
Sampling-based Refresh Policy with Correlation

Ali Taleghani
School of Computer Science

University of Waterloo
Waterloo, Canada

atalegha@cs.uwaterloo.ca

Yasemin Ugur-Ozekinci
School of Computer Science

University of Waterloo
Waterloo, Canada

ugur-ozekinci yasemin@emc.com

ABSTRACT
For many Web users search engines represent the starting
point of their journey. Given a small number of keywords
the search engines returns the pages relevant to that query
using its local page repository. The problem of repository
freshness is a major obstacle for search engines. It is neces-
sary to detect as many changed pages as possible and update
them.

In this work, we present a refreshing policy that is based on
sampling with correlation. In our approach, we first catego-
rize the downloaded pages into categories that best describe
the topics those pages have a reputation on. Then we take
small samples from each category and determine how many
of the sampled pages have changed. Based on these results,
we make a decision on whether the entire category should be
updated. We will present our method and show experiments
on real data.

1. INTRODUCTION
Over the past decade the size of the World Wide Web has
increased to unbelievable dimensions. While many surfers
use Web portals such as Yahoo to gain access to this sea
of information, most internet users gain access to the Web
by using search engines. Given a list of keywords, a search
engine returns the pages that are most relevant to the query.

In order to be able to return search results to the user, search
engines have to have a large page repository that contains
most of the Internet. A crawler is used to crawl the Web and
download pages to the repository. When the user submits a
query, the local repository and indexes are queried and the
results returned to the user. One major difficulty with this
approach is related to the fast-changing nature of the Web.
A page in the repository might have become “out-dated”
since the time it was last crawled and downloaded by the
crawler. Therefore, the results returned to the user might
not reflect the current state of the page.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.$40.00

This problem has motivated much research into the issue
of repository staleness [4, 6, 5, 3]. In general, the search
engine performs batch downloads at regular intervals at off-
peak hours to refresh the repository. Due to network and
computational resources, the repository is much larger than
the number of pages that can be download at each cycle. For
example, a search engine might be able to only download
10% of the total repository size and perform updates only
once a month. Also, as the size of the repository increases it
becomes more and more difficult to compare local data items
with the data items at the source site to detect change and
in many cases it might be necessary to “guess” the number
of changes.

The authors in [6] propose a new approach to change de-
tection that uses sampling and the authors show that their
method is superior to previous methods. Sampling is per-
formed at the site level, and based on the results of the sam-
pling, the whole site is updated if necessary. In this paper,
we build on the work in [6] and propose a new sampling-
based change detection technique that takes the correlation
of pages into consideration. In this new approach, we first di-
vide the downloaded pages into categories that best describe
the topic that a page has a “reputation” on. Consequently,
we sample a few pages from each category and decide based
on the sample whether a category needs to be downloaded
and refreshed.

In order to design such a method, we will investigate how
pages can be categorized into categories and show how we
used a known technique for our approach. Second, the ques-
tion of an optimal sample size has to be investigated and
finally, we have to show that our method is more effective
in detecting change than other methods such as the ones
described in section 2.1.

This paper is organized as follows: Section 2 discusses the
framework used in our method. We will describe the most
popular download policies that we compare our method to.
This section also outlines the various evaluation metrics that
can be used to compare different policies. Section 2 also
presents a motivating example that demonstrates the dif-
ference between the sampling-based policies, one that uses
correlation and one that does not.

Section 3 presents our main work on correlation and sam-
pling. We present the method used for establishing correla-
tion between Web pages. This section shows how, given an

URL, the topics that the page with that URL has a repu-
tation on are determined. Section 4 describes our work on
sampling given a set of categories. This section also dis-
cusses the optimal sample size.

Section 5 presents the experiments we conducted to test
our method and compares it to other methods. As will be
evident, our results need further investigation since we were
not able to conduct all the necessary experiments.

Section 6 presents related work and section 7 concludes our
work and presents some future possible directions.

2. FRAMEWORK
In this work we will assume that the source data items are
updated independently from the local copy. While some re-
search on push models [10] exist in which the data source
informs the local copy of change, we do not consider such
models here. The major reason for this being that such mod-
els do not apply to the Web in which Web site administrators
update their sites without informing the search engine.

We also assume that the size of the local repository is larger
than our download resources and that we can only perform
periodical batch downloads. For example, we could have
a scenario in which we have 100,000 pages in the reposi-
tory, but can only download 2000 pages each weekend. In
the remaining of this section we will provide an overview of
possible download policies and evaluation metrics.

2.1 Download Policies
Given the situation that only a subset of pages in the repos-
itory can be updated, the crawler has to choose a policy to
refresh the pages. There exist many policies and the most
popular are explained below.

1. Round-robin: In round-robin download policy, pages
are downloaded in a round-robin fashion until all pages
have been refreshed. For example, if there are 1000
pages in the repository, but we can only download 100
per week, each week 100 pages are downloaded until
all 1000 pages have been refreshed.

2. Change-frequency based : In this download policy, the
decision on which pages should be refreshed first is
based on the change history of the data items. For
example, if we downloaded a page each month over
a year and detected four changes in total, we might
conclude that this pages changes four times a year. A
more detailed description of this download policy is
provided in [7, 4].

3. Sampling-based without correlation: In sampling based
download policy, a small number of Web pages are
sampled from each site and based on that, an esti-
mate is made on how many pages have changed in
each site. Then the download resources are allocated
to each data source based on the estimates. This pol-
icy is described in more detail in [6].

4. Sampling-based with correlation: The difference be-
tween this policy and the one described above is that

sampling with correlation uses the assumption that re-
lated pages change together. As a result, related pages
are first grouped together and then samples are taken
from each group. A group of correlated pages is up-
dated if the sample indicates a large enough change.

The round-robin policy is the one used by most systems
because of its simplicity [2, 9]. The main advantage of
this method is that it guarantees that all data items are
downloaded at certain intervals. It does, however, not have
the best efficiency compared to the other methods. The
frequency-based policy has the advantage of performing best
if it has the correct change frequency [4], however, it is very
difficult to estimate the change of data items accurately. In
addition, keeping past history data adds a large overhead to
the system.

In general, both of the sampling based policies described
do not have the disadvantages of the frequency-based policy
and also perform better than round-robin (it has at least
been shown for sampling-based without correlation and we
intend to show the same result for sampling-based with cor-
relation). Both of these policies do not need to keep data
from previous crawls which reduces the overhead.

When discussing sampling-based policies one has to decide
whether additional pages should be downloaded in a propor-
tional or greedy manner. If the policy determines that site
in A 70% of the pages and in site B 30% have changed, then
a decision has to be made on how the remaining resources
should be divided up between site A and B. Under the pro-
portional policy the remaining resources are allocated to a
site proportionally to its number of changed samples. In this
case, we would allocate 70% of the remaining resources to
site A and 30% to B. Under the greedy policy we start with
the site with the most changes and download all pages in
that site. If there are resources remaining, we will allocated
them to other sites. In our example, we would allocate all
remaining resources to site A first and if any other resources
are left we would allocate them to B.

The authors in [6] argues that for sampling-based policy
without correlation, no correlation between the data items in
a site is necessary. The paper argues that since the sampling
is random we can expect that if the sample shows a change
in the data source, then with high probability there is a real
change in the data source.

In the current work, we argue that this assumption does not
provide the best performance and a sampling-based policy
that takes correlation into consideration performs better.
The intuition behind this is that most Web sites have very
heterogenous data. A Web site usually consists of differ-
ent sections with each section having a different change fre-
quency. There are sections on a site that never change and
there are sections that change more often than others. For
example, in a news Web site, the front page, the world pol-
itics and sports pages might change more frequently than a
travel or science section that might only be updated weekly.
In general, the entire site is not updated together.

We, however, expect that correlated pages that belong to
different sites change together. While this phenomenon might

not apply to all pages, in general, much information on the
Web is duplicated, and change in one source propagates to
other sources. As a result, we can expect that if page A
and B are correlated, that a change in page A will result in
a change in page B. Consequently, it might be possible to
make decisions regarding the state of B by only considering
A.

2.2 Evaluation Metrics
To be able to compare different download policies, it is im-
portant to use an evaluation metric that is meaningful and
can be used for all policies. There exist several ways to com-
pare performance of a refresh policy and we will describe
three of these below. In this paper, however, we will use the
ChangeRatio metric as the evaluation metric as it is easy to
measure on real data and it is also proportional to the other
two metrics [6].

2.2.1 ChangeRatio
The metric ChangeRatio is based on the number of changed
data items that were downloaded in a cycle. In partic-
ular, ChangeRatio is equal to the number of downloaded
pages that had changed over the total number of downloaded
pages:

ChangeRatio =
Downloaded and changed pages

Total number of downloaded pages
(1)

For example, if we downloaded 100,000 pages and detected
that 60,000 had changed, then by using equation 1 we would
obtain a ChangeRatio of 0.6. In general, we are interested
to maximize the ChangeRatio .

2.2.2 Freshness
The freshness metric was first proposed in [4]. Informally,
item oi is “fresh” at time t if oi is up-to-date and not oth-
erwise. Equation 2 defines freshness formally.

F (oi; t) =

{
1 if oi is up-to-date at time t
0 otherwise.

(2)

In equation 2, “up-to-date” means that the locally stored
data item is identical to the data item at the source. The
freshness of the entire local copy at time t can be defined as

F (U ; t) =
1

|U |
∑

oi∈U

F (oi; t) (3)

where U represents the set of all local copies. For example,
if the local repository contains 1000 pages and 750 of them
are up-to-date at time t then the freshness of our reposi-
tory is 0.75. As with ChangeRatio , the goal is to maximize
freshness .

2.2.3 Age
The age metric was first described in [4] and is related to
the time since a data item has been modified. Formally, it
is defined as follows

Changes C1 C2 C3 C4 C5

Site A 20 20 20 10 0
Site B 20 10 0 0 0

Table 1: Changes in each of five categories

A(oi; t) =

{
0 if oi is up-to-date at time t
t−modification time of oi otherwise.

(4)

The age of the entire local copy is defined similarly to that
of freshness

A(U ; t) =
1

|U |
∑

oi∈U

A(oi; t) (5)

As an example, consider a data item in our repository that
changed 8 hours ago in its source and we have not down-
loaded it yet. As a result, the age of this data item is
8 hours. It is important to realize that freshness and age
are in general difficult to measure as it is necessary to in-
stantaneously compare all data items to the source items,
which is in practice very difficult due to the large size of the
repository. Often, when these two metrics are used, some
stochastic models are assumed for data changes.

2.3 Example
In this section, we will provide a small motivating example
that compares our approach to that of [6]. For this example,
we will use the change ratio metric in order to compare the
two methods and also use the greedy policy described above.

The scenario is as follows: There are two Web sites A and B.
Each site has 100 pages for a total of 200 HTML pages. As-
sume that after considering correlation between these pages,
we have determined five categories C1, C2, C3, C4 and C5.
Each category has 40 pages from sites A and B. Each cate-
gory has 20 pages from site A and 20 pages from site B(In
this scenario, we do not consider the possibility that pages
belong to several categories, but in reality, this is most prob-
ably the case).

Lets assume that 70% of pages in A and 30% of pages in B
have changed since the last crawl of these two sites. Also, in
this scenario we can only download 100 pages in each crawl
cycle. Table 1 shows the number of pages from each site
that change in each of the five categories. For example, in
category C2 75% of pages have changed. In this case, 20 of
the changed pages are from site A and 10 from site B.

2.3.1 Sampling without Correlation
Using the method described in [6], we sample 10 pages from
each site and discover that 0.7 of pages in A have changed
and 0.3 in B. As a result, all remaining resources are devoted
to site A and an additional 80 pages are downloaded from
site A. The change ratio therefore becomes (90 * 0.7 + 10
* 0.3) / 100 = 0.66.

2.3.2 Sampling with Correlation
Using our new method, we first sample four pages per cat-
egory for a total of 20 pages for sampling. After this step,
we conclude that all pages in C1, 75% of pages in C2, 50%
of pages in C3 and 25% of pages in C4 have changed. We
have now 80 pages left that can be used to download ad-
ditional pages. Each category has 36 pages that have not
been downloaded yet. Applying the greedy policy again, we
commit 36 pages to C1 and C2 each and another 8 pages to
C3.

The change ratio we obtain is the following: From the initial
sampling we obtain (4*1 + 4*0.75 + 4*0.5 + 4*0.25) = 10
changed pages and from the crawl we obtain (36*1 + 36*0.75
+ 8*0.5) = 67 changed pages. Therefore, the change ratio
for this method is 77 / 100 = 0.77, which is significantly
higher than the method above.

While this example presents a small and simplistic scenario,
we believe that it shows the potential of using correlation
with sampling.

3. SAMPLING WITH CORRELATION
In this section we discuss the sampling-based download pol-
icy that takes Web page correlation into consideration. We
will first elaborate how Web page correlation is established
and then describe the sampling process.

3.1 Establishing Web page Correlation
The first step in our refreshing policy is to establish the cor-
relation between the data items in the repository. For this
discussion, we assume that all data items are HTML pages.
Given Web pages w1...wk, we would like to distribute these
pages to the categories C1...Cn if page wi has a reputation
on a topic described by category Cj . In particular, we would
like this categorization to occur at download time of the page
or shortly after.

3.1.1 Category assignment at download time
When pages on the Web are initially crawled, millions of
pages are downloaded and it is necessary to assign each page
to one or more categories that best describe that page. For
example, if we download a page on the functionality of hard
drives, we would like to assign it to the computer hardware,
hard drives and possibly computer categories.

In order to achieve this task, it is necessary to know the
topics a page has a reputation on given the URL of that
page. This problem has been investigated extensively [1,
8, 12] and some solutions have been proposed. Most of the
recent works go beyond simply looking for frequent terms on
a page and returning those as the topics. After the success of
PageRank [2], most researchers have realized the importance
that lies within incoming links (in-links) and as a result,
started to exploit them in categorization as well. The idea
behind this is that a page might not necessarily mention
the terms it concentrates on as part of its HTML content.
Hyperlinks on the other hand contain more reliable semantic
information regarding a page.

The direction that we chose for our work is the one described
in [12] as part of the TOPIC project. In this work, given the

URL of a Web page p, the system returns the top k topics
that p has a reputation on. The basic idea of TOPIC is as
follows: Instead of just considering page p, the algorithm
also considers the neighborhood of p. A page q is in the
neighborhood of p, if either q links to p or if p links to q.

The work in [12] introduces two methods for calculating the
reputation rank of a page and we will describe one here. The
interested user can refer to [12] for a detailed description of
both methods. To calculate the reputation rank of a page,
the reputation of all pages pointing to it are considered and
weighted differently. The reputation of a page on a topic is
proportional to the sum of the reputation weights of pages
pointing to it on the same topic. This means that links
emanating from pages with high reputations are weighted
more. This method is a generalization of the PageRank
method. Algorithm 1 describes how the reputation rank is
calculated.

Algorithm 1 Algorithm for TOPIC classification

1: for For every page p and term t do
2: if t appears in p then
3: Initialize R(p, t) = 1/Nt

4: else
5: R(p, t) = 0
6: end if
7: end for
8: while R has not converged do
9: Set R′(p, t) = 0

10: for Every link q → p, do
11: R′(p, t) = R′(p, t) + R(q, t)/O(q)
12: end for
13: R(p, t) = (1− d)R′(p, t) for every page p and term t
14: R(p, t) = R(p, t) + d/Nt if term t appears in page p
15: end while

In this algorithm, d is the probability with which a random
surfer would jump into a page uniformly chosen at random;
Nt denotes the total number of pages on the Web that con-
tain term t; O(q) denotes the number of outgoing links from
page q; R(p, t) denotes the probability that surfer visits page
p for topic t and q → p denotes a link from page q to page
p. In this calculation, the ranks are in the form of a sparse
matrix R. In this matrix, rows represent Web pages and
columns denote each term that appears in some document.
During the computation, R is first initialized and then up-
dated until convergence.

Our algorithm for classifying the pages uses the algorithm
above. The idea behind our algorithm is that for each page
downloaded we obtain the top k topics that a page has a
reputation on. If those topics already exist, we classify that
page under those categories, otherwise, we create any non-
existent categories and classify the page under them.

Algorithm 2 presents our algorithm for crawling and cate-
gorizing Web pages. In this algorithm, Q is the queue for
holding the URLs to crawl, topic(u) represents the invoca-
tion of a method to obtain the topics the page at URL u
has a reputation on and T represents the collection of top-
ics u has a reputation on. The output of the algorithm are
categories C1...Cn each holding a collection of crawled Web
pages. It is clear from the algorithm that a page could be-

long to several categories.

Algorithm 2 Algorithm for crawling the Web and catego-
rizing downloaded items

1: Start with a staring URL d
2: Insert d into Q
3: while Q not empty do
4: u ← Q.dequeue
5: download the page with URL u
6: Extract all links l from u and enqueue on Q
7: T = topic(u)
8: for Each topic t in T do
9: if t not already in the system then

10: Add t to system
11: Classify u to t
12: end if
13: end for
14: end while

One issue that arises from this algorithm is the number of
topics a page p should be classified under (i.e. the number
of topics that topic(u) returns). In the ideal case, each page
should be assigned to exactly one category that best de-
scribes the page. In order to achieve this, however, the cat-
egorization process must return the one exact topic a page
has a reputation on. None of the classifying approaches,
however, claim to be able to be this precise. It is therefore
necessary to classify a page to several categories in order to
increase the probability that it is assigned to the best topics
that describe it.

Once this approach is chosen, the optimal number of topics
p should be assigned to must be determined. A theoretical
analysis of this problem is beyond this work and is left as
future work. Section 5 provides some experimental insight
into this issue.

It is important to note at this point that any other catego-
rization method could be used for our approach. We just
chose one to be able to demonstrate the advantages of tak-
ing correlation of pages into consideration when performing
sampling. It would be interesting to investigate how dif-
ferent categorization techniques could affect our sampling-
based approach.

4. SAMPLING
Once the correlation between data items are extracted, the
second step in our Web page refreshing policy is to perform
sampling in order to estimate the number of changed pages
in each group of correlated pages, and download the Web
pages according to the estimated change ratios.

The main idea behind the sampling is the following: The
number of Web pages kept by search engine is too large to
perform a download in each Web repository refresh cycle,
therefore, using the portion of the pages, we try to estimate
the ratio of the changed pages to total number of pages
in each category (henceforth, change fraction), and draw a
conclusion based on the fraction of the changed pages.

For the rest of the discussion, let’s assume our page repos-
itory < contains the following Web page categories, formed

using a correlation criteria ρ, as described in the previous
section:

<ρ = {C1, C2, .., Cn} (6)

The categories of the Web pages are not necessarily mu-
tually exclusive (This has a impact on the sampling size
and result, which will be discussed later in subsection 7.1).
That is, a page p may belong to different categories C (e.g.
The same Web page be classified bother under ”sports” and
”basketball”).

In order to achieve our purpose, we are going to consider
uniform random sampling, where the probability of any Web
page in category C being in the sample S is 1

‖C‖ , where ‖C‖
denotes the cardinality of C. In other words, any variable
in the uniform random sample is identically distributed and
independent. Once we perform random sampling, we will
estimate the number of real value of changed page fraction p
of each category, based on the fraction of the changed pages
in the sample to the total number of pages in the sample
(a.k.a sample size).

In the following subsections, we will first describe what we
think the optimal sample size should be, and then we will
discuss how to perform uniform random sampling, and es-
timate changed pages fraction. We are also going to talk
about other factors that have an impact on the optimal sam-
pling size, and how this impact can be augmented into the
optimal sample size formula. At the end, the deficiency of
the uniform sampling will be briefly discussed.

4.1 Optimal Sample Size
We are limited with the download resources of search engine
used for a page-refresh, when deciding on the sampling size.
As the number of download resources D (i.e. number of
pages that a search engine can download in a refresh cycle)
increase, more resources can be used for sampling.

Another factor affecting sample size is the number of pages
in each category. We have to sample more for the categories
that have more pages in order to obtain a meaningful es-
timation of the ratio of changed pages in the category C.
For simplicity, when calculating sample size, we will assume
each category has approximately same number pages, N .
Handling categories with different sizes will be discussed in
subsection 7.1.

The download policy has also an impact on the sample
size. As the greedy download policy is shown to give better
ChangeRatio on average than the proportional policy in the
[6], we will consider only the greedy download policy in this
section.

Let’s assume that we can download a maximum of D pages
in each page-refresh cycle, out of a total of N average num-
ber of pages in each category. We will use the following
formula given in [6] to get the optimal sample size for ex-
periments that attempt to gauge the affect of other factors
than the sample size (e.g. comparison between page refresh
policies, optimal number of categories):

s ≈
√

Nrf(pt)

6(p̄r − p̄)
, (7)

pt refers to a change fraction threshold value, such that the
number of categories that has a higher value than the thresh-
old, will be all downloaded. f(pt) represents the function
that returns the number of categories that have the changed
page fraction value of pt, p̄r and p̄ represent the average
change fraction across all the categories, and the average
change fraction across the categories that exceed the thresh-
old change fraction, respectively.

The intuition behind including f(pt) in the optimal sample
size formula is that as the number of categories that have the
threshold change fraction value increase, we are more likely
to make errors as the threshold is used to decide whether
the category should be downloaded in the refresh cycle. A
very small enhancement in the estimation in the categories,
which can happen with a bigger sample size, will enable us
to decide whether a category is lower or higher than the
threshold.

Also, the higher the value of p̄r − p̄ the more confidence we
have in the estimation result. In other words, the sample
size is reversely proportional to p̄r − p̄.

As we do not know the p or f(p) values, we will use
√

Nr
as a rough estimate to the sample size, similar to [6]. In
section 5, we will investigate this issue experimentally.

4.2 Uniform Random sampling
In order to perform random sampling, we number each page
in each category with an integer sequentially from 1 to n, and
then, randomly pick a number between 1,n. The algorithm
is given in Algorithm 3, where SC denotes the sample set of
the pages in category C.

Algorithm 3 Algorithm for sampling categorized Web
repository

for every category Ci in < do
sample− size = k =

√
Nr

3: for j = 1tok) do
r = Pick a random number between 1,n
u = Page with a index r in Ci

6: if u is not already in the SCi then
SCi = SCi

⋃
u

j= j+1;
9: else

j = j-1;
end if

12: end for
p = numberofchangedsampledpages/sample− size
Insert (cr, Ci) tuple into a sorted data structure on

the first attribute
15: end for

The sampling part of the algorithm is also called classi-
cal sampling with membership check [Devroye86]. Once a
sample Si is constructed for each category C, we calculate
the change fraction p in Ci based on the number of pages
changed in the given sample. A “changed” page refers to

the page whose current downloaded version is different from
the version in the original Web page repository <.

Based on the changed fraction pi of each category Ci, the
greedy policy will download the categories with the highest
pi until there is no download resource left.

The discussion so far assumes that each page has the same
weight in the estimated changed fraction p. However, some
pages in the correlation group may have more weight than
other pages in the estimated result. For example, the World
news pages of the CNN is more indicative of any changes
in the World news page group, than a local town’s news
Web site. In this case, we have to perform weighted sam-
pling where the “importance” of a page in the sample has to
be considered. Finding authoritative pages and performing
weighted sampling is considered as a future work.

5. EXPERIMENTS
In this section we will present some experimental results
from testing our method and propose some tests that could
be run in the future. Due to time restrictions, we were
not able to fully implement the system described above. In
particular, the algorithm for classifying Web pages had to be
simplified to be able to finish this work within the required
time frame.

The major difficulty to implement a full system was to be
able to handle all possible terms that could appear in Web
pages. Also, since the authors of TOPIC were not able
to provide us with an already working implementation, we
were forced to take a simpler approach in which we only
considered a subset of terms that could appear in pages.
In particular, we concentrated on 20 terms related to the
Internet. It is important to note that this simplification
does not make the system less complex, but rather reduces
the number of terms the system has to “know” and as a
result, the number of pages that have to be downloaded.

In order to run meaningful experiments for crawling and
repository freshness, it is important to do three things: one,
we must be able to download pages at an interval that is
meaningful and represents a time frame in which data items
change. Secondly, the experiments must be run over sev-
eral download cycles to obtain meaningful results. Finally,
the size of the repository must be large enough so that the
results can be applied to the Web.

Unfortunately, we were not able to meet the requirements
above. First, due to resource restrictions, we were only able
to construct a repository with 1000 pages and 20 categories.
Each category contained 50 pages (in order to ensure that all
our categories have a meaningful size, we downloaded more
than 1000 pages). Secondly, we were able to two download
cycles of our experiment that were two weeks apart. The
first cycle was to build the repository and the second to
check for freshness and download changed pages. In our
experiments we assumed that at each cycle we can download
200 pages.

As a result of the restrictions described above, many ex-
periments do not show the desired results. It is, however,
not possible to determine whether these results are due to

Table 2: The time to create categories with changing
number of in-links.

10 20 50 100 300
Time (s) 450 455 463 472 479

problems with our method or the fact that more through
experiments had to be run.

All our experiments were run on an Intel P4 2.4 GHz com-
puter with 512MB of DDR memory. The 1000 Web pages
were stored on a hard drive with 9ms disk access. In order
to obtain all pages that link to a particular page (needed for
the topic algorithm) the Google API was used. Since this
API is implemented in Java, all our experiments are run us-
ing Java. The source code for this work can be obtained at
http://www.cs.uwaterloo.ca/∼ataleghani.

5.1 Categorization
The main two factors that affect the speed of the catego-
rization are the number of “topics” that pages can belong
to and the number of in-links that are considered for each
page. In our system, we were already forced to reduce the
number of terms available for categorization, as a result, we
performed experiments on the number of in-links considered
for each page.

Table 2 shows the result of categorizing 1000 Web pages us-
ing 50 categories (topics). In order to not confuse download
time with categorization time, the time does not include the
download time for a page. This experiment was conducted
on 1000 URLs and the result was a categorization for each
of these pages.

Table 2 shows that there is little difference between the num-
ber of in-links considered. These results can be explained as
follows. First, the computational overhead to consider ad-
ditional links in-links is negligible because the results from
Google (which we use to obtain in-links) are returned within
very few seconds, no matter the number of results. Second,
we observed that as the number of links increase, there are
not many pages that have that many in-links. For example,
we observed that only 18% of our 1000 pages had more than
50 in-links so that as we increase the number of in-links, the
performance does not change.

It is important to note that the absolute time values of the
results of the experiment outlined in Table 2 are not crucial
for our results. In our implementation, we had to make
use of an external method (Google) to obtain all in-links
to a particular page. This added a large overhead to the
system. In reality, however, a crawler would take advantage
of internal link indexes that are maintained by the search
engine. As a result, the time to categorize pages would
decrease dramatically.

5.2 Comparison of download policies
In this section, we compare our method with round-robin
and sampling without correlation. We do not compare our
method with the frequency-based policy because we did not
perform enough download cycles to collect relevant change
history.

Table 3: Comparison of sampling-based policy
with correlation and round-robin. The result for
sampling-based with no correlation was from an-
other experiment.

Policy ChangeRatio
Round-Robin 0.45

Sampling with Correlation 0.6
Sampling without Correlation 0.75

Table 3 shows the results of our experiments. In this ex-
periment, the ChangeRatio was calculated after the second
cycle of downloads. The ChangeRatio for round-robin and
sampling-based policy with correlation could be determined
from our experiments. That of sampling without correlation
though could not be determined from the experiments.

The difficulty in this experiment was that from our 1000
page repository, we had obtained 20 categories, but these
pages belonged to more than 20 different sites (in fact, they
belonged to more than 300 different sites). As a result, an
accurate comparison between sampling without and with
correlation was not possible. The value reported for sam-
pling without correlation is the largest value that was ob-
tained from experiments in []. We realize that this compar-
ison is not accurate and further experiments are necessary.
In particular, an experiment is necessary in which the pages
that are distributed between categories are from the same
number of different sites as there are categories. This ex-
periment is left for future work.

Even though the results do not provide us with a definite
comparison between the two sampling based approaches,
they do indicate that, at least after running one cycle, our
approach performs better than round-robin. It remains to
investigate more results after running more thorough exper-
iments.

5.3 Optimal sample size
In a sampling-based policy the size of the sample affects the
performance significantly. A small sample could skew the
results in a way that the estimated change in the sample is
different than the real change in the repository. A too large
sample has the disadvantage that too much of the down-
load resources are devoted to sampling. Figure 1 illustrates
this issue in more detail. This graph compares the optimal
download sample for the sampling based policy with corre-
lation.

As can be seen in Figure 1, from a sample size of [0,50] the
ChangeRatio is very low. The reason behind this is that no
useful conclusions can be deduced from the sample size and
the categories are updated more or less randomly. As the
sample size increases, more and more resources are devoted
to sampling and the advantage of our approach increases.
From the graph, the optimal sample size is between 70 and
90. As the number of samples increases, the performance
decreases again. The reason behind this is that resources
are wasted for sampling that could be used for downloading
pages that have changed in categories. These results support
the theoretical results of section 4.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

C
ha

ng
eR

at
io

Sample Size

"data.dat"

Figure 1: Relationship between sample size and
ChangeRatio

5.4 Optimal number of categories
As described above, one question that arises during catego-
rization is the number of categories a particular page should
be assigned to. For example, a Web page describing the
differences between various computer microprocessors could
be assigned to “computer hardware” and “microprocessors”.
But it could also be additionally assigned to “computer” and
“electronics”. As a result, we have to determine the optimal
number of categories a page should be assigned to.

Our method for obtaining the topics a page has a reputation
on returns in general more than 10 topics for each page. In
this section we describe the experiment we conducted to
obtain the optimal number of categories. Figure 2 shows
the results of changing the number of categories a page is
assigned to.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

C
ha

ng
eR

at
io

of Categories

"cat.dat"

Figure 2: Relationship between number of cate-
gories and ChangeRatio

As Table 2 shows, the performance of the sampling-based
approach with correlation changes with different number of
categories. According to the experiment, the optimal num-
ber of categories a page should be assigned to is 6. This
issue is further described in section 7.1.

6. RELATED WORK
There is a considerable amount of work in the Web crawling
area. The work related to this paper falls under the subject
of Web repository refreshing techniques within Web crawl-
ing. The problem can also be formulated as the problem of
keeping any local copy of data (or replica) up-to-date, where
the original data resource is updated without the knowledge
of the replica. The same techniques can be used for Web
page refreshing, however there are additional challenges in
Web, such as huge number of Web pages over the Web.

The authors in [4], and [5] study how to estimate how of-
ten the original data item changes and refresh a repository
based on the past change history of the item. Using the
estimation on how often the Web pages change, these pa-
pers develop techniques to improve the freshness of the lo-
cal repository. The problem with this type of approaches
is that they require the collection of a long chain of history
of change for every single Web page. Otherwise, they may
lead to incorrect estimates, and as a result, poor quality of
the local repository (in terms of freshness). Also, the sta-
tistical function used in these approaches, such as Poisson
distribution, assumes that all the changes are independent,
and the average rate of change does not change over the pe-
riod of time. Our approach, however, does not require any
kind of history regarding to the changes. Therefore, it can
be used immediately after initial Web crawling. Also, one
of the main contribution of our approach is the observation
that update events are correlated, and we make no assump-
tion regarding the average rate of change, which seems to
be more applicable to the Web.

The authors in [6] studies how to solve the biggest drawback
of the change-frequency based approaches, i.e. the require-
ment of gathering a long history of change frequency of each
page. When there is not enough history chain to be used
for change-frequency based approaches, this paper proposes
to perform sampling in order to estimate the change fre-
quency of the Web pages, and download the pages accord-
ingly (Once enough history log is gathered, the system can
switch to the change-frequency techniques). In this sense,
this approach seems very similar to ours, however, there is
a significant difference: [6] performs sampling on each Web
site, and uses this information as a indicator about the rest
of the Web pages in that Web site, whereas our approach
performs sampling for each group of pages categorized based
on their correlation to each other, and use this information
as a indicator about the rest of the Web pages in the same
category.

The work in [11] tries to maximize the quality of user expe-
rience who query the search engine, rather than the quality
of every single page in the repository. This work studies how
to estimate the improvement in the repository if a particular
Web page were to be downloaded, without actually down-
loading it. This estimation requires the Web search engine
to keep track of user query logs. This approach is also biased

towards the popular Web pages. If the information that a
user is looking for is not located in these popular pages, the
user experience will degrade drastically. In our approach,
we neither require Web search engine to use their precious
resources to keep historical information, nor do we favor one
page over another.

7. CONCLUSION
As more and more Web users take advantage of search en-
gines to gain access to the information on the Web, more
effort has to be put in the process of returning the most
relevant pages for a given query. One major difficulty is the
fast changing rate of the Web. Pages that were crawled and
saved in the repository might become out-dated very fast
and therefore, the results returned to the user are out-of-
date.

In this paper, we described a new technique of increasing
repository freshness. Our work was built on the ideas of the
work in [6] which suggested sampling. In our work, however,
we consider the correlation of Web pages as an important
factor in categorizing and sampling. Our approach first cat-
egorizes Web pages into a set of categories that best describe
them and consequently takes a certain number of samples
from each category. Based on the ChangeRatio of the sam-
ples, a decision is made as to whether update the whole
category.

In this work we described the method we used for catego-
rizing Web pages. As mentioned above, any other form of
categorization could have been used and it remains to inves-
tigate how different categorization techniques perform with
our sampling approach.

We also described the sampling method used in our refresh
policy. The most important factor that has to be determined
during sampling is the optimal sample size. As the sample
size increases, our estimate of change improves, but at the
same time our download resources decrease. We provided
some theoretical analysis on this issue with was based on
the work in [6], but it remains to further investigate this
issue.

Finally, we described some experiments that we conducted
to compare our method with others. As described in sec-
tion 5, we were not able to conduct all the necessary exper-
iments and as a result, our result might not be indicative
of the real performance of our method. It remains to run
more thorough experiments in the future to deduce the full
potential of the sampling-based refresh policy with correla-
tion.

7.1 Future Work
In the following sections we provide some future direction of
our work.

7.1.1 Pitfalls of Uniform Random Sampling
A significant error might be introduced in uniform sampling
if the change ratio is skewed among the pages in the same
group, and the sample size is small. The skew occurs when
there is a large variance between the change frequency of
the pages in the same group. For example, out of 100 pages

in Ci, 5 pages might change daily, but the rest might change
every month. If our sample size is small, e.g. 2, and one of
the sampled pages is one of these 5 pages then our sampling
will estimate a change ratio of 0.5. But in reality, the change
ratio of this group is 0.05 (assuming that 95 pages did not
change).

This issue brings up the possibility to combine our method
with the frequency-based policy. If we obtain the history
of change for a category, we might be able to eliminate this
problem by having an estimate on the change of a category.

7.1.2 Improving Optimal Sample Size
In the section4.1, we assumed that each category has ap-
proximately the same size, and we used the optimal sample
size theorem from [6]. However, this assumption may not be
true in practice. We need to factor into our formula possi-
ble differences in category sizes. To achieve this, we multiply
the optimal sample size s for each category with the ratio of
category size to the total number of pages in <.

sCi ≈ s ∗ nc‖Ci‖
‖<‖ , (8)

where nc represents the number of categories in page reposi-
tory <, ‖Ci‖ represents the number of pages in the category
Ci, and ‖<‖ represents the total number of pages in the
given page repository.

This way, we can fairly share the total number of samples
among the different sized Web page categories, in an attempt
to reduce the number of errors in the estimated changed
fraction rate.

Another aspect we need to consider when calculating opti-
mal sample size is that categories are not mutually exclu-
sive. In other words, multiple categories can include the
same Web page. We expect the refresh policy to degrade
as the number of pages shared among different categories
increases because our estimate for the optimal sample size
does not consider the number of pages shared between the
categories. One improvement to alleviate this issue is to use

nc‖Ci‖
TotalsizeofC

in the sample size, where we employ the ratio
of size of category to the total size of all the categories. The
reason we take the ratio of the size of a category over the
total size of all categories is that the total number of pages
in the repository is not equal to the total size of pages in all
categories, as some pages are counted more than once.

Also, the sampling algorithm can be improved by not sam-
pling the same page if it is already sampled in another cate-
gory, and using the sample resource for another page. More
precisely, in line 6 of Algorithm 3, we will add another if
statement that checks whether the the selected sample page
for the current category SCi is already located in the the
samples created so far in the algorithm for the other cate-
gories. This addition is shown in Algorithm 4.

As a result, even though we are not going to use our sampling
resource for this page, the page is going to contribute to the
estimation of the change fraction at the end, and improve
the estimation.

Algorithm 4 Improvement to Algorithm 3

if u is already in any other SCj created so far then
Adjust the number of changed sampled pages
Increase the sample-size by one

end if

7.1.3 Estimated vs. real change fraction
The deviation between the estimated change fraction and
real change fraction has a direct impact on the quality of
page freshness. If the deviation is big we might be down-
loading the Ci pages, while, in reality we should be down-
loading another category first. The deviation is affected by
the sample size and the variation among the change fre-
quency of pages in the group. The latter was discussed in
section 7.1.1.

If we can define the deviation between the estimated change
ratio, and real change ratio, we can make much smarter
choices about which Ci to download. This can be achieved
through calculating a confidence interval, for a given confi-
dence and level:

l ≤ p ≤ h, (9)

with the confidence level of ε.

In this equation, [l, h] represents the confidence interval and
ε represent the probability of p being within the [l, h]. For
example, if we say our estimate change fraction rate is 0.5±
0.2 with %95 confidence level, it means that the real changed
fraction is within [0.3, 0.7] boundary with the 0.95 probabil-
ity. This definition would enable us to compare two esti-
mated fraction rate more accurately.

8. REFERENCES
[1] K. Bharat and M. R. Henzinger. Improved algorithms

for topic distillation in a hyperlinked environment. In
Proceedings of SIGIR-98, pages 104–111, Melbourne,
AU, 1998.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[3] C. Castillo, M. Marin, A. Rodriguez, and
R. Baeza-Yates. Scheduling algorithms for web
crawling. In Proceedings of Latin American Web
Conference (WebMedia/LA-WEB), Riberao Preto,
Brazil, 2004. IEEE CS Press. To appear.

[4] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, pages 117–128, 2000.

[5] J. Cho and H. Garcia-Molina. Estimating frequency of
change. ACM Trans. Inter. Tech., 3(3):256–290, 2003.

[6] J. Cho and A. Ntoulas. Effective change detection
using sampling. In VLDB, pages 514–525, 2002.

[7] E. G. Coffman, Z. Liu, and R. R. Weber. Optimal
robot scheduling for web search engines. Technical
Report RR-3317, 1997.

[8] J. Dean and M. R. Henzinger. Finding related pages
in the World Wide Web. Computer Networks
(Amsterdam, Netherlands: 1999),
31(11–16):1467–1479, 1999.

[9] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. World Wide Web,
2(4):219–229, 1999.

[10] C. Olston and J. Widom. Best-effort cache
synchronization with source cooperation. In SIGMOD
Conference, 2002.

[11] S. Pandey and C. Olston. User-centric web crawling.
In WWW ’05: To appear in the fourteenth
international conference on World Wide Web, 2005.

[12] D. Rafiei and A. O. Mendelzon. What is this Page
Known for? Computing Web Page Reputations.
Computer Networks, 33(1-6):823–835, 2000.

