
Neighbour selection strategies for
P2P systems using tit-for-tat exchange algorithm

L.G. Alex Sung
University of Waterloo

lgasung@uwaterloo.ca

Herman H.Y. Li
University of Waterloo

hyh2li@uwaterloo.ca

ABSTRACT
BitTorrent (BT) has recently received tremendous atten-
tion due to its superior efficiency in download large files.
Each client must decide on a set of peers to download from.
Thanks to the Tit-for-Tat (TFT) exchange strategy, incen-
tive for utilizing peers’ full uploading capacity is enhanced
and free riding is discouraged. As the assignment of neigh-
bours is totally random in the original BT implementation,
capacity-limited peers may be assigned to high-capacity peers.
Under the TFT exchange policy, the capacity-limited peer
may not be able to download efficiently. Moreover, in the
overlay network, neighbours may be physically far away
from each other, resulting in a waste of network resources
and routing time. For Peer-to-Peer(P2P) systems using
TFT strategy to exchange data pieces, we propose two or-
ganized neighbor-selection strategies based on link capacity
and node locality to increase the content distribution effi-
ciency. Our work, based on experiments done on the Plan-
etLab nodes, shows that these schemes do improve overall
system throughput by reducing the average download time
for around 18%.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Distrib-
uted Systems—Distributed applications, Distributed databases;
D.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Experimentation, Measurement, Performance

Keywords
Peer-to-peer, P2P, Neighbour Selection

1. INTRODUCTION
Since the launch of Napster in 1999, more people are equipped
with cheaper broadband Internet services, higher bandwidth
networks and larger storage capacities. Peer-to-Peer (P2P)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005 Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

systems have changed their landscapes from sharing small
files such as mp3 files for early systems to sharing larger
files such as application programs, movies and even DVD
images. Although P2P systems today have better network-
ing capabilities, the availability of data is largely determined
by the users’ incentive to share their files and their upload-
ing bandwidth. BitTorrent (BT) is the first popular P2P
system tailored for sharing large files. It is famous for its
downloading efficiency over other P2P systems. Thanks to
the Tit-for-Tat (TFT) exchange strategy, incentive for utiliz-
ing peers’ full uploading capacity is enhanced and free riding
is discouraged. The optimal strategy for users is maximizing
their uploading speed [6].

BT is a hybrid P2P system with central tracker servers.
Each shared file is announced to at least one tracker server.
When users want to download a file, they need to get the
tracker file (with .torrent file extension) which contains the
metadata of the file they want to download. The metadata
includes the fileID and the IP address of the tracker servers.
The tracker file may be downloaded from some web servers,
web forum or newsgroups. The BT client program installed
on the user’s machine then contacts the tracker server and
requests for a set of random peers. The steps to join the
BT network is illustrated in Figure 1. Files are divided
into pieces of 256kB in size. Studies such as [9] show that
dividing large files into small chunks for download improves
efficiency. The client program establishes connections with
the set of peers and find out what pieces reside in each of
the peers. Then, it simultaneously downloads and uploads
different pieces from and to different peers. If the number
of peers can be connected is less than 20, it contacts the
tracker server for another set of peers. There are two types
of peers: i) Seeds, which hold a full copy of the file and
simply upload; and ii) Leechers, which have incomplete files
and are both downloading and uploading.

If the assignment of neighbours is totally random, capacity-
limited peers may be assigned to high-capacity peers. Under
the TFT exchange policy, the capacity-limited peers may
not be able to download efficiently because they are unable
to upload efficiently in return. Moreover, in the overlay
network, neighbours may be physically far away from each
other, resulting in a waste of network resources and routing
time. In this paper, we have studied the effect of assigning
neighbours in more organized fashions and show that our
proposed strategies reduces the average download time for
all peers.

1

file

file

file

file

1. Download
 the torrent file

3. Random set of IPs

2. Request
 for peers

Update

Web Server Tracker Server

4. File download and
 file pieces info exchange

Figure 1: Steps to join the BT network

1.1 Contribution
For Peer-to-Peer systems using TFT strategy to exchange
data pieces, we propose two organized neighbor-selection
strategies to increase the content distribution efficiency. In
particular, we have chosen the widely known BT protocol
to carry out our tests. We believe that the TFT strategy
will exist in future P2P systems aiming at sharing large files.
Our contribution includes:

• Our results show that selecting neighbour peers based
on peer capacity and locality does decrease the average
download time for all peers and hence, increasing the
overall system throughput.

• Results are collected from real implementation of the
strategies deployed on hundreds of nodes around the
world.

• Our proposed strategies are applicable to systems other
than BT and not restricted to the hybrid architecture.
No matter whether a central server exists or not, peers
still need to obtain a peer set in order to exchange data
pieces.

• Client program and the BT protocol remain unchanged.
Strategies can be easily deployed to existing BT track-
ers.

1.2 Organization
Section 2 introduces BitTorrent which our implementation
is based on. Section 3 and 4 introduces our proposed strate-
gies. Section 5 explains our experiments and discusses about
the results. Section 6 talks about the related work. Section
7 concludes and discusses potential future work.

2. BACKGROUND
The original implementation of BT distributes the peer set
from the tracker in a random fashion in order to avoid

the power-law distribution [4]. We are exploring the effec-
tiveness of two relatively more organized neighbor-selection
strategies. Effectiveness for this kind of data replication
or content distribution can be treated as the total system
throughput. Higher effectiveness means shorter average down-
load time for all peers. While avoiding the power-law distrib-
ution, we distribute peers according to different peer groups
classified by their network capacity and locality. For network
capacity, peers are classified into different groups according
to their upload or download ability. For locality, peers are
classified according to their physical location determined by
their IPs. Randomness is preserved by including some peers
of other capacity or locality groups in the peer set. Peers
from each capacity or locality group are chosen randomly.

The sustainability of the BT system depends on the file
pieces availability. As a data replication system, if one or
more pieces are missing from the whole system, the system
fails as no peer can get a full copy until at least one peer
with those pieces joins the system again. Preserving certain
degrees of randomness not only avoids the power-law distri-
bution for pieces, but also ensures that pieces can pass onto
peers who join the system later. Therefore, it improves the
system sustainability by promoting higher pieces availabil-
ity. Strict group matching may result in some pieces only
appearing in one classification group but not in others. To-
gether with the local rarest first strategy to exchange pieces,
once a rare piece reaches a classification group (from a peer
of another classification group), it can be spread efficiently
and sustain the system.

3. GROUP BY CAPACITY
Matching peers according to capacity similarities improves
efficiency due to the rate-based TFT exchange strategy. By
default, a peer selects four peers, which offer the best down-
loading rate, to upload to. Moreover, the peer randomly
selects some peers to “optimistic unchoke” (upload) in or-
der to test whether they can offer a better downloading rate.

2

Table 1: Peer grouping according to sorted network
capacity

Group Sorted capacity

Unknown Unknown
High 0% to 33.33%

Medium 33.33% to 66.66%
Low 66.66% to 100%

When low ability peers are connected to high ability peers, it
is very likely that they can only get pieces when they are be-
ing optimistic unchoked. Furthermore, they will get choked
again very quickly as they cannot offer a good exchanging
rate. On the other hand, if they are grouped among peers
with a similar ability, they are able to exchange with each
other continuously; in contrast to just wait for being opti-
mistic unchoked.

In our implementation, peers are divided into 4 groups by
sorting their downloading or uploading capacity as shown in
Table 1. In the BT protocol, peers must report the num-
ber of bytes downloaded and uploaded to the tracker in less
than 30 minutes interval. Once the peer has become a seed,
it will request for peers regularly every 5 minutes and re-
port their statistics. The capacity is calculated from the
difference in the reported number of bytes at different time.
New joining peers are classified into the unknown capacity
group. Finding the optimal number of groups to divide the
heterogeneous peers would conjecturably be a very difficult
task and it will remain as a future work. After capacity in-
formation of the peer is available, the 50 peers are selected
by having certain fraction of peers belonging to the target
matching group, with the remaining peers from the other
groups. The fraction of same-group peers is a variable.

One may think of modifying the BT protocol to let clients
report their own capacity. Let alone the significant amount
of peers in other P2P systems misreporting their own band-
width [7] due to the lack of incentive or networking knowl-
edge, even truly reported bandwidths may not be accurate
enough for the neighbour matching. Real world users may
download data in parallel or start several BT downloading
sessions at the same time. In this case, the network capacity
is not solely available for a single BT session. Our solution
of calculating the bandwidth based on the reported number
of bytes downloaded or uploaded takes care of the current
capacity available. Moreover, peers have incentive to hon-
estly report their statistics as it enables them to download
faster.

Matching peers with the same upload capacity or
same download capacity: In these strategies, peers with
similar download / upload capacity are grouped respectively.
The target matching group will be peers with the same
download / upload capacity as the neighbour-requesting peer.
For example, if the fraction of same-group peers required is
0.75 and the peer belongs to the Medium group, 37 out of
the 50 peers are selected randomly from the Medium group.
The remaining 13 peers are selected randomly from other
groups. If there are less than 37 peers in the Medium group
peers, the remaining peers will be substituted by peers from
the other groups. If the total number of peers is less than

50, all peers are returned.

Matching peers by upload capacity to download ca-
pacity: In this scheme, peers in the High upload capacity
group are matched with peers in the High download capacity
group; Medium upload capacity peer to Medium download
capacity; and Low upload capacity peer to Low download
capacity. Peers in a certain upload capacity group may not
belong to the same download capacity group. For exam-
ple, peers belonging to the Low upload capacity group may
belong to the High download capacity group.

4. GROUP BY LOCALITY
Matching peers by locality let them benefit from the low
network latency and get a higher speed in their P2P con-
nections. The topology of the overlay network can better
match the underlying network. In the case that the upload-
ing capacity was not previously fully utilized, this scheme
can maximize the uploading speed by exchanging with peers
that are physically closer.

In this paper, we assume there is an accurate way accessible
by the tracker server to derive the latitude and longitude
values from the IP addresses of peers. In our experiments,
the IP addresses of each Planet-lab node are pre-submitted
to NetGeo [1], an online IP to physical location database.
NetGeo determines locality by the hostname in the WHOIS
record. Although the accuracy is limited, it is enough for us
to partition the peers. The limitations of using the WHOIS
database to determine locality is discussed in Section 5.4.
For PlanetLab nodes, their real physical address are known.
The locality generated are checked against the real loca-
tion manually. Obvious errors, such as all China nodes are
mapped to Australia, are fixed. Since the errors are consis-
tent and fine-grained locations are unnecessary, close peers
can still be grouped. For example, all European and Middle
East nodes are consistently reported by NetGeo as located
Netherlands where ripe.net acts as the Regional Internet
Registry in the region.

When a peer requests the tracker for a peer set of 50 peers,
we first obtain a sorted list of peers according to the differ-
ence in physical distance to the requested peer. The distance
is calculated from their coordinates. The top 33.33% of the
peers are considered physically close and belong to the same
group as the requesting peer. Again, the problem of how to
best determine the percentage of close peers remains open.
The 50 peers are selected by having certain fraction of peers
belonging to the same group, and remaining peers from the
last 66.66% peers in the sorted list. For example, if the frac-
tion of same-group peers required is 0.75, 37 out of the 50
peers are selected among the top 33.33% peers in the sorted
list. If there are more than 37 same-group peers, 37 will be
selected randomly from close peers. The remaining 13 will
be selected randomly from the last 66.66% of peers. If the
total number of peers is less than 50, all peers are returned.
If the number of same-group peers is not enough, the re-
maining peers will be substituted by peers from the other
group.

5. EXPERIMENTS
The experiments were conducted on the inter-continental
hosts provided by PlanetLab. The PlanetLab environment

3

Table 2: Locations of PlanetLab nodes used
Location Percentage

US 52.91%
Asia 18.46%

Europe 17.50%

is designed as “an open platform for developing, deploying,
and accessing planetary-scale services.” [2] It gives access to
nodes that are geographically distributed and provide a way
to deploy BT clients over a vast number of nodes. An addi-
tional advantage is that nodes in the PlanetLab experience
the same network latency, various delays and bandwidth
constraints as nodes used by real users. The distribution of
localities of the PlanetLab nodes used is shown in Table 2.
This distribution comparable to the BT peers downloading
the Redhat 9 distribution [5]. 1

5.1 Environment
As of this writing (April 2005), the PlanetLab system con-
sists of 564 nodes over 266 geographic locations. In our
experiments, we found that approximately 250 nodes were
accessible at a given point in time. Due to firewall policies,
about 210 nodes were actually able to carry BT traffic. A
255.44MB file was used for the file transfer. The size of the
file was chosen as such because the average download speed
of the PlanetLab nodes were about 5 Mbps. Theoretically
this file could be downloaded in 6.81 minutes with a 5 Mbps
link and 17.0 minutes with a slower 2 Mbps link. Therefore,
we could conduct one test in 30 minutes. We selected one
node (planetlab1.cs.ubc.ca) to be the tracker and the initial
seed. The rest of the nodes acted as leechers and down-
loaded the file from the initial seed and from one another.
One leecher was started each second. It took approximately
3.5 minutes for all leechers to start.

5.2 Design
The official BitTorrent 3.4.2 client and tracker was used in
our experiments. The tracker was modified to use one of the
two proposed peer selection schemes. System throughput in
terms of average download time was collected while vary-
ing the degree of randomness in the peer selection scheme.
Four variations of trackers paramenters were used for each
scheme. These were the original tracker, and different frac-
tion of same-group peers at 0.5, 0.75 and 1.0 as explained in
Section 3 and 4. One side of the spectrum was random selec-
tion, which was what the original BT tracker did; the other
side was totally structured selection. We wanted to study
the tradeoff between sustainability and system throughput.
The BT clients did not need modifications at all. In other
words, our optimization scheme was transparent to all BT
users.

5.3 Results and Discussion
Figures 2, 3, 4 and 5 show the percentage of completed peers
over time elapsed in the proposed grouping schemes since
the first peer-join message is received by the tracker. In
our tests, when peers have finished downloading, they will
remain as seeds in the system and continue to serve their

1Most Australia nodes (17.9% of all nodes in [5]) actually
originates from Asia due to the error mapping of NetGeo.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30
Time elapsed since first join (minutes)

P
er

ce
nt

 o
f c

om
pl

et
ed

 p
ee

rs

Original
0.5
0.75
1.0

Figure 2: Peer selection by matching download
capacity - Percent of completed peers over time
elapsed

upload bandwidth to other peers. Seeds periodically report
their status to the tracker every five minutes, and the tracker
returns 50 neighbours to them. Even if the leechers do not
request for more peers, their number of neighbours can still
increase when the seeds actively connect them.

5.3.1 Peer Selection by Capacity
At the beginning, the percentage of completed peers are
roughly the same for all schemes when comparing to the
original tracker. From the tracker log, the first capacity of
peers is usually calculated when the peer have completed
the download. In other words, peer capacity is known only
when they have become a seed and update their status to
the tracker.

When a peer contacts the tracker, 50 neighbours are given
to it every time. Therefore, the new seeds are also given 50
matched peers. From Figures 2, 3 and 4, we can see that
the later 50% of completed peers gain from having seeds of
matched capacity connecting to them and hence, decreasing
the download time. In our experiments, most of the gain in
system throughput are resulted from better matching seeds
with leechers.

In the real situation, users tend to disconnect after they
become seeds, when all the pieces are downloaded. If the
high capacity peers complete and disconnect, most peers in
the system are the low capacity peers. Some data pieces
which are rare in low capacity groups may disappear and
never return, due to the leaving of high capacity seeds. In
the graphs, we have shown that the performance of the pro-
posed schemes at different randomness levels are similar. We
suggest using 0.5 or 0.75 as fraction of same-group peers to
enhance system sustainability.

5.3.2 Peer Selection by Locality
In contrast to matching by capacity, the locality of peers
are known when they contact the tracker at the first time.

4

Table 3: Peer selection by matching download ca-
pacity - Average download time for various peer se-
lection schemes
Selection scheme Average download time (min)

Original 10.22
0.5 8.92
0.75 8.72
1.0 8.12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30
Time elapsed since first join (minutes)

P
er

ce
nt

 o
f c

om
pl

et
ed

 p
ee

rs

Original
0.5
0.75
1.0

Figure 3: Peer selection by matching upload capac-
ity - Percent of completed peers over time elapsed

Table 4: Peer selection by matching upload capacity
- Average download time for various peer selection
schemes
Selection scheme Average download time (min)

Original 9.06
0.5 9.01
0.75 8.26
1.0 8.58

Table 5: Peer selection by matching upload capacity
to download capacity - Average download time for
various peer selection schemes
Selection scheme Average download time (min)

Original 10.21
0.5 8.22
0.75 8.41
1.0 8.39

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30
Time elapsed since first join (minutes)

P
er

ce
nt

 o
f c

om
pl

et
ed

 p
ee

rs

Original
0.5
0.75
1.0

Figure 4: Peer selection by matching upload ca-
pacity to download capacity - Percent of completed
peers over time elapsed

Table 6: Peer selection by matching locality -
Average download time for various peer selection
schemes
Selection scheme Average download time (min)

Original 11.64
0.5 10.30
0.75 9.89
1.0 10.06

If the total number of peers is less than 50, which is the
number of peers requested, all peers are returned without
matching. When the number of peers is just slightly more
than 50, obviously the effect of matching is not significant.
It is evident in the similarity of results at the beginning 10
minutes.

5.3.3 Transient Period
The decrease in average download time for the matching
schemes are shown in Tables 3, 4, 5 and 6. The increase in
efficiencies are conservative since they include the transient
period, where no improvement is made. In the transient
period, the number of peers in the system is limited. Conse-
quently, the neighbours given to the requesting peer are not
well matched. As a result, the downloading time of those
leechers are unimproved.

5.3.4 Results Comparison
Table 7 shows the percentage of speedup of different schemes
when comparing to the unmodified tracker. Matching up-
load capacity to download capacity performs the best. In
our tests, at the time matched neighbours are given out
to the requesting peers, those requesting peers are already
seeds. In the BT protocol, seeds selectively upload to leech-
ers which can download the fastest from the seed. As a
result, matching upload capacity to download capacity can
better utilize seeds’ uploading bandwidth and lowering the

5

Table 7: Speedup of various peer selection schemes under different random levels compared to the original
implementation

Peer selection scheme Speedup
Fraction of same-group peers

Original 0.5 0.75 1.0

Capacity (download) 0.00% 12.75% 14.71% 20.52%
Capacity (upload) 0.00% 0.60% 8.82% 5.27%

Capacity (download / upload) 0.00% 19.49% 17.64% 17.79%
Locality 0.00% 11.49% 15.04% 13.59%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30
Time elapsed since first join (minutes)

P
er

ce
nt

 o
f c

om
pl

et
ed

 p
ee

rs

Original
0.5
0.75
1

Figure 5: Peer selection by matching locality - Per-
cent of completed peers over time elapsed

average download time.

5.4 Lessons Learned
The NetGeo program we used to get the latitude and lon-
gitude of nodes used the WHOIS record of a hostname to
determine location. The WHOIS record yields the location
of the administrative office for the organization or person
that owns that domain. For small ISPs, the WHOIS record
usually provides an accurate location. However, for large
ISPs, which has routers all over a large country, the WHOIS
record is necessarily sometimes inaccurate.

After using the PlanetLab nodes for a short while, we quickly
noticed that it did not have robust support for deploying and
running programs. After the slivers2 were created on the
PlanetLab nodes, it was up to the user to manage file trans-
fer and invoking commands over hundreds of nodes. Even
though some prior users contributed utilities such as parallel
ssh and parallel scp [3], they were not flexible enough for our
needs. For example, they do not provide a retry mechanism
for failed nodes. There is also a maximum number of par-
allel ssh sessions allowed (around 100) that is too small for
us. It took us a great deal of time experimenting with shell
scripts and manual data manipulation to invoke commands

2A Linux VServer on a PlanetLab node that is under the
control of a PlanetLab user.

and collect data.

Another hurdle we had to cope with was that the Planet-
Lab nodes and the connections to these nodes were not very
stable. It was very possible that one node that could be
connected successfully just a few seconds ago became unre-
sponsive for a few minutes. This created huge synchroniza-
tion problems. For example, we could not assume that a file
synchronization command (via ssh) indeed distributed the
latest scripts to all nodes intended. Therefore, a subsequent
call to these scripts may fail unexpectedly. Our solution was
to instruct the nodes to download the latest script from a
web server (via wget) and execute it. Instead of the un-
reliable push approach, this reliable pull approach ensured
that all responsive nodes have up-to-date files. We were
then confident that the binaries were fresh; at the expense
of higher communication overhead.

6. RELATED WORK
While neighbour selection on P2P systems are widely stud-
ied, very few of them focus on P2P systems using the TFT
exchange strategy. We only present studies on neighbour
selection aiming at the P2P systems with TFT policy here.

Simon G. M. Koo et al. propose a neighbor selection method
using a genetic algorithm [8]. Rather than randomly as-
signing peers, they distribute peer sets based on content
availability estimated from the reported number of bytes
downloaded. Content availability refers to the presence of
data pieces among different peers. They assume the up-
link throughput of a peer in BT is limited only by content
availability and network capacity. It is believed that hav-
ing neighbors with the most mutually disjoint collection of
content pieces can assure maximum content availability and
improve the overall throughput of the system. The goal of
their algorithm is to maximize the number of content pieces
each peer can contribute to its neighbors. They have di-
vided the peers into 3 groups by network capacity: Class
1, 10 Mbps bi-directional link; Class 2, 128 kbps uplink /
1.5 Mbps downlink; and Class 3, 56 kbps bi-directional link.
The simulation results of their algorithm, GA100, are shown
in Table 8.

7. CONCLUSIONS AND FUTURE WORK
To further investigate the effects the proposed schemes have
on sustainability, BT clients need to leave the system after
being active for a while. This simulates the transient be-
haviour of peers. Realistically, many peers leave the system
shortly after the file transfers are completed. This decreases
the number of seeds and number of available pieces accessi-
ble by a peer. However, in order to simulate this behaviour

6

Table 8: Average download time (in minutes) of
peers of different capacity. Variances are shown in
parenthesis

Peer capacity Random GA100

Class 1 43.78 (0.13) 44.70 (0.16)
Class 2 145.89 (0.27) 132.58 (0.27)
Class 3 3890.18 (77.81) 2909.47 (66.94)

on PlanetLab nodes, a distributed job control framework
that is robust enough to deal with the unstable nature of
PlanetLab nodes is needed. Remote job creation and termi-
nation must be controlled reliably by the framework. When
this level of control is available, we can observe whether
power law plays a role in sustainability under our optimiza-
tion schemes as mentioned in Section 2.

It would be more interesting to rate-limit BT clients for the
experiments instead of using the PlanetLab nodes’ native
download / upload rate. This would enable us to produce
more consistent results because the capacity would fluctuate
less due to sharing of bandwidth among PlanetLab users.
However, BitTorrent 3.4.2 only allows limiting the upload
rate. Having all peers with download rate higher than up-
load rate is not useful because this does not reflect real-life
scenarios. In the future, it may be possible to use BitTorrent
4.x.x to limit both the download rate and upload rate. This
newer major version of BitTorrent has been rewritten to in-
clude many new features. BitTorrent 4.0.1 offers the ability
to control both the download rate and upload rate. Unfor-
tunately, it contains a bug that prevented us from using it
in our experiments.

Each set of tests spanned over two hours. To maintain con-
sistency, we generally performed tests between the hours
of 10PM and 2AM EDT. This was due to the fact that
half of the PlanetLab nodes used were from North Amer-
ica. Due to time constraints, we did not have the luxury to
perform tests repeatedly. However, by repeating the same
tests many times and averaging results, we mitigate the ef-
fects of occasional network anomalies that may produce re-
sults that do not represent the general case. This is par-
ticularly an issue in the PlanetLab environment since re-
sources are shared among many users and their behaviours
are very unpredictable under congested situations. Further-
more, standard deviations and confidence intervals can be
calculated with repeated measurements to produce results
that are more statistically sound.

In this paper, we have demonstrated our attempt to im-
prove overall system throughput by modifying the official
BT tracker. The original BT implementation uses a ran-
dom peer selection algorithm. Our proposed strategies use
capacity and locality information to aid the peer-selection
process. These optimizations are applicable to P2P sys-
tems using TFT exchange algorithm. Our work showed
that system throughput can indeed be improved by using
the more organized neighbour selection schemes. Further-
more, these optimizations affect only the trackers and are
totally transparent to BT clients. Experiments were done
on the inter-continental nodes provided by PlanetLab. This
setup enabled us to mimic network topology and latency

very similar to real-world scenarios. From the comparison in
performance results, we found that matching the neighbour-
requesting peer’s upload capacity to a peer set of corre-
sponding download capacity performed the best when the
peer set were mostly seeds. It significantly reduces average
download time by around 18%. For matching by capac-
ity, the average download time under different degrees of
randomness were similar. Using a higher degree of random-
ness can increase both the system sustainability and system
throughput.

8. REFERENCES
[1] Netgeo - the internet geographic database.

http://www.caida.org/tools/utilities/netgeo/.

[2] Planetlab: Home http://www.planet-lab.org/.

[3] pssh http://www.theether.org/pssh/.

[4] B. Cohen. Incentives build robustness in bittorrent. In
Proceedings of the 1st Workshop on Economics of
Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

[5] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber,
A. Al Hamra, and L. Garces-Erice. Dissecting
BitTorrent: five months in a torrent’s lifetime. In
PAM’2004, 5th annual Passive & Active Measurement
Workshop, April 19-20, 2004, Antibes Juan-les-Pins,
France / Also Published in Lecture Notes in Computer
Science (LNCS), Volume 3015, Barakat, Chadi; Pratt,
Ian (Eds.) 2004, XI, 300p - ISBN: 3-540-21492-5, Apr
2004.

[6] D. Qiu and R. Srikant. Modeling and performance
analysis of bittorrent-like peer-to-peer networks. In
SIGCOMM ’04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 367–378, New
York, NY, USA, 2004. ACM Press.

[7] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing systems.
In Proceedings of Multimedia Computing and
Networking, 2002, San Jose, CA, USA, January 2002.

[8] K. Tamilmani, V. Pai, and A. E. Mohr. ”swift”: A
system with incentives for trading. In Proceedings of
the 2nd Workshop on the Economics of Peer-to-peer
Systems, Cambridge, MA, USA, June 2004.

[9] X. Yang and G. de Veciana. Service capacity of peer to
peer networks. In Proceedings of INFOCOM, 2004,
Hong Kong, China, March 2004.

7

http://www.caida.org/tools/utilities/netgeo/
http://www.planet-lab.org/
http://www.theether.org/pssh/

	Introduction
	Contribution
	Organization

	Background
	Group by Capacity
	Group by Locality
	Experiments
	Environment
	Design
	Results and Discussion
	Peer Selection by Capacity
	Peer Selection by Locality
	Transient Period
	Results Comparison

	Lessons Learned

	Related Work
	Conclusions and Future Work
	REFERENCES

