible pair combinations in this source always equals

pi× pj. Applying Huffman algorithm to these pairs, we get a Huffman code for pairs

where a codeword represents two contiguous symbols instead of one. If we treat the

source in units of n symbols, the code is called n-tuple code. In the limit as n →∞,

the average codeword length of Huffman codes approaches entropy H [5]. However,

we pay a price both in complexity and in delay for this approach. There are more

and longer codewords to store and to look up while coding and decoding. Moreover

we lose the instantaneousness property : for an n-tuple Huffman code, a symbol’s

codeword can not be determined until all symbols in the n-tuple have been received.

Huffman code is applied in various applications ranging from facsimile [8] to high-

definition television [1]. We also use Huffman code as the compression engine in

XComp. Its advantages are as follows:

1. It achieves the lowest possible redundancy among all UD codes by a very simple

algorithm. The process of coding and decoding is also faster than universal

compression techniques.

2. For instantaneous Huffman code, it does not need to store any temporary source

data or coded data in memory.

22

3. It has a set of fixed codewords, which allows exact match search in the coded

data. The search key can be coded by the same Huffman code, then be searched

in the coded data without decoding.

However, Huffman code also has two major problems. First, it requires a priori

knowledge of source statistics. To get this information, applications using Huffman

code usually go through the source data once before coding. That is why the compres-

sion techniques requiring source statistics are called two-pass compression algorithms.

Second, Huffman code assumes that the source data model is i.i.d., but the actual

world is not so simple — most data are not memoryless. For instance, “the” in any

English document or “XML” in this thesis have higher occurrence probabilities than

any other combinations of these three letters. Furthermore statistics may vary in one

source. Huffman code can not exploit this property to improve compression, because

it uses an average statistics for the whole source.

2.2.2 Universal coding

The term “universal” was first used by A. Kolmogorov [11] to refer to the compression

algorithms that do not depend on a priori knowledge of the source distribution. In

universal coding, the encoder can exploit the fact that it reads the source output and

thus can “learn” the statistics from it and adapt to it. The natural idea is to estimate

the “future” symbol probabilities based the knowledge of source data that was read.

Initially, we assume a distribution for the source, and code it by Huffman code. When

the encoder reads enough data, it modifies the probabilities according to statistics of

the data source consumed. As well, the codewords are also modified according to the

change of these probabilities. By doing so the encoder can adapt to the statistics of

23

the source. Actually that is precisely what the adaptive Huffman code [2, 4, 10, 19]

scheme does.

The most widely used universal coding method is the algorithm introduced by

A. Lempel and J. Ziv in [12, 30, 31]. Unlike the algorithms we mentioned so far in

this chapter, Lempel-Ziv (LZ) does not map fixed-length symbols to variable-length

codewords. It uses the idea of parsing to segment the source into a sequence of symbol

strings. The principle of LZ parsing is that the next phrase is the shortest phrase

never seen before.

There are many variants of Lempel-Ziv algorithms, and they don’t use the same

parsing method. The primary versions are LZ77 [30] and LZ78 [31] and LZW [20].

The first two are named from the years when they were first proposed in literature,

while the last one is a major variant of LZ78 developed by T. A. Welch. In this

chapter, we only focus on the first two algorithms.

Suppose that we have a source sequence 00010110000010100100100010011. LZ77

parses it into a sequence of phrases 0, 00, 1, 011, 0000, 01010, 0100, 10001, 0011, ... In

this sequence, each phrase is the longest phrase that has appeared in the data source

before it concatenates one more symbol. For instance, when the first five phrases have

been parsed, we have consumed 00010110000. Then in the immediate data sequence,

0101 is the longest substring of 00010110000. Thus the sixth phrase is 01010, which

is 0101 plus its next symbol 0.

LZ78 parses the same sequence as 0, 00, 1, 01, 10, 000, 010, 100, 1001, 0001, 001,

1..., ... Unlike LZ77 that looks for the longest phrase in the window of all parsed data,

LZ78 searches it in the domain of all parsed phrases. For example, when the first five

phrases have been parsed, we match these phrases in the immediate data sequence.

24

Phrases 0 and 00 match the head of the rest and 00 is the longer one between them.

Adding the next symbol 0 immediately to the end of this maximal match, we get the

sixth phrase 000.

Next, we look at how to code these phrases. LZ77 uses three items to describe

the kth phrase. We use Wk−1 to donate the data window of previously parsed data

sequence before the kth phrase. The three items are:

• Ik the index of the beginning of the kth phrase in Wk−1,

• Lk the length of the phrase,

• Sk the terminal symbol of the phrase.

An encoder uses these items to tell the decoder how to reconstruct the original

data source.

Compared with LZ77, LZ78 parses most data sequences into more phrases (in

other words shorter phrases), e.g. 12 vs. 9 in our example.2 However, it only requires

the id of the appropriate phrase that has appeared earlier and the terminal symbol

to describe an LZ78 phrase. So LZ78 uses less bits for a phrase than LZ77.

The phrases in LZ78 are usually stored in a tree structure as depicted in Figure

2.2. As in Huffman tree, each link is labelled either 0 or 1. Each node except the root

in the tree represents a phrase; the path from root to a node comprises the binary

value of the phrase. While parsing, the tree grows by one node at a time. Initially,

the tree only has the root node. Since the first phrase is 0, node 1 is added as the

left child of root. The second phrase is the concatenation of the first phrase and 0, so

node 2 is added to the left branch of node 1. When a new phrase has been delimited,

2The twelfth phrase is not complete in LZ78 yet.

25

a new node will be added as a child of an existing node. The tree contains all the

information needed to restore the original data. Each phrase can be described by

specifying its immediate ancestor and whether it is the left or the right descendant

of that.

1 3

0 1

2 4

0 1

5

0

8

0

7

0

6

0 1

9

11

11

10

root

Figure 2.2: LZ78 Tree

2.3 XML Compression

In this section, we review some XML specific compressors, including XMill [13],

XGrind [18] and Millau [6].

2.3.1 XMill

The XMill compressor [13] is designated to minimize the size of the equivalent XML

documents. XMill incorporates some novel ideas of XML-specific compression, which

26

are also followed by other XML compressors. The most important ones are separating

structure from data and grouping items with related meaning.

In the XMill model, each XML document is composed of three kinds of tokens:

tags, attributes and data items. These tokens are organized as a tree structure, with

nodes labelled with element type names or attribute names. Each data item is always

associated with a node in this tree. XMill extracts the tree structure and data items

from XML documents and compresses them separately.

The extracted data items are re-organized to group the ones with related meaning

into one container. XMill uses container expressions to group data items on seman-

tics. The container expression is a regular expression derived from XPath [23]. Users

may use it to indicate absolute or relative path to a node. All data items of nodes with

the same container expression are placed in one container and compressed together.

The motivation for such semantic grouping is that data belonging to the same group

usually have similar characteristics and therefore can be compressed better than data

sorted only in syntax order.

Based on the above principle, XMill works in following manner. First, the XML

document is sent to an XML parser. The parsed structure components, tags and

attributes, are stored in a special container, and data items are forwarded to the

container expression processor as strings. The container expression processor groups

these data items according to the pre-defined containers expressions. A Container

expression allows defining the data type of its data items. The data type can be

atomic (integer and boolean), or complex as combination of atomic types (date or

IP address). If a data type is designated, data items can be stored as in binary

format rather than string in the container, e.g., using 4 bytes to represent an IP

27

address instead of a string like 206.102.2.1. Such processing before compression

helps to improve the compression ratio. After parsing and grouping, the contents of

the containers are compressed individually by zlib [3] and the results are concatenated

into a single document.

The performance study over a wide variety of XML documents demonstrated that

XMill consistently provides improved compression ratios as compared to zlib, since

zlib treats the entire document as a continuous stream of bytes and does not associate

any semantics with the contents. While the compression ratio is improved by 40%,

XMill only uses 20% more time than zlib. We compared XMill with XComp in our

experimental evaluation. The results are given in Chapter 4.

XMill has a number of limitations. First, it is not designed to work with a query

processor. It is designed to save storage space and network bandwidth, and therefore,

only focuses on reducing document size rather than speeding up query processing

by compressing XML data. Second, XMill’s performance is not very good for small

documents. When file size is smaller than 20KB, it loses its advantage over general

purpose compressors. Thirdly, it does not comply with XML specification well. It

only supports ASCII documents, rather than Unicode [17] that is the default character

set of XML. It even does not accept apostrophe as an attribute value delimiter.

2.3.2 Millau

The Millau [6] coding format is an extension of WAP (Wireless Application Protocol)

Binary XML (WBXML) [22] format. The WBXML defines a binary representation of

XML data to reduce the transmission size of XML documents over wireless communi-

cation networks. In WBXML model, the XML structure is encoded as a sequence of

28

tokens, each of which occupies one byte. There are two categories of tokens: global to-

kens and application tokens. Global tokens are context free and assigned to indicate

the position of data items and special markups. Application tokens have context-

dependent meaning and are split into three overlapping code spaces : tag code space,

attribute name code space, and attribute value code space. Tag tokens are used to

indicate the beginning and end of elements, while attribute name tokens and attribute

value tokens are used to indicate attributes. The sequence of these tokens represents

the structure of the original XML document.

Millau also follows the approach of separating structure from data. It uses two

streams to send XML data. One stream is the token sequence while the other stream

is the data stream. Millau does not group hierarchical data items but sends them in

the order they appear in the XML document. The token stream is not compressed

so that a receiver can scan it directly. The data item stream can be compressed by

general purpose compressor or left uncompressed.

Besides the compression algorithm, Millau also implements DOM [28] and SAX

[14] parsers for Millau streams of XML documents. DOM and SAX are two API

specifications for XML parsers. SAX parsers process the XML document sequentially

while DOM parsers typically load the entire document into memory. The Millau

SAX parser and DOM parser read input as encoded Millau structure stream and

data stream.

The experimental evaluation shows that Millau outperforms zlib: the total size

of structure stream and compressed data stream is smaller than the size of file com-

pressed by zlib. However, because Millau does not re-organize the data content, which

is just compressed plainly by zlib, the entire improvement of compression ratio is not

29

significant.

2.3.3 XGrind

Tolani and Haritsa proposed a query-friendly XML compressor, XGrind, that sup-

ports queries in the compressed domain [18]. XMill and Millau both use zlib, which

is based on LZ77, as their compression engine. For the adaptive compression algo-

rithms, i.e. LZ77, it is impossible to search keywords in the compressed data directly

because the codes keep changing. Given the goal of efficiently querying compressed

documents without decompression, only a context-free compression scheme is permit-

ted here. Context-free compression code encodes data independent of their position

in the document. This feature allows searching without decompression; the keywords

to be searched can be coded by the same code and then looked up in the compressed

data. The authors implemented (non-adaptive) Huffman code in XGrind. As dis-

cussed in Section 2.2.1, Huffman code is one of the context-free compression codes.

To provide statistical information for Huffman code, a two-pass process is used in

XGrind: the first to collect statistics and the second to do the actual coding.

XGrind has another novel feature to enable direct querying. Although it distin-

guishes structure from data, XGrind keeps the document structure. It uses different

schemes to encode structure and content data. The structure is encoded in the similar

way as in XMill. Each element tag and attribute name is assigned a unique element-

ID and attribute-ID, and the data items are also grouped on the semantics as in

XMill. Each data group has its own distribution table and is encoded individually.

However, the data in one group is not encoded continually, but on the granularity

of individual data item. Moreover, they are not stored together in the output, but

still left in the their original positions. The output of the compressed XML data

30

remains the structure of original XML document. In fact, the compressed document

can be viewed as the original one with tags and content values replaced by their cor-

responding encodings. That is why we say XGrind follows the principle of separating

structure from data while maintaining document structure at the same time.

With the above scheme, queries can be executed over the compressed document

without decompressing it. Exact-match (the search key is a specific data value) and

prefix-match (the search key is a prefix of a data value) queries can be completely

carried out directly on the compressed document, while range (the search key covers

a range of data values) and partial-match (the search key is a substring of the data

values) queries require on-the-fly decompression of only the element/attribute values

that are part of the query predicates.

Unfortunately, the compression ratio of XGrind is not as good as XMill’s. It only

reaches two thirds of the latter’s.

Chapter 3

XComp Compression

In this chapter, we introduce our XML compressor: XComp. First we present the

principles, on which XComp is built, namely separating structure from data and

grouping data based on semantics. Then we discuss the architecture of XComp. At

last we describe how it work by giving an compression example in detail.

3.1 XComp Compression Model

In this section we present how XComp compresses an XML document. XComp follows

two principles, similar to XMill and XGrind that are discussed in Chapter 2: (1)

separating document structure from data, and (2) grouping content data based on

semantics.

3.1.1 XML Document Structure

An XML document basically consists of elements in a nested structure, which can

be easily represented as a tree or directed graph. There are other special markups,

such as DTD and CDATA Section, also playing important roles in XML. The choice

of the data model to explain and process XML documents depends on the needs

31

32

of different applications. There are standard XML data models developed by W3C

that represent documents as trees: XML Information Set [26], XPath 1.0 data model

[23], DOM [28], XQuery 1.0 and XPath 2.0 data model [27]. Underneath surface

similarities in modeling documents as trees, they differ on the details to cater different

needs [15]. Instead of using one of those, we have chosen to use a simplified model

for the following reason. In XML compression, we need to preserve all the semantic

information so that all markups and their content are important to the compressor.

However, we do not care about the actual content or meaning of the special markups.

Therefore XComp uses a simplified model to process special markups — most are not

parsed but stored as a whole. The details of our model are explained in the remainder

of this section.

In XComp, tags, attributes and data items are the three kinds of basic compo-

nent. We have introduced tags and data items in Section 1.1. Another special tag

is empty-tag. An element may not contain any nested elements and data items, e.g.

<number></number>. Such an element has an equivalent expression as <number />,

which we call the empty-tag.

Attributes always appear in name-value pairs connected by “=”, i.e. ID="IS9095"

in Example 1.1, where ID is the attribute name and “IS9095” is the attribute value.

Attribute can only exist in start-tags or empty-tags which may have more that one

attribute. In XComp the attribute value is also treated as a data item of an attribute.

In addition to elements and attributes, there are special markups: XML Decla-

ration, Document Type Declaration (DTD), Processing Instruction (PI), Comment,

and CDATA Section. XML Declaration and DTD appear at most once and only at

the beginning of an XML document. PI, Comment and CDATA may occur anywhere

33

data contents may occur. The formal definitions can be found in [24]. Since these

markups usually occupy a small part of XML documents, we do not pay too much

attention to their semantics. XComp directly extracts the contents of these markups

and stores them in respective containers, each of which is memory space containing

related data that will be compressed together. For example, we define PI as

PI ::= ‘<?’ %string without ?% ‘?>’

So XComp treats the following PI as the string between the delimiters <? and ?>.

<?xml-stylesheet href="mystyle.css" type="text/css" ?>

XComp does not parse the string “xml-stylesheet href="mystyle.css" type=

"text/css" ”, but stores it as a whole data item in the PI container. Moreover, for

some special markups that have similar structure, we use a unified definition. For

example, XML Declaration begins with <?xml and ends with ?>. We also treat it as

a special case of PI; the string “xml” after <? is taken as part of the data item string.

The XML document definition used in XComp is given in Appendix A. It simplifies

the definitions of these special markups, but keeps the accurate definitions of element

and attribute as in [24].

An XML document has a hierarchical (tree) structure which is comprised of ele-

ment and attribute nodes. One element may contain several attributes and/or several

child elements. While an element may have several children, an attribute must be

a leaf node. In Example 1.1, element Person has one attribute, ID, and three child

elements: FirstName, LastName and Address. Every element except Person and

every attribute have a data item associated with it. The tree structure of this file is

depicted in Figure 3.1.

34

Person

LastName

FirstName

Address

Element Node

Attribute Node

ID

Figure 3.1: The XML Document Tree

3.1.2 Separating Structure From Data

The structure refers to the document structure that is composed of the markups,

and data refers to the data items of these markups. In Example 1.1, “Robertson” is

the data item of element FirstName, and “IS9095” is the data item of attribute ID.

For special markups, the string values between their delimiters are their data items.

Separating structure from data permits us to use different schemes to process them to

improve compression. In XComp, we extract the document structure from the data,

and use a sequence of integers to record the markups and data items’ positions. The

data are re-organized to compress related data together. This is discussed further in

the next section. The structure is encoded as a concise representation of a hierarchy.

XComp encodes the structure by assigning non-negative integers to tags, at-

tributes and data items (with 1, 2 or 4 bytes, see Section 3.4). Each distinct tag or

attribute is assigned a positive sequence id. The sequence ids begin at 10, since the

integers before 10 are reserved for special markups and other notations (see Table 3.1).

In Example 1.1, we have idPerson = 10, idID = 11, idFirstName = 12, idLastName = 13

and idAddress = 14. In addition, code 0 is used to indicate the end-tags and 1 is used

35

to indicate the positions of data items. The encoded structure of the example XML

file is 10, 11, 12, 1, 0, 13, 1, 0, 14, 1, 0, 0. Note that there is no 1 directly after 11,

because 11 represents an attribute that can only have one data item. Thus the code

1 for attribute values can be saved.

Here we only record the positions of data items, whose values will be grouped and

stored in other places. In order to segment them so that they can be laid continuously,

we use a set of integers to indicate their lengths. In Example 1.1, the lengths are 6,

5, 9, 19 for data items “IS9095”, “Wally”, “Robertson”, “200 University Ave.”. In

this case, we use 12 + 4 = 16 bytes to represent the document structure and data

lengths. There is another scheme where we replace 1’s with the length values in 10,

11, 12, 1, 0, 13, 1, 0, 14, 1, 0, 0 so that we can save 3 bytes.1 We do not use this

scheme because the former one works with LZ algorithm better. In practice, most

XML documents are regular; repeated structure usually appears in XML documents.

Consider an XML document containing a large collection of personal information as

the record in Example 1.1. If all Person elements have the same structure, the whole

structure representation will consist of a large number of repeated sequences such as

the following:

10, 11, 12, 1, 0, 13, 1, 0, 14, 1, 0, 0,

10, 11, 12, 1, 0, 13, 1, 0, 14, 1, 0, 0, ...

¿From Section 2.2.2, we know that LZ77, the core algorithm of zlib library, is

good at compressing such repeated data. For example, an experimental document

having 512 Person elements has a structure sequence with length 12 × 512 = 6144

bytes, which zlib compresses it to only 39 bytes! Good compression is still obtained

even when the structure has small variations, e.g. some persons may have a middle

1Note we have three 1’s and four length values.

36

name. However if the length values of data items are inserted into the structure

representation, the repetition characteristic is corrupted. Therefore XComp uses two

containers: the structure container and the data length container for the structure

sequence and the length sequence, respectively.

Up to this point, we ignored all whitespace characters in our encoding, since all

of these characters that are not in data items may be removed without influencing

the information contained in the XML documents. Optionally, XComp provides an-

other extended encoding scheme that preserves whitespace characters. This encoding

scheme guarantees the recovery of the exact version of the original document. 4 is

used to indicate the positions of whitespace characters and their lengths are stored in

the length sequence as data item lengths as well. In order to express the whitespace

within the tags, we also add 2 to indicate ‘=’ and 3 to indicate ‘>’ of a start-tag.

(We do not assign any code for ‘<’, because ‘<’ always appears at the beginning of

start-tags or end-tags and no whitespace is allowed between it and tag name.) All of

the codes defined in XComp structure representation are showed in Table 3.1.

Code Meaning
0 End tag
1 Data item position
2 ‘=’ position (used only when preserve whitespace)
3 ‘>’ position (used only when preserve whitespace)
4 Whitespace position (used only when preserve whitespace)
5 The position of any characters before XML Declaration
6 PI
7 DTD
8 Comment
9 CDATA section

Table 3.1: XComp Structure Representation Codes

37

To show how to encode whitespace characters, let us consider the case in Example

3.1:

<C></C>

abcd

<C/>

xyz

Example 3.1: An XML Segment

In this example, element A has two empty child elements, one of which has a

start-tag and an end-tag while the other has an empty-tag. It also has two data

items: abcd and xyz. Note that there are whitespaces within and outside of tags. Its

structure representation is 10, 4, 11, 4, 2, 4, 1, 4, 3, 4, 12, 3, 0, 4, 1, 4, 12, 0, 4, 1,

4, 0. Each 4 represents a piece of whitespace. For example, the first 4 represents the

whitespace between <A and B while the last 4 represents the one between xyz and

 (the return character). We also need to record their length values. The length

sequence is 2, 1, 1, 6, 2, 5, 5, 4, 5, 5, 3, 1, where each integer represents a whitespace

length or data item length. To make it clear, we show these two sequences together:

10, 4(2), 11, 4(1), 2, 4(1), 1(6), 4(2), 3, 4(5), 12, 3, 0, 4(5), 1(4), 4(5), 12, 0, 4(5), 1(3), 4(1),

0, where every 1 and 4 has a subscript indicting its length. This representation is

different from the one that does not preserve whitespace in four aspects:

1. It uses 4’s to indicate the positions of whitespace.

2. It uses 2’s to indicate the positions of ‘=’, so that it is possible to partition the

whitespace before and after ‘=’.

38

3. It uses 1’s to indicate not only the positions of data items, but also the ones

of attribute values, while in no whitespace representation attribute values’ po-

sitions are implied by attribute ids. This allows partitioning the whitespace

before and after the attribute value.

4. It uses 3’s to indicate the positions of ‘>’ of a start-tag, so that it is possible

to partition the whitespace within and between tags, e.g. the fourth and the

fifth whitespaces in Example 3.1. Moreover, now we can distinguish empty-tags

from pairs of start-tag and end-tag that have no content between them. A pair

of start-tag and end-tag always has this representation: id, ..., 3 (indicating the

>), ..., 0 (indicating the end-tag) while an empty-tag’s representation is id, ...,

0. For example, representation of <C></C> is 12, 3, 0, while the presentation of

<C/> is 12, 0.

3.1.3 Grouping Data

Grouping data based on the semantics is the second principle we follow in XComp. We

exploit self-descriptiveness of XML documents to group data content. It is observed

in common XML documents that tag and attribute names usually indicate the type

of data they contain. For example, <telephone> elements usually contain telephone

number and <postcode> elements typically contain postal codes. The data items

with the same tag or attribute name usually have a semantic relationship between

them. We expect them to have similar characteristics and they can be compressed

better if they are put together. In XMill, they share one container. For example,

all <name> data items form one container, while all <year> data items form another

container.

39

However, sometimes a tag or attribute name may have different meanings in dif-

ferent contexts. In Example 1.2, there are three kinds of attribute IDs: the invoice id,

the customer id, and the product id, and two kinds of element names: the customer

name and the product name. The three kinds of ids may be generated by different

rules so that they have different formats and domains; customer name and product

name also have different semantics. So, it is better to compress them separately. In

XComp, the data item grouping is based not only on the tag/attribute names, but

also on their levels in the document tree and their types. Data items are put in the

same container only when their tags/attributes have the same name, and are at the

same level, and are of the same node type (tag or attribute). In Example 1.2, ID has

three containers and name has two containers, while other tags and attributes have

only one container. If one name appears as both tag and attribute name and at the

same level, as new in the XML document of Example 3.2, we use different containers

since they have different node types.

<p new="true">

<new>It’s a new one.</new>

</p>

Example 3.2: A Name Appears Both As Tag and Attribute

3.2 System Architecture

The architecture of XComp compressor is shown in Figure 3.2. It has four major mod-

ules: the XML Parser, the Dictionary Manager, the Containers and the Compression

Engine. This architecture follows a parsing-compressing order: an XML document

is parsed first, then its structure and data are compressed individually. The data in

40

Structure Data Length Container 1 Container n…Dictionary

Parser

XML

document

Compression Engine

Compressed

XML document

Main Memory

Handlers

Dictionary Manager

Figure 3.2: The Architecture of XComp Compressor

an XML document go through these four modules in sequence as shown in Figure

3.2. First they are sent to the parser. The parser decomposes the document into

XML components like start-tags, end-tags, and data items. As soon as it parses one

component, it calls a handler function of the dictionary manager to deal with it. The

dictionary manager has a set of handlers, each of which is responsible for handling

one kind of component. The handler interfaces are presented in Appendix B.

The structure encoding and data grouping are done by the dictionary manager. It

writes structure sequence, data length sequence, and data items to their containers,

41

respectively. The dictionary manager also has a dictionary table, in which distinct

tag/attribute names and the relationships between them and containers are main-

tained. We call these tag/attribute names words.

As indicated before, a container is an individual memory space that contains

related data. Its size can be increased when its space is full. However, the total size

of all the containers can not exceed the size of memory window. There are four kinds

of containers:

1. Structure Container: The structure container holds the structure sequence.

Integers are stored in binary format with 1, 2 or 4 bytes.

2. Data Length Container: The data length container contains the data length

sequence. It stores the integers in the same way as structure container.

3. Dictionary Container: The dictionary container stores the tag and attribute

name values. To delimit these string values, each string is preceded by an integer

indicating its length. The integers are formatted as in structure and data length

containers.

4. Data Containers: Data containers contain the related data items based on

the tag/attribute name and its type and its level. Every distinct tag/attribute

name has its own container, in which data items are stored contiguously as

strings. Unlike dictionary container, we do not need length values of these

strings since they are already stored in data length container. Besides the

general data containers for element content and attribute values, XComp also

has some special containers for whitespace, PI, DTD, comment, CDATA section

42

and PreText. The last one contains the document control characters before the

text in an XML document.

When a document is all parsed or the memory window is full, all containers are sent

to the compression engine. In the latter case, the parser and dictionary manager stop

their work until all the data in the containers are compressed and sent to the output.

There are two optional compression engines in XComp: zlib and Huffman code. Both

compress containers one-by-one and stream the result as output. As discussed in

Chapter 2, Huffman code compression needs a priori statistical information about the

document. The collection of the information is done by the parser when the Huffman

code engine option is chosen. Each container has its own alphabet frequency table

since they are compressed individually.

The decompression process is the reverse of the compression process. The archi-

tecture of XComp decompressor is shown in Figure 3.3. Compared to the compressor,

the decompressor has an XML writer instead of the XML parser and no dictionary

manager. The compressed data are first decompressed and stored in the contain-

ers. The XML writer reads the structure sequence from the structure container and

translates it into XML tokens. When it needs a data item value, the XML writer

retrieves the string value from the corresponding data container. Furthermore the

decompressed XML document is written to the output in a streaming fashion.

¿From next section, we present XComp compression by showing how each XComp

module works over Example 1.2. For case of reading, we repeat the example here:

<?xml version="1.0" encoding="utf-8" ?>

<Invoice ID="ST87302" date="2003-03-17" paid="true" >

<Customer ID="2376">

43

Structure Data Length Container 1 Container n…Dictionary

Compression Engine

XML

document

XML Writer

Compressed

XML document

Main Memory

Figure 3.3: The Architecture of XComp Decompressor

<Name>

<FirstName>Wally</FirstName>

<LastName>Robertson</LastName>

</Name>

<BillingAddress>

<Street>200 University Ave.</Street>

<City>Waterloo</City>

<Province>ON</Province>

</BillingAddress>

</Customer>

<ProductList>

44

<Product ID="HI0941" >

<name>MP3 Player</name>

<Price>139.99</Price>

<Units>2</Units>

</Product>

<Product ID="XP6015" >

<name>CD Writer</name>

<Price>79.99</Price>

<Units>4</Units>

</Product>

</ProductList>

</Invoice>

3.3 Parser

The compression process begins by the XML parser. We use a SAX [14] parser for

XComp. Unlike a DOM parser [28], a SAX parser does not load the whole document

into main memory to process it. It reads through the XML document and reports

some events depending on the tags encountered. The event-driven processing feature

is what we need for XComp, which should compress the XML document in a streaming

fashion. Meeting (the end of) any XML token incurs an event given by a SAX parser.

The events defined in SAX include startDocuemnt, endDocument, startTag, endTag,

contentData and so on. They occur in the order of their positions in the XML

document.

A SAX parser will break down the example XML document into a series of linear

events as

startDocument

XMLDeclaration

startTag: Invoice

45

Attribute:ID

AttValue: ST87302

Attribute:date

AttValue: 2003-03-17

...

endTag: Invoice

endDocument

To process these events, we must implement the handlers that act on specific

events. For XComp compressor, these actions include encoding XML structure and

grouping data items. As SAX is aimed at general purpose XML parsers, it defines

a set of comprehensive events that are not all required by XComp. For example,

SAX parsers report some DTD events while parsing a DTD. XComp does not need

to understand DTD and treats the content of a DTD as a string. Therefore some

SAX events are not needed in XComp. To save processing time and simplify our

implementation, we built a light-weight SAX parser for XComp. It only has a subset

of SAX specification (see Appendix B). Furthermore, some interface definitions are

sightly different from standard SAX for our specific use in XComp.

The parser works in the following manner. It reads an XML document as a

stream of characters. The input data are first loaded into an internal buffer. The

parser searches XML delimiters, such as “<”, “>”, “<?” and “?>”, in this buffer

to locate the positions of markups. For example, when “<!--” is read, it means

the beginning of an XML comment according to the XML document definition (see

Appendix A). Then the parser searches “-->”, which is the end of comment, in the

rest of the buffer. When “-->” is found, there is a comment event. Then the parser

calls the handler function handlerComment() to deal with this event. It passes the

information of the beginning position of the comment string and its length between

“<!--” and “-->” to the handler by the function parameters (see Appendix B). In

46

our simplified definition of XML, most special markups are simply processed in this

way. Elements are more complex because an element may have not only attribute

name-value pairs and data items, but also nested elements and other special markups.

The parser processes elements in a recursive way. The algorithm of parsing elements

is given in Algorithm 3.1.

Algorithm 3.1: Element Parsing Algorithm

1: find the position of “<”
2: find the end of tag name
3: report a startTag event
4: while there is an attribute pair do

5: find the end of attribute name
6: issue an attribute event and call corresponding handler
7: skip “=”
8: find a “’” or “"”
9: find the end of attribute value by meeting the corresponding “’” or “"”
10: issue an attVAlue event and call corresponding handler
11: end while

12: if the next non-whitespace char = “/” then

13: issue an endOfEmtpyElement event and call corresponding handler
14: else if the next non-whitespace char = “>” then

15: skip “>” {It’s the end of a start tag.}
16: while the next two non-whitespace chars 6= “</” do

17: {It’s the beginning of a new markup.}
18: if the next non-whitespace char = “<” then

19: if the char after “<” = “?” then

20: find “?>”
21: issue a PI event and call corresponding handler
22: else if the char after “<” = “!” then

23: if the char after “!” = “-” then

24: find “-->”
25: issue a Comment event and call corresponding handler
26: else if the char after “!” = “[” then

27: skip “CDATA[”
28: find “]]>”
29: issue a CDSect event and call corresponding handler
30: end if

31: else

47

32: recursively call this algorithm to parse a nested element
33: end if

34: else

35: find the end of the data item
36: issue contentData event and call corresponding handler
37: end if

38: end while

39: skip “</”
40: find the end of tag name
41: issue an endElement event corresponding handler

42: end if

The parser is also responsible for collecting data statistics for Huffman code com-

pression. As mentioned in Section 3.1, each container has one frequency table, which

is a 256-ary integer array. The ith integer indicates the number of characters with

binary code i. Upon receiving startTag and attributeName events, the handlers must

return the array associated with the container of the element or attribute to the

parser. While the parser scans the data items of the element or attribute to find their

ends, it counts the character occurrences at the same time. For example, in Example

1.2, “Wally” is the first data item of FirstName. Before the parser reads it, all entries

of FirstName’s container’s frequency table are 0. When “Wally” is scanned, value of

entries 87 (ASCII code of “W”), 97 (“a”), 121 (“y”) become 1 while entry 108 (“l”)

becomes 2. This design avoids the two-pass loading of Huffman code; the frequency

counting is done while parsing.

3.4 Containers

The containers are the basic units for grouping XML data. All containers are kept

in main memory. While compressing, we use a memory window to limit the memory

space usage — the total size of containers can not exceed the memory window size.

48

When the limit is reached, the content of all containers will be compressed and sent

to the output. After that, the parsing process will resume. As the number and sizes

of containers needed for a document are not known beforehand, it is not possible to

assign some memory blocks with given sizes to containers. In XComp, the container

sizes increase with the parsed data volume. Because the cost of adjusting memory

block size is high, we do not use a single memory block for one container. A container

consists of a series of memory blocks whose sizes comply with memory size incremental

function (Formula 3.4.1). The rules of the incremental function include the following:

1. The first memory block size is small for some containers that may have very

few data. If we assign a large initial block to containers, there is likely to be

some waste.

2. The block size should increase exponentially rather than in linearly. As the first

block is small, we want the size to increase fast. The cost to allocate 256 1KB

blocks is higher than the cost of allocating one 256KB block.

3. There must be a maximum limit for the block size, since as the total size becomes

large, (i.e. 1 MB), the allocation cost again increases. This is due to the need

for reorganizing its memory fragments to get a large one.

4. To avoid wasting memory space, the block size begins to decrease when the

total size of containers approaches the memory window size.

The incremental function is as follows,

49

Sn =

min(Smax, Sn−1 ∗Rincreae)
∑

containers sizes<90% of memory window size,

max(Smin, Sn−1/Rdecrease) otherwise.

(3.4.1)

where Si is the ith block size, Smax and Smin are the maximum and minimum block

sizes, Rincrease is the block size increase ratio and Rdecrease is the block size decrease

ratio.

When the memory window is full, the data in the containers are compressed.

However XComp does not release the memory blocks back to the system, but collects

them in a memory store that groups these blocks based on their sizes. In the next

run of filling the containers, these blocks are reused to save memory allocation time.

Therefore, the memory space is allocated only once.

The compressor and decompressor both have the containers module and manage

their memory usage in the same way.

All data items are stored as strings in the containers, but for structure and data

length and dictionary structure, we also need to store integers. All these integers

are non-negative. We use 1, 2 or 4 bytes to encode integers in XComp. The first

byte’s value indicates the length of this integer. The codes between 0 and F3 (in

hexadecimal) are reserved for one-byte integers, while the codes between F4 and FD

are reserved for two-byte integers and FE and FF are for four-byte integers. The

integer values and their code space are described in Table 3.2.

This coding can accommodate integers no larger than 33557235, which is the

largest sequence id and data item length allowed in XComp. In practice, most ids

and lengths use only one byte.

50

Value Code Space in Hex
0 - 243 00-F3
244 -2803 F400 - FDFF
2804 - 33557235 FE000000- FF000000

Table 3.2: Integers Coding

3.5 Dictionary Manager

The dictionary manager is responsible for encoding structure and distributing data

items. As indicated earlier, it contains the event handler routines and the management

of the dictionary table.

3.5.1 Handler Algorithms

Event handling is given in Algorithm 3.2.

Algorithm 3.2: Handler Algorithm

1: initialize dictionary table
2: while not end of the input file do

3: switch event type
4: case: meet a whitespace event
5: if preserve whitespace then

6: write 4 to structure container
7: write length of whitespace to data length container
8: write string value of whitespace container
9: end if

10: case: meet a preText event
11: write 5 to structure container
12: write length of preText to data length container
13: write string value of preText data container
14: case: meet a PI event
15: write 6 to structure container
16: write length of PI to data length container
17: write string value of PI data container
18: case: meet a DTD event

51

19: write 7 to structure container
20: write length of DTD to data length container
21: write string value of DTD data container
22: case: meet a Comment event
23: write 8 to structure container
24: write length of Comment to data length container
25: write string value of Comment data container
26: case: meet a CDADA Section event
27: write 9 to structure container
28: write length of CDADA Section to data length container
29: write string value of CDADA Section container
30: case: meet a startTag event
31: call getWord() routine of dictionary manager to get the word and its data con-

tainer of this tag {see Algorithm 3.3}
32: push the container into the container stack
33: write the word id to structure container
34: if use Huffman code then

35: return the frequency table of the data container of this tag
36: end if

37: case: meet an endTag event
38: pop the top container off the container stack
39: write 0 to structure container
40: case: meet an endOfEmptyElement event
41: pop the top container off the container stack
42: write 0 to structure container
43: case: meet an attributeName event
44: call getWord() routine of dictionary manager to get the word and its data con-

tainer of this attribute
45: push the container into the container stack
46: write the word id to structure container
47: if use Huffman code then

48: return the frequency table of the data container of this tag
49: end if

50: case: meet an attributeValue event
51: if preserve whitespace then

52: write 1 to structure container
53: end if

54: write length of attribute value to the data length container
55: write the attribute value to the top container of the container stack
56: pop the top container off the container stack
57: case: meet a contentData event
58: write 1 to structure container
59: write length of the data item to the data length container

52

60: write value of the data item to the top container of the container stack
61: case: meet a ‘=’ event
62: if preserve whitespace then

63: write 2 to structure container
64: end if

65: case: meet a ‘>’ event
66: if preserve whitespace then

67: write 3 to structure container
68: end if

69: end switch

70: end while

71: call compress() routine to compress data in all containers

Let us consider how the algorithm is applied over Example 1.2. We assume that

whitespace is preserved. The first event given by the parser is a PI event (recall that

we treat XML Declaration as PI). Now XComp needs to record the PI in structure

sequence and write its value to the PI container. Note that we already have special

data containers for whitespace, PI, Comment and so on which are all initially empty.

We do not have other containers since we do not know what tag/attribute we will meet

later. The handler is called to write 6, the id of PI, to the structure container and write

35 to the data length container and write “xml version="1.0" encoding="utf-8"

” to structure container (lines 14, 15, 16 of the algorithm).

Then the parser reads the whitespace between ?> and <Invoice, and issues a

whitespace event. The handler is called to write 4 to the structure container and 2

to the data length container and the whitespace characters to whitespace container

as lines 5, 6, 7 of the algorithm.

When <Invoice is read, the parser issues the first startTag event. The handler

calls getWord() to look up the tag name Invoice in the dictionary table. Since now

there is no entry in this table, dictionary manager will construct a new one with id

10 and a new data container for Invoice. We will show the dictionary algorithm

53

later (Algorithm 3.3) and discuss it with dictionary table. The handler writes the id

to structure container and push the data container to container stack. If Huffman

code is used, the frequency table of this container is returned to the parser to collect

statistical information of the data items of this container. The container stack keeps

the data containers of all nodes on the path from root to the current node. The top

element is the container of the current node. When the dictionary manager meets a

start-tag, its container will be pushed onto this stack for future retrieval when the

dictionary manager has its data items. Similarly, when an end-tag is met, the stack

is popped since now the current node is the parent element node in the document

tree. Then the compressor processes the next whitespace after Invoice.

By now, the containers have their contents as in Table 3.3, and there is one element

in the stack as in Table 3.4. The whitespace is not shown since it holds all whitespace

characters.

Container Content
structure 6, 4, 10, 4
data length 35, 2, 1
PI xml version=”1.0” encoding=”utf-8”
Invoice

Table 3.3: Containers’ Contents (1)

Invoice

Table 3.4: Container Stack (1)

The parser meets the attribute ID and issues an attribute event. It is assigned id

11, a word entry in the dictionary table, and a container. The container is pushed

54

onto the stack and 11 is written to the structure container. Furthermore, the fre-

quency table is returned to the parser. ‘=’ is read and 2 is written to the structure

container. Then the parser issues an attValue event when it meets the attribute value

“ST87302”. The handler writes 1 to the structure container and 7 to the data length

container and inserts the string value into the container at the stack top. Now we

need to pop the stack since the current attribute pair is processed (line 55). The at-

tribute pair contributed 11, 2, 1 to the structure sequence. Similarly, the compressor

processes the rest of the whitespace and attribute pairs in this start tag until it meets

‘>’, for which it writes 3 to the structure container. But the container stack is not

popped, because we just meet the end of a start tag, not an end tag. Now we have

four words, Invoice, ID, date and paid, each of which has a data container. The

contents of these containers are shown in Table 3.5. The stack content is the same as

in Table 3.4.

Container Content Container Content
structure 6, 4, 10, 4, 11, 2, 1, 4,

12, 2, 4, 1, 13, 2, 1, 4,
3

ID ST87302

data length 35, 2, 1, 7, 1, 10, 1, 4,
1

date 2003-03-17

PI xml version=”1.0”
encoding=”utf-8”

paid true

Invoice

Table 3.5: Containers’ Contents (2)

The compressor continues to process the nested element Customer where we meet

attribute ID again. The dictionary manager finds the word ID in its table, but does

not return the existing container of ID. The existing container belongs to attribute ID

55

at level 2, while now we meet ID at level 3. The dictionary manager will also return a

new container that is associated with ID. So we will have two containers for word ID,

which have contents “ST87302” and “2376”, respectively. Now the container stack

is as shown in Table 3.6

ID (at document level 3)
Customer
Invoice

Table 3.6: Container Stack (2)

When the compressor reads the ID in <Product ID="HI0941"> where the ID

appears at level 4. Hence, a third container will be assigned to ID.

So far we described how the dictionary manager processes events to construct

structure sequence and data containers. We do not describe the rest of the progress,

since it reiterates some of the work we already described before. When the end of the

XML document is reached or the memory window is full, the routine compress() is

called to compress the containers one-by-one. This is done by the compression engine.

3.5.2 Dictionary Table

The dictionary manager module contains a collection of words, each of which is a

distinct tag or attribute name. Therefore actually this collection is the vocabulary

of the XML document. Each word is assigned a unique id. For Example 1.2, when

the whole document has been processed, the structure of the dictionary looks like a

2-field table as shown in Table 3.7.

It is easy to implement this dictionary as an array. However, the compressor’s

working pattern requires that the dictionary data structure can easily grow and can be

56

10 Invoice
11 ID
12 date
13 paid
14 Customer
15 Name
16 FirstName
17 LastName
18 BillingAddress
19 Street
20 City
21 Province
22 ProductList
23 Product
24 Price
25 Units

Table 3.7: An Example of Dictionary Table

looked up very fast. While parsing, the compressor does not know the exact number

of words. The words should be inserted to the dictionary one-by-one. Moreover,

compared with insertion, search operation is more frequent; each time the parser

meets a tag or attribute, its name should be searched in the dictionary. For example,

parsing a 10MB XML document may need to insert tens of words and search for

more than hundreds of thousands times. For these requirements, we use a hash table

for the dictionary. The hash table has 256 entries, each of which points to a link of

words. A hash function maps the word’s string value to a one-byte integer. We use a

hash table, because the cost of comparing string values is expensive. Grouping them

by their hash values will narrow the search range. In a link, all words are sorted by

their string values. We expect one entry in the hash table to contain no more than

10 words. Figure 3.4 displays a part dictionary data structure of Example 1.2.

57

Name15 Product23

date12

ID11 Product23 Street19

Hash Table Link of words

Figure 3.4: A Dictionary Data Structure

7Invoice2ID4date4paid…

11 3

4

2376...
2 ST87302...

HI0941XP...

Dictionary
Container

ID
String
Value

Next
Word

Levels Data Item
Containers

Figure 3.5: A Word Data Structure

58

Figure 3.5 shows the internal structure of the node ID in Figure 3.4. For simplicity,

we directly place the word’s value in the node. Actually, the string values of words are

not stored in words themselves, but in the dictionary container. A word only contains

a pointer that points to the string value in that container. The dictionary container

is also shown in Figure 3.5. Each string is proceeded by an integer that indicates the

length of this string. As indicated earlier, one word might be associated with several

data containers, since it appeared in different levels or as different node types. The

word structure includes two arrays: one is the array of level numbers and the other is

the array of pointers pointing to the data item containers. The level number is also

used to indicate the node type: the first bit is used for that purpose and the rest is

the actual value of level.

Algorithm 3.3 shows the algorithm of getWord().

Algorithm 3.3: getWord() Algorithm

1: compute the hash value for the string
2: get the entry of the hash value in the hash table
3: while the current word string value is greater than this string value do

4: move to the next element in the link
5: end while

6: if the current word string value equals this string value then

7: {We found the word.}
8: if this string’s level and node type does not accord with anyone in the level array

then

9: construct a new container {Need a new container.}
10: add one element to the level array
11: end if

12: else

13: {No such word.}
14: construct a new word
15: construct a new container
16: add one element to the level array
17: write the string length to word container
18: write the string value to word container

59

19: end if

20: return the word and the corresponding container

3.6 Compression Engine

Two optional compression Engines, zlib and Huffman code, are used in XComp.

The engines first compresses the structure and data length and dictionary container.

Then the data containers are compressed in the order of the sequence ids of tags

and attributes they belong to. The decompressor decompresses them in the same

order. While the zlib is a ready-made tool, the Huffman code engine was written

by ourselves. For each container, the engine constructs a Huffman tree for it. This

Huffman tree is also written to the output to let the decompressor know the codes.

Chapter 4

Experimental Evaluation

In this chapter, we present the results of our experiments that compare XComp with

XMill, XGrind and zlib. First we introduce the experimental framework, including

the setup and the methodology. Then we discuss the experiments that we conducted

to determine the optimal parameters for XComp. The comparison results with others

are presented finally.

4.1 Experimental Framework

4.1.1 Methodology

As indicated in Chapter 1, we use two metrics in our evaluation of the efficiency of

XML compression tools: the compression ratio and the compression time.

• Compression Ratio: We express the compression ratio as the ratio of the

size of the compressed document to the original document. For example, if a

10MB file can be compressed to 2.5MB, the compression ratio is 25%. Lower

compression ratios are, obviously, better.

• Compression Time: Compression time represents the elapsed time during

compression, expressed as the time from the start of program execution on a

60

61

document until all the data are written to disk. We do not separate CPU and

I/O times. For this reason, the compression ratio can influence compression

time. A lower compression ratio always means fewer output, thus lower com-

pression time.

Of these two metrics, the compression ratio is the easier one to measure. For

the same XML document, an algorithm always produces the same compression ratio

value if we don’t change its parameters. It won’t be influenced by the status of the

computer on which the programs run. But the compression time is not stable. The

major factor that causes variations in compression time is the effect of operating

system buffer, since the amount of the document that is in the buffer is in reversely

proportional to the time needed to load the document. The first 2-3 runs usually

have high variance. So in our experiments each experiment was run 8 times. Ignoring

the 2 slowest ones and the fastest one, we use the average time of the remaining 5

runs as the result value.

4.1.2 Classes of Experiments

There are two classes of experiments that we conducted to evaluate XComp. One

is compressing documents locally, where the compression programs read the XML

documents from hard disk, compress them and write the compressed document back

to hard disk. In these experiments, compression ratio and compression time were

both measured.

The second class of experiments is the Internet transmission experiments. We

wrote a client and a server program to do the data transmission. The transmission

62

programs run between the compressors and the decompressors, which run on geo-

graphically distributed computers. The client establishes a TCP connection with the

server, receives compressed data from the compressor and sends them to the server,

while the server sends data to the decompressor. The aim of these experiments is to

see how the compression tools can speed up XML data transmission.

4.1.3 Platform

The local compression experiments were all conducted on a P4, 1.5GHz machine

running Windows 2000 Professional, with 256MB memory. While performing Internet

transmission experiments, in addition to this machine at the University of Waterloo,

another machine located at the University of Alberta running Unix was also used.

We transferred data over TCP protocol for which we measured an average transfer

rate of 408 KB/s.

4.1.4 Data Source

We evaluate XComp on XBench [29], which is a family of benchmarks that captures

different XML application characteristics. The databases it generates have data-

centric and text-centric models that cater for the needs of different applications.

Data-centric (DC) model contains data that are not originally stored in XML format,

i.e. e-commerce catalog data and transactional data. Text-centric (TC) model’s

data (e.g. news article archives) are text data which are more likely stored as XML.

XBench also categorizes its database models as single document (SD) and multiple

document (MD). SD model has only one complex XML document while MD model is

composed of a set of XML documents. The two kinds of classifications are combined

to generate four cases: TC/SD, DC/SD, TC/MD, DC/MD. As XComp works on a

63

single XML document, we only use TC/SD and DC/SD cases in our experiments.

XBench can generate databases with 4 kinds of database sizes: small (10MB),

normal (100MB) and large (1GB) and huge (10GB). We use the first 3 sizes in our

experiments for compressing; the last one is too time consuming (i.e. 45 minutes for

compression).

XBench provides XML documents with different application characteristics and

different sizes that are suitable for us to comprehensively evaluate XComp’s perfor-

mance on large documents. But we also need to test its performance over small docu-

ments, which are from several KB to 1MB. Therefore we also used several individual

XML documents used in XBench to generate XML databases. All the documents

used in the experiments are listed in Table 4.1.

Name Size Comment
provinces 2096Byte contains names of states of US and provinces of Canada
emails 4546Byte contains Web URLs
countriesDC 9555Byte contains some information about countries
lnames 194.612KB contains English names
words 347.479KB contains English words
titles 1426.053KB contains business titles
DC 10 10.298MB 10MB Data-centric database document
DC 100 103.469MB 100MB Data-centric database document
DC 1000 1033.689MB 1GB Data-centric database document
TC 10 10.467MB 10MB Text-centric database document
TC 100 103.097MB 100MB Text-centric database document
TC 1000 1038.891MB 1GB Text-centric database document

Table 4.1: XML Documents Used in the Experiments

64

4.1.5 Comparative Compression Tools

We compared XComp with three other compression tools: XMill, XGrind and Zlib,

which were introduced in Chapter 2. XMill and XGrind are both XML-specific com-

pression tools which are written in C/C++. Because XGrind’s source code is only

for Linux, we slightly modified it to enable it to run on Unix and Windows. For Zlib,

we used a small program, called minigzip, which comes with this library. Minigzip is

used to illustrate how to use the library. Therefore it only contains the core compres-

sion engine of Zlib without other unnecessary functions, i.e. complex user interface,

which will make our comparison less meaningful. All these programs were compiled

by VC++ 6.0 on Windows and by gcc 2.95.2 on Unix.

4.2 Parameter Tuning Experiments

Parameter tuning is the first step in our evaluation. The aim of these experiments

is to find the optimal parameters for XComp. We only used Zlib as the compression

engine in these experiments. There are four parameters, all of which concern memory

management.

• Memory Window Size (MWS): The parsed data are contained in a memory

window before being compressed. The entire window is compressed when it is

full. Therefore a bigger window means more data can be compressed at one

time, possibly leading to a better compression ratio. However memory space is

not unlimited and a big window may also cause XComp to run slowly. We need

to find a balance between these influences to achieve a good compression ratio

as well as short compression time.

65

• Minimal Block Size (MBS): As described in Chapter 3, when a container

is constructed, it owns an initial block whose size is set to MBS. When the

container requires a subsequent block, new one will be allocated from the system

whose size is determined by Formula 3.4.1 given in Chapter 3. If MBS is too

small to begin with, subsequent blocks will grow slowly and the system will

have to perform many memory allocations.

• Block Increase Ratio (BIR): BIR decides how fast the memory block size

increases. It has a close relationship with MBS. The problem here is again

finding a balance between memory allocation cost and memory waste.

• Input/Output Buffer Size (IBS/OBS): An input buffer contains the cur-

rent document content to be parsed. The parser works over this buffer. The

parsed data will be copied to the containers. The input buffer will be reloaded

when the current file pointer comes to its end. Similarly, when writing the

output, XComp also keeps an output buffer. IBS and OBS don’t influence

compression ratio, but they affect the compression time.

In Figures 4.1, 4.2, and 4.3 we show compression times and compression ratios of

XComp with different memory window sizes running on DC 10, TC 100, TC 10001.

For each data source, we used four sets of other parameter values while varying

MWS. Each line in the figures represents the experimental results of one set of these

parameters. We choose large documents as samples because MWS does not affect

compression performance when the compressed documents are smaller than memory

window.

1DC or TC indicates data-centric or text-centric, while the numeric values indicate database size
in MB.

66

DC_10

2.000

2.100

2.200

2.300

2.400

2.500

0.5 2 8 32

Memory Window Size(MB)

C
om

pr
es

si
on

 T
im

e(
se

co
nd

)

BIR=2, MBS=1, IBS/OBS=16

BIR=3, MBS=4, IBS/OBS=16

BIR=2, MBS=1, IBS/OBS=32
BIR=3, MBS=4, IBS/OBS=32

DC_10

0.130

0.135

0.140

0.145

0.150

0.155

0.5 2 8 32

Memory Window Size(MB)

C
om

pr
es

se
d

R
at

io

BIR=2, MBS=1, IBS/OBS=16

BIR=3, MBS=4, IBS/OBS=16

BIR=2, MBS=1, IBS/OBS=32

BIR=3, MBS=4, IBS/OBS=32

Figure 4.1: The Effects of Varying Memory Window Size (a)

TC_100

37.000

38.000

39.000

40.000

41.000

42.000

0.5 2 8 32

Memory Window Size(MB)

C
om

pr
es

s
Ti

m
e(

se
co

nd
)

BIR=2, MBS=1, IBS/OBS=16
BIR=3, MBS=4, IBS/OBS=16
BIR=2, MBS=1, IBS/OBS=32
BIR=3, MBS=4, IBS/OBS=32

TC_100

0.240

0.244

0.248

0.252

0.256

0.260

0.264

0.5 2 8 32

Memory Window Size(MB)

C
om

pr
es

se
d

R
at

io

BIR=2, MBS=1, IBS/OBS=16
BIR=3, MBS=4, IBS/OBS=16
BIR=2, MBS=1, IBS/OBS=32
BIR=3, MBS=4, IBS/OBS=32

Figure 4.2: The Effects of Varying Memory Window Size (b)

67

TC_1000

0.240

0.244

0.248

0.252

0.256

0.260

0.264

0.5 2 8 32

Memory Window Size(MB)

C
om

pr
es

se
d

R
at

io

BIR=2, MBS=1, IBS/OBS=16

BIR=3, MBS=4, IBS/OBS=16

BIR=2, MBS=1, IBS/OBS=32

BIR=3, MBS=4, IBS/OBS=32

TC_1000

400.000

450.000

500.000

550.000

600.000

650.000

700.000

0.5 2 8 32

Memory Window Size(MB)

C
om

pr
es

si
on

Ti

m
e(

se
co

nd
)

BIR=2, MBS=1, IBS/OBS=16

BIR=3, MBS=4, IBS/OBS=16

BIR=2, MBS=1, IBS/OBS=32

BIR=3, MBS=4, IBS/OBS=32

Figure 4.3: The Effects of Varying Memory Window Size (c)

The left charts show the change in compression time as MWS increases, while

the right charts show the change in compression ratio as MWS increases. In most

cases, there is an obvious trend that compression time increases and compression

ratio decreases when MWS increases. Nearly all of the curves follow this trend. That

means that MWS is independent of other parameters. It is interesting that in Figure

4.1 the curves become flat when MWS increases from 8MB to 32MB. That can be

explained by the fact that all of the parsed data of DC 10 can fit in one memory

window of size 8MB. Therefore, when the memory window continues to increase,

the compression ratio and time won’t change. Although DC 10’s size (10.298MB) is

bigger than 8MB, the parsed data are less than 8MB since we use a more compact

representation to store them (for example, no duplicate tag or attribute names exist

in the parsed data). We chose 8MB as the default value of MWS. The reason is

68

that when MWS is larger than 8MB, the marginal gain in compression ratio is not

so significant while compression time continues to increase even with a higher rate

(see Figures 4.2 and 4.3).2 And main memory is a kind of precious resource. In real

practice, it is impossible to allow an application to use most of main memory to do

compression.

The experimental results for varying minimum block size is shown in Figure 4.4.

For both TC 10 and DC 100, the compression time changes very little and randomly.

Therefore, MBS is probably not a parameter that affects the compression time, and

we choose 1KB as the default value for it in XComp. The situation is the same for

block increase ratio and input/output buffer size. Figures 4.5 and 4.6 show that when

BIR and IBS/OBS vary, compression time does not change much. These experiments

convinced us that MBS, BIR and IBS/OBS are not very related to XComp’s perfor-

mance. We can assign any reasonable values for them, and we have chosen 1KB, 4

and 32KB/32KB, respectively, in the following experiments.

4.3 Comparison Experiments

4.3.1 Compression Ratio

Figure 4.7 shows the compression ratios for different compression tools over all data

sources. For each document, the five connected bars represent XComp (using Zlib),

XComp (using Huffman encoding), XMill, XGrind and Zlib compression ratios. In

these five bars, XComp (Zlib) and XMill have similar performance and XComp(Huffman)

and XGrind have similar performance and Zlib’s performance is between them. The

2We note that in the left figure of Figure 4.3 two curves show a pattern different from others at
8 MB. It is not clear what the reason for this is. Since, in all other experiments, the curves follow
the described pattern, we decided to ignore this anomaly.

69

TC_10

4.000

4.050

4.100

4.150

4.200

4.250

1 2 4

Min Block Size (KB)

C
om

pr
es

si
on

 T
im

e(
se

co
nd

)

MWS=4, BIR=1, IBS/OBS=64

MWS=8, BIR=2, IBS/OBS=32

MWS=16, BIR=4, IBS/OBS=32

DC_100

22.800

23.200

23.600

24.000

24.400

1 2 4

Min Block Size (KB)

C
om

pr
es

si
on

 T
im

e(
se

co
nd

)
MWS=4, BIR=1, IBS/OBS=64
MWS=8, BIR=2, IBS/OBS=32
MWS=16, BIR=4, IBS/OBS=32

Figure 4.4: The Effects of Varying Minimum Block Size

TC_10

3.950

4.000

4.050

4.100

4.150

4.200

4.250

2 3 4 6

Block Increase Ratio

C
om

pr
es

si
on

Ti

m
e(

se
co

nd
)

MWS=4, MBS=1, IBS/OBS=32
MWS=8, MBS=2, IBS/OBS=32
MWS=16, MBS=4, IBS/OBS=32

DC_100

22.500

23.000

23.500

24.000

24.500

25.000

2 3 4 6

Block Increase Ratio

C
om

pr
es

si
on

Ti

m
e(

se
co

nd
)

MWS=4, MBS=1, IBS/OBS=32
MWS=8, MBS=2, IBS/OBS=32
MWS=16, MBS=4, IBS/OBS=32

Figure 4.5: The Effects of Varying Block Increase Ratio

70

DC_100

20.000

22.000

24.000

26.000

28.000

8 16 32 64

Input/Output Buffer Size(KB)

C
om

pr
es

si
on

Ti

m
e(

se
co

nd
)

MWS=0.5, BIR=2, MBS=1
MWS=2, BIR=3, MBS=4
MWS=8, BIR=2, MBS=1
MWS=32, BIR=3, MBS=4

22

TC_10

3.700

3.900

4.100

4.300

8 16 32 64

Input/Output Buffer Size(KB)

C
om

pr
es

si
on

Ti

m
e(

se
co

nd
)

MWS=0.5, BIR=2, MBS=1
MWS=2, BIR=3, MBS=4
MWS=8, BIR=2, MBS=1
MWS=32, BIR=3, MBS=4

Figure 4.6: The Effects of Input/Output Buffer Size

compression ratios of XComp (Zlib) and XMill are very close for most documents.

Except for DC 10 (13.53% vs 13.47%), XComp (Zlib) always outperforms XMill, al-

beit by a small margin, in compression ratio. The XComp (Huffman) and XGrind are

much worse than these two. They compressed documents 25% larger than XComp

(Zlib) and XMill. This is expected as the cause of their different compression engines

— LZ algorithm and Huffman encoding. Huffman encoding assumes the sources as

i.i.d. It can not exploit the fact that most data sources are not memoryless.

For the first six documents, which are all smaller than 1.5MB, Zlib’s compression

ratios are close to XComp(Zlib) and XMill. It’s even better than XComp(Zlib) when

the document is extremely small (Provinces in Table 4.1, which is 2KB). However,

with the increase in document size, its performance gets worse. For data-centric XML

database documents, Zlib is even worse than XComp(Huffman) and XGrind. This can

be explained by the fact that XComp(Huffman) and XGrind can significantly improve

71

their work by re-organizing XML data, so that they can beat Zlib even if they have

a less efficient compression engine. Zlib has an advantage over XComp(Zlib) and

XMill only when the document size is small, i.e. several KB. XMill can not compete

with Zlib when the document is smaller than 20KB [13]. XComp(Zlib) improved this

boundary to 4KB (emails with 4546Byte in Table 4.1).

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

provinces emails contriesDC lnames words titles DC_10 DC_100 DC_1000 TC_10 TC_100 TC_1000

C
om

pr
es

si
on

 R
at

io

XComp(Zib)

XComp(Huffman)

XMill

XGrind

Zlib

Figure 4.7: Compression Ratio

4.3.2 Compression Time Comparison

The compression times were measured as in Table 4.2. Similar to the results of com-

pression ratio experiments, we still can classify the compression tools into two groups

based on their performance. However, this time, XGrind and XComp(Huffman)

worked better than XComp(Zlib), XMill, and Zlib. Obviously, compared with Huff-

man encoding, we pay the price of time to get better compression of LZ algorithm.

72

XComp(Zlib) and XMill have nearly the same speed. One did a little better on some

documents while the other did better on the others. Their speeds are comparable to

Zlib’s. For XComp(Zlib) and XMill, the compression work split into two steps: (1)

parsing and re-grouping the data, and (2) applying Zlib to compress these data. Why

are they still nearly as fast as Zlib? The reason is that the first step reduced the size

of the data to be compressed. So they do less work in step 2 than Zlib. The total

compression time, which is the sum of steps 1 and 2, is close to that of compressing

the original document directly.

XCompr(Zlib) XComp(Huffman) XMill XGrind Zlib
provinces 0.011 0.005 0.011 0.010 0.010
emails 0.011 0.011 0.011 0.011 0.011
countriesDC 0.011 0.010 0.011 0.011 0.013
lnames 0.071 0.039 0.073 0.058 0.055
words 0.116 0.068 0.115 0.077 0.093
titles 0.532 0.229 0.115 0.326 0.526
DC 10 2.361 1.310 2.389 1.264 2.100
DC 100 23.557 13.000 23.479 13.069 23.299
DC 1000 259.081 150.073 260.195 140.321 252.161
TC 10 4.042 2.016 4.039 2.035 3.795
TC 100 39.086 19.560 39.771 19.085 37.043
TC 1000 431.753 227.800 432.791 221.589 397.310

Table 4.2: Compression Time

For these experiments, we conclude that XComp(Zlib) and XMill significantly im-

prove compression ratio over Zlib while generally performing as fast as Zlib. They have

a better overall performance than the general purpose compression tool. Compared

to them, XComp(Huffman) and XGrind have better speed but worse compression

ratio.

73

4.3.3 Internet Transmission

For a given network bandwidth, the transmission time is the sum of (a) time to com-

press/decompress, and (b) time to transfer the compressed document. The second

component is decided by the compression ratio. From the above experiments we know

that XComp(Huffman) and XGrind use less compression time and XComp(Zlib) and

XMill generate smaller compressed data. In Tables 4.3 and 4.4, we report their perfor-

mance in the Internet transmission. We only run the experiments on five documents.

For the small ones, the bandwidth is continuously varying so that it is impossible to

accurately measure the transmission time for them. We did not try the two largest

documents as transferring them is too time consuming.

XComp(Zlib) XComp(Huffman) XMill XGrind Zlib No Compressoin
titles 1.158 2.025 1.209 1.987 1.777 3.488
DC 10 6.629 8.113 6.590 7.943 7.235 25.595
DC 100 68.897 80.145 69.594 77.212 81.093 253.712
TC 10 13.097 15.970 13.309 16.180 14.160 25.780
TC 100 135.415 162.097 138.129 252.436 140.128 252.436

Table 4.3: Internet Transmission (From University of Waterloo to University of Al-
berta

XComp(Zlib) XComp(Huffman) XMill XGrind Zlib No Compressoin
titles 0.891 1.245 0.905 1.179 1.044 3.350
DC 10 3.743 5.103 3.700 5.283 4.275 24.781
DC 100 35.889 50.174 39.551 51.882 40.197 255.770
TC 10 7.059 10.013 7.211 9.813 9.204 25.183
TC 100 71.654 100.194 74.183 103.105 89.724 254.195

Table 4.4: Internet Transmission (From University of Alberta to University of Wa-
terloo

74

All the compression tools transferred documents faster than raw transmission (e.g.

without compression). Among them, XComp(Zlib) did best in 8 cases and XMill did

best in 2 cases. The performance of XComp(Huffman) and XGrind and Zlib are

30% to 80%, respectively, slower than these two. In this set of experiments, the

compression tools with higher compression ratio performed better than the ones with

faster speed.

The following analysis can be made for this experiment’s results. The transmission

work of XML compression tools can be divided into 5 parts: (1) reading and parsing

(2) compressing (at the client side), (3) transferring the data, (4) decompressing (at

the server side), and (5) writing. Step (2) only can be done when step (1) completes.

However, steps (2) and (3) can be done in parallel. So, if the compression time is far

less than transfer time, it does not contribute to much to the total time. For example,

DC 10’s compressed size by XComp(Zlib) is 2.603MB. So its transfer needs 6.533

seconds, which is longer than the time it takes to compress it. Therefore the total time

is determined by the transfer time and time for steps (1), (4), and (5). Recall that our

results are based on the rate 408KB/s. If we can greatly improve the bandwidth, the

compression ratio will become less important and the compression time will become

more critical. For example, if the transfer rate is 2MB/s, XComp(Zlib) compresses

DC 10 will be transmitted in only 1.302 seconds which is much shorter than the

compression time (4.042 seconds). In this case, the compression time will play an

important role. In the extreme case, if we can improve the transfer rate to 10MB/s

while the CPU speed remains unchanged, we will find that the uncompressed data

are transferred the fastest.

Another interesting phenomenon is that sending data from University of Alberta

75

to University of Waterloo is much faster than doing it in the reverse direction if we

use compression tools. As stated earlier, the total time is decided by transfer time

and time for steps (1), (4), and (5). The PC (at University of Waterloo) is faster

than the Unix server (which is a public server at University of Alberta). Therefore,

step (4) takes more time on this Unix server than done on the PC. Steps (1) and (5)

takes nearly same time if done on the same machine. Therefore doing (1) on the PC

and (5) on the Unix server is equivalent to doing (1) on the Unix server and (5) on

the PC.

Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis, we develop an XML compression tool, called XComp, whose target

applications are data archiving and data exchange. For the first type of applica-

tions, XComp has a competent compression ratio to reduce the data volume. For the

data exchange applications, it helps to improve the transmission speed by its high

compression ratio with considerable compression time. We have presented the archi-

tecture and implementation of XComp, and discussed the theoretical justification for

our approach to XML compression. In our experiments, we compared XComp with

Zlib and other XML compression tools. The results validate XComp as a generally

better tool. Using Zlib compression engine, XComp gets the best compression ratio

in nearly all cases. Compared to Zlib, it significantly improves the compression ra-

tio while using similar time. It has similar performance as XMill, but outperform it

(not in a major way) both in compression ratio and compression time. Consequently,

XGrind is good at compression speed but worse in result of compression ratio. In

general, XComp(Zlib) clearly has an overall advantage over others as a tool for com-

pression XML data. For data exchange, it is also the winner in our experimental

76

77

circumstances. The performance of these compression tools is affected by CPU speed

and network speed. The powerful machines with slow network favor the compressor

with good compression ratio but slow compression speed, like XComp. In contrast,

the reverse will favor the compressor with lower compression ratio but high speed.

However, unless the bandwidth has a substantial improvement, i.e. reaching 5MB/s1,

while other conditions keep unchanged, we expect XComp(Zlib) to still outperforms

XGrind or Zlib as it did in our experiments. Moreover, XComp has its potential in

speed improvement, which is discussed in the section of future work.

The contributions of our research can be summarized as follows:

First, we proposed an architecture that follows the principles of separating data

from structure and grouping data based on semantics. In this architecture, data

are parsed before being compressed. Two ideas concerning memory management are

used here. We use a memory window to confine the maximum memory usage and

containers, which can efficiently increase its memory space, to hold the data with the

same semantics. This architecture also allows consuming XML data and producing

output in a stream model.

Second, XComp groups data not only based on their tag/attribute names but also

based on their document levels. We believe that the document level also implies XML

data’s semantics. This grouping method enables XComp to distinguish data with the

same name but with different information statistics, since they are at different levels

and have different values or domains or formats.

Third, we designed our own way to encode XML structure. Integers are used in

it to represent XML markups, while the length information of string data are stored

1Note that we are talking about sustained wide-area network speed, which is generally slower
than this.

78

separately. This feature, different from other XML compression tools, guarantees our

encoding efficiency for both small and large documents. We also have two models in

our representation: preserving white space or not.

Finally, XComp can handle XML documents in Unicode. Unlike XMill, which

only handles ASCII documents, it strictly follows XML specification of character set.

5.2 Future Work

In some data exchange applications, there is a need to exchange complete documents,

while others only require data formatted in XML. The latter ones may still use a

SAX parser to read XML documents. For these applications, we can save the time

to compose the output documents by directly generating SAX events. Such a de-

compressor will provide a set of API following SAX standards. It directly translates

the compressed data to SAX events. To implement such a decompressor, we do not

make architectural changes to our existing decompressor, since the original document

structure is encoded as a sequence of markups that follows the SAX events’ order in

the original document. By saving output, this approach will shorten the data transfer

time.

Parallel computation usually helps to improve program speed, and XComp can

be parallelized. In XComp’s architecture, the containers are compressed one by one

when the memory window is full or the end of file is met. The parsing and the

compressing are done sequentially. This is necessary for Huffman coding, because we

need to know all the statistics about the data in one container before we can compress

them. However, Zlib compression does not require that. The parallel approach for

Zlib compression can be done as follows. The parser and each container can have

79

its own process. While parsing, any container process begins to work when there are

substantial data, i.e. 64KB, in its container. It can write the output to its individual

internal buffer. When internal buffer is full, the content is written to the output

stream. Since there is only one output stream, only one container process can write

its output at one time. The benefit of this approach is that the parsing and the

compression can be done in parallel. This will save time, especially when the parser

does lots of I/O. An attractive side-effect of this approach is that we are able to

reduce our memory use. We do not need to keep all data in the memory window

before compressing, but only a fixed size memory for each container.

Another future work is to extend XComp(Huffman) to enable direct querying of

compressed documents. Huffman coding encodes an alphabet with fixed codes. That

allows us to directly search keywords in the compressed data. Since the data volume

is reduced, such querying may be even faster than querying the original data. Related

work has been done in XGrind.

Appendix A

XML Document Definition

XML Document ::= PreText Prolog Element Misc*

Pretext ::= %string without ’<’%
Prolog ::= XMLDecl? Misc* (DocTypeDecl Misc*)?
XMLDecl ::= PI

DecTypeDecl ::= (’<!DOCTYPE’ %string without ’[’ and ’>’% ’>’) |
(’<!DOCTYPE’ %string without ’[’ and ’>’%
’[’ %string without ’]’% ’]’ S ’>’)

Misc ::= Comment | PI | S

Comment ::= ’<!−−’ %string without ’−−’% ’−−>’
PI ::= ’<?’ %string without ’?>’% ’?>’
S ::= %whitespace chars in XML%

Element ::= EmptyElemTag | (StartTag Content EndTag)
EmptyElemTag ::= ’<’ Name (S Attribute)* S? ’/>’
StartTag ::= ’<’ Name (S Attribute)* S? ’>’
EndTag ::= ’</’ Name S? ’>’

Content ::= S? CharData? S? ((Element|CDSect|PI|Comment) S? CharData?)*
CDSect ::= ’<![CDATA[’ %string without ’]]>’% ’]]>’
Attribute ::= Name S? ’=’ S? AttValue

Name ::= %string without white space, ’/’ and ’>’%
CharData ::= %string without ’<’%
AttValue ::= (”’ %string without ”’% ”’) | (’”’ %string without ’”’% ’”’)

80

Appendix B

Light-Weight SAX Parser Interface

/** from: The start position of the data content or the tag/attribute name. It is in the buffer of
input file.

length: The length of the data content or the tag/attribute name.
hasFound: Because the buffer for the input file is limited (typically 32KB), the length of the

data content or the tag/attribute name may exceed this size. hasFound indicate whether the end of
string is met. If it is false, the next event will still contain the rest of it. **/

• /*The event that Parser meets PreText before the beginning of first ’<’ in the XML file. */

void handlePreText(const char hasFound, const char *from, const int length);

• /*The event that Parser meets PI in the XML file. */

void handlePI(const char hasFound, const char *from, const int length);

• /*The event that Parser meets DTD(Document type declaration) in the XML file. */

void handleDTD(const char hasFound, const char *from, const int length);

• /*The event that Parser meets Comment in the XML file. */

void handleComment(const char hasFound, const char *from, const int length);

• /*The event that Parser meets CDADA Section in the XML file. */

void handleCDSect(const char hasFound, const char *from, const int length);

• /*The event that Parser meets white spaces in the XML file. */

void handleWhiteSpaces(const char hasFound, const char *from, const int length);

• /*The event that Parser meets a start tag(following ’<’) in the XML file. */

uInt32** handleStartTag(const char *from, const int length);

• /*The event that Parser meets an end tag in the XML file. */

bool handleEndTag(const char *from, const int length);

• /*The event that Parser meets end of an empty element. */

void handleEndOfEmptyElement();

• /*The event that Parser meets an attribute name in the XML file. */

uInt32** handleAttributeName(const char *from, const int length);

81

82

• /*The event that Parser meets an attribute value in the XML file. */

void handleAttributeValue(const char hasFound, const char *from, const int length, const
bool quoteMark);

• /*The event that Parser meets content data in the XML file. */

void handleContentData(const char hasFound, const char *from, const int length);

• /*The event that Parser meets an equal mark ’=’ (for attribute) in the XML file. */

void handleEqualMark();

• /*The event of ’>’ (the end of tag) only if WhiteSpaceContainer is perserved. */

void handleGTChar();

Bibliography

[1] K. Challapali, X. Lebegue, J. S. Lim, W. Paik, R. Girons, E. Petajan, V. Sathe,

P. Snopko, and J. Zdespki. The Ground Alliance System for US HDTV. Proc.

IEEE, 83:158–174, Feburary 1995.

[2] N. Faller. An Adaptive System for Data Compression. In 7th Asilomar Conf. on

Circuits, Systems and Computing, pages 593–597, 1973.

[3] J. Gailly and M. Adler. A Massively Spiffy Yet Delicately Unobtrusive Com-

pression Library. Available at http://www.gzip.org/zlib, January 2003.

[4] R. G. Gallager. Variations on a theme by huffman. IEEE Trans. Information

Theory, IT-24:668–674, November 1978.

[5] Jerry D. Gibson, Toby Berger, Tom Lookabaugh, Dave Lindbergh, and

Richard L. Baker. Digital Compression for Multimedia. Morgan Kaufmann,

2 edition, 2001.

[6] Marc Girardot and Neel Sundaresan. Millau: An Encoding Format for Ef-

ficient Representation And Exchange of XML over the Web. Available at

http://www9.org/w9cdrom/154/154.html, 2001.

[7] D. Huffman. A Method for the Construction of Minimum Redundancy Codes.

Proc. IRE, 40:1098–1101, September 1952.

[8] R. Hunter and A. H. Robinson. International Digital Facsimile Coding Standards.

Proc. Inst. Elec. Radio Eng., 68:854–867, July 1980.

83

84

[9] International Organization for Standardization: 8879. Information processing –

text and office systems – standard generalized markup language (sgml), 1986.

[10] D. E. Knuth. Dynamic huffman coding. Journal of Algorithms, 1985:163–180,

1985.

[11] A. K. Kolmogorov. Three Approaches to the Quantitative Definition of Infor-

mation. Probl. Inform. Transm., 1:1–7, 1965.

[12] A. Lempel and J. Ziv. On the Complexity of An Individual Sequence. IEEE

Trans. Information Theory, IT-22:75–81, January 1976.

[13] H. Liefke and D. Suciu. XMill: An Efficient Compressor for XML Data. ACM

SIGMOD Record, 29, June 2000.

[14] David Megginson. SAX Simple API for XML version 2. Available at

http://www.saxproject.org/, May 2000.

[15] A. Salminen and F. W. Tompa. Requirements for XML document database

systems. In Proceedings of the 2001 ACM Symposium on Document Engineering,

pages 85–94, 2001.

[16] C. E. Shannon. A Mathematical Theory of Communication. Bell System Tech.

J., 27:379–423, July 1948.

[17] The Unicode Consortium. The Unicode Standard, Version 4.0. Available

at http://www.unicode.org/standard/versions/enumeratedversions.html, April

2003.

[18] P. Tolani and J. R. Haritsa. XGRIND: A Query-friendly XML Compressor. In

Proc. 18th Int. Conf. on Data Engineering, pages 225–234, 2002.

[19] J. S. Vitter. Dynamic huffman coding. ACM Trans. Mathematical Software,

15:158–167, June 1989.

85

[20] T. A. Welch. A Technique for High Performance Data Compression. Computer,

17:8–19, June 1984.

[21] World Wide Web Consortium(W3C). HTML 4.01 Specification. Available at

http://www.w3.org/TR/html4/, December 1999.

[22] World Wide Web Consortium(W3C). WAP Binary XML Content Format. Avail-

able at http://www.w3.org/TR/wbxml/, June 1999.

[23] World Wide Web Consortium(W3C). XML Path Language (XPath) Version 1.0.

Available at http://www.w3.org/TR/xpath, November 1999.

[24] World Wide Web Consortium(W3C). Extensible Markup Language (XML) 1.0

(second edition). Available at http://www.w3.org/TR/REC-xml, October 2000.

[25] World Wide Web Consortium(W3C). XML Schema. Available at

http://www.w3.org/XML/Schema, April 2000.

[26] World Wide Web Consortium(W3C). XML Information Set. Available at

http://www.w3.org/TR/2001/PR-xml-infoset-20010810, August 2001.

[27] World Wide Web Consortium(W3C). XQuery 1.0 and XPath 2.0

Data Model, W3C Working Draft 7 June 2001. Available at

http://www.w3.org/TR/2001/WD-query-datamodel-20010607, June 2001.

[28] World Wide Web Consortium(W3C). Document Object Model (DOM) Technical

Reports. Available at http://www.w3.org/DOM/DOMTR, 2003.

[29] B. B. Yao, M. T. Özsu, and J. Keenleyside. XBench – A Family of Benchmarks

for XML DBMSs, pages 162–164. 2002.

[30] J. Ziv and A. Lempel. A Universal Algorithm for Sequentail Data Compression.

IEEE Trans. Information Theory, IT-24:337–343, May 1977.

86

[31] J. Ziv and A. Lempel. Compression of Individual sequences via Variable-rate

Coding. IEEE Trans. Information Theory, IT-24:530–536, September 1978.

