
An Incremental Approach to Maintaining Up-to-Date
Global Statistics in Peer-to-Peer Networks

Nabeel Ahmed
University of Waterloo

200 University Ave.
Waterloo, ON N2L 3G1

n3ahmed@uwaterloo.ca

David Hadaller
University of Waterloo

200 University Ave.
Waterloo, ON N2L 3G1

dthadaller@uwaterloo.ca

ABSTRACT
A significant paradigm shift is taking place as we move from
traditional centralized servers to highly decentralized large-
scale systems, such as Peer-to-Peer networks. The highly
volatile nature of such networks precludes the use of tra-
ditional distributed systems algorithms. Global summaries
provide useful, if not indispensable, information about the
network, and ensuring that these summaries are up-to-date
is a significant challenge. In this paper, we study the prob-
lem of maintaining such global summaries in the network.
Our first contribution to this new area is a fundamental
classification of the dimensions of the problem. Within this
classification, we focus on epidemic routing protocols and
show that traditional techniques are computationally inef-
ficient and provide only moderate accuracy for maintaining
up-to-date global statistics. We propose and analyze incre-
mental algorithmic extensions to flooding and randomized
gossip, as well as our new random-walk-based scheme. We
show that these incremental approaches are able to reduce
convergence times by as much as 50% relative to traditional
schemes.

1. INTRODUCTION
The Internet continues to grow at a phenomenal rate.

With this growth comes the desire to collaborate and share
information. Exchanging data using Peer-to-Peer (P2P) sys-
tems such as Gnutella [1] and Kazaa [2] has become increas-
ingly popular; it is currently used by millions of users sharing
petabytes of data.

The large pool of resources in P2P systems provides in-
credible potential. However, coordinating machines at such
massive scales in a decentralized fashion is a non-trivial task.
For example, retrieval of data continues to be one of the fun-
damental challenges in P2P data sharing systems [13]. In
particular, typical database queries involving the computa-
tion of a summary (or aggregate) over the entire data set
are extremely challenging in a decentralized P2P system.

However, computing such global statistics in a data shar-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ing system is an important, if not necessary, part of the
system. For example, query optimization in decentralized
database systems relies on global statistics, such as table
or index statistics, to estimate query selectivity and query
cost. Additionally, pre-computed global summaries of data,
such as materialized views, provide significant cost savings
for queries involving aggregates of large amounts of data.
Computing such aggregates in a decentralized system is a
desirable, yet challenging, task.

To the best of our knowledge, proposed solutions for com-
puting global statistics have not addressed efficient ways of
maintaining such up-to-date statistics. In a P2P system,
nodes may join or leave the system, or their data might
change. This creates a situation where the global statistic
becomes stale (out-of-date) at some nodes. Keeping global
statistics up-to-date is the focus of our work and it is just
as important as computing them, since out-of-date statistics
could lead to erroneous results.

Having local access to up-to-date global information is
critical for certain applications. Consider the problem of in-
formation retrieval in a P2P system [28]. Ranking the results
of a full-text keyword search on a large set of documents
involves computing a relevance score for each matching doc-
ument. This score is often computed using a term weight-
ing scheme which assigns more weight to matching terms
that are not common across all documents. The Okapi term
weighting scheme [26] was one of the top performers in the
TREC-8 evaluation [3], and is the term weighting scheme
used by eSearch [28], a full-text P2P keyword search sys-
tem. This system, as well as Okapi, assumes the existence
of global statistics such as the number of documents that
contain a specific term and the average document length.
Without local access to accurate global statistics, the sys-
tem would not be able to rank documents correctly. Thus,
having a scheme for maintaining up-to-date global statistics
is crucial for the proper functioning of the system. Our work
directly addresses this need.

Computing global aggregates in decentralized systems has
been addressed in recent work [18, 23, 9, 30]. Rather than
using the typical query-response paradigm, the computa-
tion of aggregates can be done as a background process.
This process is analogous to a continuous query in which all
nodes cooperate to compute the global aggregate. Once all
of the nodes have a local copy of the global aggregate, the
computation has converged.

Techniques for maintaining freshness of global statistics is
the focus of this work. The intuition for our approach stems
from the following three types of systems.

1. Stable Networks. Consider a network in which no
data changes occur. In this situation, once the com-
putation of the global statistic has converged, it will
never change. Current techniques proposed in the lit-
erature indefinitely send messages between nodes, thus
wasting network resources. In such systems, we pro-
pose not devoting any additional resources to comput-
ing the statistic once it has converged. Being sensitive
to the amount of change in the system is a key part of
maintaining freshness of global statistics.

2. Semi-stable Networks. Consider a network which is
moderately stable; data changes and node joins/leaves
occur infrequently. In this case, there will exist time
periods where the global statistic will have converged.
When a change in the network occurs, current tech-
niques maintain up-to-date global statistic in one of
two ways. Either the scheme runs continuously and
the global statistic is constantly kept up-to-date, or
the statistic is dropped and re-computed on a peri-
odic basis. However, as we show, these schemes are
computationally inefficient and achieve only moderate
accuracy. We propose that, in such a system, when a
change occurs, it is more efficient to run an incremen-
tal update protocol rather than performing a complete
re-computation. Being aware of changes in the system
is key for efficiently updating global statistics.

3. Chaotic Networks. In the extreme case of a chaotic
system where data and node changes are frequent, con-
vergence of the global statistic will be rare. In such
systems, continually computing the global statistic will
be more efficient than attempting to manage updates
using an update protocol. We show that there exists a
point after which it will be more efficient to re-compute
the global statistic rather than running an update pro-
tocol. Being aware of this point is important for effi-
ciently maintaining freshness of global statistics.

Contributions In this paper, we examine the problem of
reducing staleness of global statistics. We begin by classi-
fying the problem domain into its constituent components,
an important task that has yet to be done in the literature.
We then perform experimental analysis in one particular di-
mension while keeping the others constant. Specifically, we
evaluate the use of different routing protocols for maintain-
ing freshness of global statistics. We compare traditional
protocols such as flooding, gossip, and random walk. We
then introduce new incremental techniques, which outper-
form traditional techniques in stable and semi-stable net-
works both in terms of reduced convergence time and pro-
tocol cost.

The remainder of this paper is organized as follows. In
section 2 we briefly discuss the background of the problem,
followed by a complete classification of the different dimen-
sions of the problem domain in 3. Section 4 outlines our
approach to addressing the problem of maintaining global
statistics and we present our experimental evaluation in sec-
tion 6. Finally, section 8 ends with some directions for future
work.

2. BACKGROUND
P2P systems present new challenges not present in tradi-

tional distributed systems. First, P2P systems operate on a

Problem Components

1. Components of Epidemic Protocols

(a) Network Topology

i. Unstructured (e.g. Random Graph)

ii. Structured (e.g. Tree)

(b) Aggregation Mechanism

i. Order and Duplicate Sensitive

ii. Order and Duplicate Insensitive

(c) Routing Protocol

i. Unstructured (e.g. Epidemic)

ii. Structured

2. Query Type

(a) Extremal (e.g. Min, Max)

(b) Non-Extremal (e.g. Sum, Average)

(c) Hybrid Queries (e.g. Top-K)

3. Change Model

(a) Node Join/Leave

(b) Node or Link Failure

(c) Data Change

Figure 1: Classification of the problem domain

massive scale, often connecting millions of nodes. Second,
nodes are free to join and leave the system at any time and
cannot be assumed to be reliable or available. The frequency
of nodes joining, leaving, or failing is referred to as the churn
rate of the system.

Epidemic protocols have emerged as a method for comput-
ing global statistics in such systems, as traditional central-
ized and distributed systems approaches are not suitable. In
an epidemic protocol, at every time step, each node selects
one or a few nodes to exchange data with. The dynamics of
how information spreads through the network resembles the
spread of an epidemic [5], which provides increased fault-
tolerance [10] against high network churn.

Although our work focuses on P2P systems, our tech-
niques can also be applied to other domains, such as sensor
networks [20, 30] and distributed databases [24].

3. PROBLEM DOMAIN
Techniques for dealing with staleness can be broadly clas-

sified into two areas: proactive and reactive. A proactive ap-
proach is one in which staleness is prevented through some
means, such as an advanced warning or prediction. For ex-
ample, a node could notify the network of its intended future
departure and the global statistics could be adjusted accord-
ingly. In contrast, reactive techniques involve updating the
global statistic only after a change occurs. In this paper we
consider only reactive techniques.

The problem of maintaining up-to-date global statistics
has many dimensions. Each of these dimensions can affect
the performance of our proposed incremental algorithm. Be-
fore presenting the specifics of our solution, we discuss these
dimensions in greater detail. These dimensions are classi-
fied into (1) the components of the epidemic protocols, (2)
the types of aggregate queries we can compute, and (3) the
change model of the system, as summarized in Figure 1.

3.1 Components of Epidemic Protocols

3.1.1 Network Topology

Network topology can have a significant impact on the
performance of epidemic protocols or incremental schemes.
Here, we briefly outline some topologies and discuss their
characteristics in regards to the collection of global statis-
tics. These topologies do not typically exist as part of the
underlying network but however can easily be realized in
the form of network overlays. We further classify each of the
different topologies into structured and unstructured topolo-
gies.

Unstructured Topologies

• Clique: The simplest topology that can be realized in
a P2P network is a fully-connected clique (or mesh).
The fully connected nature of a clique allows nodes to
exchange local state very quickly since the diameter of
the network is one. Although not very realistic, such
topologies provide a good platform to evaluate prop-
erties of epidemic protocols since they preclude proto-
col dependencies on the underlying topology. For this
reason, we use a clique topology in our experimental
evaluation.

• Power-Law Random Graphs (PLRG): It is a well-
known fact that the topology of the Internet follows
a power-law heavy-tailed distribution. As well, re-
cently Jain et al. [15] have shown that some naturally
evolving P2P systems also exhibit such properties (e.g.
early versions of Gnutella). Such networks are typi-
cally characterized by a very small percentage of very
high-degree nodes and a much larger percentage of low
degree nodes. Such networks are more representative
of realistic topologies of peer-to-peer networks.

Structured Topologies

• Tree: Using tree topologies has become popular for
computing global statistics in previous work [20, 30,
9]. In such topologies, the querying node (i.e. node re-
questing the statistic) acts as the root (or sink) of the
tree and collects statistics from other nodes by having
them propagate the information along the edges of the
tree. The query proceeds in two phases, the distribu-
tion phase, and the collection phase. In the first phase,
the node floods a query out to all nodes in order to or-
ganize them into a tree structure. In the second phase,
the values of the leaf nodes are sent to their parents,
which are then aggregated and sent on to their parents.
This process repeats until the root receives all of the
values. This approach is highly scalable for large num-
bers of nodes, however, it does not provide robustness
in the face of failures. Failure of nodes higher up in
the tree can render an entire branch of statistics inac-
cessible during the query process. Considine et al. [9]
have discussed a variety of ways to provide added ro-
bustness to trees using techniques such as multi-path
routing. Others [20, 30] have used alternate techniques
(e.g. soft-state consistency) to provide maintenance of
the tree topology. However, such schemes introduce
issues of double-counting as we discuss section 3.1.2.

• Hypercube: The hypercube topology is based on a
d-dimensional torus structure. In such a structure,
the nodes are organized in a d-dimensional cartesian

coordinate space. Due to the complexity of their struc-
tures, hypercubes are typically only constructed once
and maintained throughout the life-time of the net-
work. Balke et al. [6] discuss the use of hypercubes for
continuous processing of ice-berg (i.e. Top-K) queries,
which are discussed in section 3.2. Hypercubes have
gained popularity due to the concept of super-peers.
Super-peers are privileged peers that are delegated greater
responsibility and form a hypercube structure among
themselves. Super-peers are expected to have much
longer uptimes than regular peers and thus are con-
sidered more reliable. The robustness of this topology
is directly related to the dimensionality of the struc-
ture. A larger number of dimensions leads to greater
robustness but requires greater maintenance overhead
and vice versa.

• Rings: A rings topology is based on the concept of
node broadcasting. Rings of different diameters are
placed concentrically relative to each other and the
centre of the rings forms the position of the query-
ing node. All other nodes are placed on the edges
of the rings. The collection of statistics in the rings
topology is analogous to the tree topology, where the
query processing occurs in two phases. However, the
main difference between this topology and a tree is
that the rings topology is much more robust. This
added robustness is due to the fact that each node in
the outermost ring can choose to route to any one of
the nodes (in the next-level ring) within its range1.
Assuming the distribution of nodes across each of the
rings is uniform, there are many alternate paths that
may be chosen to route around failures. Nath et al.
[23] discuss the use of such a topology for collection of
statistics over a sensor network.

• Butterfly: A traditional butterfly network is typi-
cally organized as a multi-level hierarchy where a ring
is maintained at each level. Butterfly networks are
very attractive topologies for P2P networks since they
minimize the amount of information that needs to be
maintained for the topology while at the same time
provide a moderate degree of robustness. Malkhi et al.
[21] discuss the use of such topologies for DHT-based
lookup services. Since the maintenance overhead of
such networks is very low, they respond very well to
high-degrees of volatility. For further details on the
specifics of butterfly networks, refer to the survey by
Sung et al. [27].

3.1.2 Aggregation Mechanism
Aggregation refers to a mechanism whereby components

of a distributed system collect global information about dif-
ferent statistics of the system, e.g. network size, average
load, etc. Epidemic protocols naturally support such ag-
gregation techniques and a number of challenges need to be
addressed when computing such aggregates. Depending on
the query that is issued, the topology used, and the rout-
ing protocol employed, a number of issues may arise in the
computation of such aggregates. For AVG and COUNT

1Rings topologies are mostly applicable for wireless sensor
networks that have a notion of range. Since we do not specif-
ically consider such networks as part of our study, we do not
consider exploring this topology in greater depth.

queries, discussed in section 3.2, double-counting problems
may occur where nodes may contribute to aggregates more
then once, causing distortion in the overall result. The or-
der in which the aggregation takes place is also important
since some queries may be sensitive to the ordering process
as well. Here, we classify each of the techniques into Order
and Duplicate Sensitive (ODS) and Order and Duplicate In-
sensitive (ODI) techniques.

• Order and Duplicate Sensitive: Most literature on
structured topologies for computing aggregates does
not apply any special mechanisms to avoid double count-
ing. Techniques to resolve these problems are not re-
quired, since the routing protocol and the topology
are specifically constructed to avoid such problems.
Therefore, such techniques typically avoid the double
counting problem. However, in unstructured topolo-
gies, since there is no such explicit structure that can
be exploited, mechanisms are needed to prevent double
counting.

Typically, the problem of double counting is solved
by maintaining additional state at each participating
node such that whenever an aggregate arrives at a par-
ticular node, it is able to identify whether it has con-
tributed to the aggregate or not. We may also need
to know how much contribution the node has made to
the aggregate. The latter typically requires maintain-
ing more state than the former. However, in general,
the greater the information, the higher the accuracy.
In our proposed schemes, we follow the latter approach
and therefore are able to achieve exact results. We dis-
cuss the details of our aggregation technique in section
4.

• Order and Duplicate Insensitive: Order and Du-
plicate Insensitive techniques are a more recent class of
aggregation mechanisms. Although a number of such
techniques have been proposed in the literature, we
only briefly discuss prominent work in the area. Since
ODI approaches avoid double counting problems, they
inherently provide a greater degree of flexibility than
ODS. For example, they provide a greater degree of
flexibility in the selection of routes.

– ODI Synopses/Sketches: Nath et al. [23] first intro-
duced the order and duplicate insensitive techniques
for computing aggregates. They use the approximate
FM counting algorithm, originally pioneered by Flajo-
let and Martin [11]. The key idea in their approach is
to minimize the message overhead of the aggregation
technique by maintaining small message sizes and a
small amount of state at each of the nodes. Each node
maintains a summary of its local state (or synopsis)
and propagates that to other nodes in the network.
A fusing of multiple synopses results in an aggregate
synopsis being generated using smaller individual syn-
opses. Each synopsis is maintained as a bit vector
that represents the contributions that have been made
to it. This allows the technique to maintain the syn-
opsis of an entire network of n nodes in a bit vector of
size approximately log n. FM can also be regarded as
a lossy compression algorithm that provides approxi-
mate results. Considine et al. [9] also adopt a simi-
lar approach (called sketches). However, the FM al-
gorithm approach produces only approximate answers

that could potentially be off by as much as 50%, which
may be acceptable in some scenarios.

– Push Synopses: Another ODI technique is the push
synopsis protocol proposed by Kempe et al. [18]. This
technique represents each node’s local state as a por-
tion of the complete mass of the network. Following
the property of mass conservation, each node divides
its local synopsis in to multiple shares and pushes (in a
unidirectional manner) the shares to each of its neigh-
bours. In this way, no duplicates are created in the
network and double counting is avoided. Kempe et al.
[18] have shown that under certain conditions, this ag-
gregation technique in combination with uniform gos-
sip is able to achieve exponentially fast convergence
times. Jelasity et al. [17] have extended this basic
epidemic protocol to a push-pull approach where bi-
directional information exchange occurs during each
iteration of the protocol. This technique avoids prob-
lems in the unidirectional approach where more cen-
tral nodes in the network may potentially attract more
“weight” towards themselves than others.

3.1.3 Routing Protocol
Separate from the aggregation technique is the mechanism

used to disseminate information throughout the network.
Here we discuss different routing protocols used in current
work.

Unstructured

• Flooding: A naive approach to propagating data in
the network is flooding. Flooding involves sending
data in an epidemic fashion, whereby the source node
sends to all of its neighbours, who then send to all of
their neighbours. This process repeats until either all
nodes in the network have received the data or a cer-
tain distance from the initiating point (flood depth) is
reached.

• Gossip: Gossip protocols are a scalable form of flood-
ing used to exchange information between all nodes
in the network rather than from a single source. In
gossip, time is divided into a series of rounds. During
each round, each node selects one or more neighbours
to exchange information with. Information propagates
through the network in an epidemic or rumor-spreading
fashion [10]. A commonly used form of gossip is uni-
form/random gossip, where each node chooses one neigh-
bour at random to exchange information with during
each time step.

Gossip protocols are simple, low-overhead approaches
that are highly robust in the face of failure and do not
require error recovery mechanisms [10]. Thus, they are
well suited to computing global statistics.

• Random Walk: Random walks are becoming a popu-
lar approach to performing querying in P2P networks.
They are popular because have the desirable prop-
erty that they reach nodes uniformly at random rather
than biased to high degree nodes. Gkantsidis et al.
[12] make the observation that in connectivity graphs
which are highly clustered or when multiple random
walks are used, the walks reaches a more random sam-
ple of the nodes in the network than flooding.

We propose a variant of random walk in the context
of computing global statistics. Random walk proto-
cols can be thought of as a form a gossip protocol.
To initiate the protocol, a random walk is started at a
random node in the network. One random walk can be
perceived as a package of information moving through
the network. At each time step, the node currently
holding the package performs three actions: (1) it up-
dates its local statistic based on information contained
in the package, (2) it adds its local contribution to
the package, and (3) it selects a random neighbour to
forward the package to. At the next time step, the
new node with the package does the same thing, and
the process repeats. Eventually, all nodes will both
contribute to the package and the package will have
reached all nodes in the network.

Using only one random walk to disseminate informa-
tion may take many iterations to achieve convergence.
In order to speed convergence, multiple random walks
can concurrently exist in the system. In this case, the
random walks can take advantage of cooperation by ex-
changing information between packages. That is, when
a package A arrives at a node, the node processes the
package and forwards it, and when a package B ar-
rives at the same node, sometime in the future, the
node can add information contained in package A to
package B. This technique yields a significant improve-
ment in convergence time compared to the case where
all random walks operate independently, as shown in
Section 6.2.

Structured

Many structured approaches to computing global aggre-
gates have been proposed in the literature [20, 30, 9, 6, 23,
21]. Structured routing protocols typically involve perform-
ing a flood in a network with an assumed structure. Section
3.1.1 discusses this process for the tree or the ring topology
in more detail.

Structured topologies have many advantages for comput-
ing aggregates such as fast convergence times and no double-
counting. However, structured approaches have the major
drawback that they are not robust to failure, which makes
them difficult to deploy in a P2P network.

3.2 Query Types
In this section, we present a classification of the different

kinds of aggregation queries that may be computed over a
peer-to-peer network. An aggregation query is defined as a
function computes a summary of some global information
about the network. In order to better understand the con-
cept of an aggregation query, the query can be thought of
as being computed over a multi-set that is spread across the
entire network, where each node maintains an individual set
that forms part of the global multi-set. We discuss aggrega-
tion queries using this particular analogy.

Extremal Queries: Extremal queries are queries whose
results lie at either extremes of the multi-set on which the
query is posed.

MIN/MAX Queries. MIN and MAX are examples of ex-
tremal queries. As their names imply, MIN returns the
smallest item over the entire multi-set whereas MAX returns

the largest item in the set. The computation of these queries
is semantically different from other queries. In particular,
double counting of values does not affect the correctness of
their results. Although the nodes may contribute multiple
times to the synopsis, the largest value in the network will
always be correctly returned.

The effect of churn on MIN/MAX is also different from
other query types. Given that only a very small subset of
nodes actually maintain the maximum/minimum that is de-
sired for the query, any packet loss or topology change may
only minimally introduce errors in the computation. How-
ever, the latency for such queries may be higher than for
example computing the average as is discussed later. There-
fore, these queries are fairly robust to dynamic changes in
the topology. However, it is important to note that network
reachability is a requirement for such queries since network
partitions can lead to incorrect results.

Non-Extremal Queries: Many useful queries are those
that do not compute extremal values. In general, there are
only a few queries that are used as basic building blocks for
more sophisticated queries. We briefly discuss some of these
queries further.

SUM/COUNT Queries. The two most basic queries are
SUM and COUNT. As their names imply, SUM is used to
compute the sum of all the values over the entire multi-set in
the network. COUNT is a special case of SUM where the set
at each of the nodes essentially contains 1 (i.e. we count the
number of nodes in the network). These queries are dupli-
cate sensitive since double counting can cause an incorrect
final result. Different aggregation techniques uses different
methods to compute these aggregates. Some compute ap-
proximate values (e.g. Sketches) while others compute exact
values (our schemes). Network churn also has a large im-
pact on the results of such queries. Since the loss of any one
value can completely alter the final result being computed,
these queries are highly sensitive to churn rate. In addition,
the latency of computing such queries is generally higher for
more accurate results. Due to these challenges, we explore
the behaviour of such queries in greater depth. In our ap-
proach, we use an ODS mechanism that is able to compute
the exact values for COUNT/SUM queries.

AVG Queries. Another popular query is AVG. AVG com-
putes the average across all the values of the global multi-set.
It is worth noting that average can be computed in many
different ways. In particular, Keshav [19] discusses a tech-
nique where a histogram can be constructed and used for
this purpose. Each portion of the histogram represents a
small range of values that are maintained in a bin of val-
ues within that range. Using this technique, we can provide
more accurate computations of average then simply sum-
ming all the values and dividing by the number of nodes.
Using the histogram approach, other statistics such as quan-
tiles [18], variance, and other moments [17] may be also be
computed. The AVG query is fairly robust given that most
of the values are uniformly close to the real average across
the entire network. If that is the case, very accurate results
may still be returned even during very high churn rates.

Other non-extremal queries such as PRODUCT can also
be implemented by extending any of the queries discussed
here.

Hybrid Queries Another important class of queries has

emerged that combines aspects extremal and non-extremal
techniques for query computation.

Top-K Queries. Top-K or Iceberg queries typically return
the Top-K values from the multi-set that constitute the top
values given a particular property or attribute under consid-
eration (e.g. the top K most replicated music titles). These
queries can be implemented using previously discussed query
types.

Top-K queries can be computed using the histogram ap-
proach previously discussed. In particular, the Top-K en-
tries can be the computed by considering the bins that con-
tain the K highest entries and returning the values contained
in those bins. The query could also be adapted to find all
values that occur above a certain threshold T by considering
only those bins that contain values higher than T.

3.3 Change Model
A variety of events can lead to the staleness of global

statistics. These events can be classified into one of the
following.

• Node Join: When a new node joins the network, its
presence or data may change the global statistic in the
network.

• Node Leave: When a node leaves the network, its de-
parture will remove data from the network, which may
affect the global statistic.

• Node Failure: A node failing has the same impact on
the network as a node leaving, however a failure must
be detected, whereas node leaves could be announced.

• Link Failure: Links failing in the network could dis-
rupt the computation of the global statistic, or in the
worst case, cause a network partition which isolates
two sets of nodes from each other. In this case, the
global statistic will need to maintained as accurately
as possible.

• Data Change: A node’s data may change, causing the
global statistic to become inaccurate.

4. INCREMENTAL APPROACH
In this section, we outline our approach to maintaining up-

to-date global statistics. We introduce incremental versions
of flood, gossip and random walk and propose an update
algorithm to decide when to send updates.

4.1 Incremental Routing Protocols
In this section, we propose three new versions of exist-

ing routing protocols which are well suited to performing
updates of global statistics. We first discuss the general dif-
ferences between traditional approaches and our proposed
incremental approaches.

• Maintaining Global Statistics using Existing Tech-
niques:

Techniques in the literature for computing global sta-
tistics either do not address the issue of staleness or
deal with it in one of two ways. The first approach re-
lies on eventual convergence; if a change occurs in the
system, the protocols continues to execute and eventu-
ally the update is propagated throughout the system.

Figure 2: An incremental update message is propagated

throughout the network in an epidemic fashion.

This approach of indefinitely executing the protocol,
as pointed out in the introductory section, is com-
pletely oblivious to the rate of updates in the system,
and could potentially waste resources. The second ap-
proach to dealing with staleness of global statistics is
to completely drop the statistic at each node and per-
form a complete re-computation [17]. This approach
is necessary in schemes like ODI [23], sketches [9], and
push-synopsis [18] due to the inability of a node to
determine if it has contributed to a synopsis or not.

Neither of these two approaches is desirable for up-
dating global statistics. Dropping the entire statis-
tics not only incurs high overhead to perform a re-
computation, but also creates a situation where the
global statistic at each node is in a constant state of
flux. If the global statistic isn’t available when it is
needed, this approach defeats the purpose of comput-
ing the statistic. Similarly, if an update occurs in a
relatively stable system, it is more efficient to run an
update protocol rather than rely on eventual conver-
gence by performing the global statistic calculation in-
definitely, as we show in section 6.2.

• Maintaining Global Statistics using Incremen-
tal Techniques:

We propose an incremental approach to updating global
statistics. Rather than relying on eventual conver-
gence of the update or dropping the statistic and re-
computing, we propose to use a protocol specifically
designed to propagate an update throughout the sys-
tem, when it occurs. Figure 2 illustrates an example
of this process. As discussed in the introductory sec-
tion, our approach is update-aware and performs bet-
ter for maintaining the global statistic than existing
techniques, in stable and semi-stable networks.

We propose the following incremental techniques.

• Incremental Flooding: In order to compute a global
aggregate at all the nodes, traditional flooding works
by having every node flood over the entire network. We
propose an incremental version, where, if an update oc-
curs at a node, only that node floods an update mes-
sage throughout the network. Much like traditional
flooding, this is also a naive approach to solving the
problem, but provides perspective and insight into the
problem, as discussed in section 6.

• Incremental Gossip: Our incremental approach to
gossip maintains the simplicity of traditional gossip,

where each node chooses one random neighbour to
send data to at each time step. In the incremental
version, the statistic is never dropped, and gossip is
only performed when an update occurs. That is, once
the global statistic has converged, communication is
stopped. When an update occurs at any node, gos-
sip is initiated at all of the nodes and is run until the
update has propagated throughout the network.

• Incremental Random Walk: We also propose an
incremental version of our proposed random walk scheme.
In this scheme, when an update occurs, instead of
starting random walks at random nodes in the net-
work, all of the random walks are initiated from the
update point, and contain update-specific contents.
This is equivalent to the updated node “sending out”
packages to its neighbours containing its update. The
neighbours receiving the packages then perform the
non-incremental random walk protocol as described
above, until the network has converged. When mul-
tiple updates occur simultaneously, multiple random
walks will be initiated from multiple points in the net-
work.

4.2 Update Algorithm
Separate from using an incremental routing protocol to

update global statistics, is the update algorithm used to
decide when to send an update. In some situations, when
an event in the system causes the global statistic to become
stale, it may not be desirable to initiate the update protocol.
Consider the case of computing a global average across the
network Suppose a node which contains a value very close
to the average, leaves the network. In this case, the node’s
departure will have much less impact on the global statistic
than if it were to contain an extreme value.

An update algorithm refers to the decision of whether or
not to send an update when an event has occurred which
could potentially change the global statistic. In the above
example, an update algorithm could use a significance thresh-
old to decide if an update should be sent. For example, if the
difference between the node’s value and the global average
is below a threshold, the change is regarded as insignificant
and no update is sent. If the value is above the threshold,
then an update is sent. This threshold can be a pre-specified
value or can be adapted over time. Pseudo-code for this
combined with our incremental update protocol is shown in
Figure 3.

5. ASSUMPTIONS

5.1 Problem Assumptions
We wish to study how different routing protocols can be

used to maintain global statistics. We do this by keeping
all other aspects of the problem constant while varying only
the routing protocol. We have chosen is methodology in
order to minimize the potential impact of such dimensions
of the problem on our results. These choices can be stated
as the assumptions we make in our approach to address the
problem of maintaining up-to-date global statistics.

• Network Topology: Clique. A clique topology suf-
ficiently captures the behaviour of the routing proto-
col without introducing a bias in the results due to the

Incremental Random Walk Update Algorithm

i) At each Updated Node: (At any given time t)

1. Recompute global statistic Gt, based on local update.

2. Compute update difference Ut = Gt − Gt−1

3. if Ut > D, where D is the significance threshold, initi-
ate update routing protocol, else do nothing.

ii) At each Non-Updated Node: (At any given time t)

1. Upon receipt of a package A, check to see if already
contributed to package. If so, proceed to step 3.

2. Update package A with local contribution.

3. Check to see if local state contains other more up-to-
date information than package A. If not, proceed to
step 5.

4. Update package with more up-to-date local state.

5. Use routing protocol to re-send package A to neigh-
bour(s).

Figure 3: Pseudo-code for updates using our incre-
mental random walk protocol with our update algo-
rithm

characteristics of the topology. In addition to using a
clique topology, we also perform a sensitivity analysis
using Power-Law Random Graphs.

• Aggregation Mechanism: Order and duplicate
sensitive with exact results. Although comput-
ing exact aggregates requires more state than approx-
imate approaches, computing exact aggregates elim-
inates the unpredictability associated with using ap-
proximate techniques such as ODI or push-synopsis.

• Query Type: SUM. We consider only the SUM ag-
gregate as it is a foundation on which many other
queries can be built. This query is more challenging
to compute, since it is much more sensitive to the dy-
namics of the network, as discussed in section 3.2.

• Update Algorithm: Always send updates. To
improve efficiency of updating global statistics, we use
the threshold mechanism to decide when to send up-
dates. In this work, we choose to always send up-
dates, which is equivalent to maintaining a significance
threshold of zero in our algorithm presented in Figure
3.

• Change Model: Data Change. Modeling data
change at nodes is sufficient for our analysis of accu-
racy, cost, and convergence time (discussed in section
6.1). In future work which will also analyze robustness,
it will be necessary to model node and link failures as
well.

5.2 Environmental Assumptions
We also briefly list some assumptions we make about the

operating environment in order to simplify the construction
and analysis of our schemes. These assumptions are dis-
cussed further:

1. Peer-to-Peer File-sharing Environment: We an-
alyze the performance of our incremental scheme in
the context of a peer-to-peer file sharing environment.
Therefore, we do not consider power-constraints, band-
width, minimal storage and other limitations inherent
in other scenarios. Instead, our study explores the
performance of our scheme in isolation and provides
groundwork for extension to more sophisticated sce-
narios.

2. Non-malicious Peers: We assume that peers coop-
erate with each other and do not behave maliciously.
Existing research has already addressed methods of
dealing with malicious peers in the context of comput-
ing global statistics [16].

3. Uniform Data Distribution: We assume that data
changes in the peer-to-peer network are uniformly dis-
tributed across the entire system. Therefore, for sim-
plicity in analysis, we do not consider hotspot changes
within the network. This provides a worst-case for our
analysis as multiple updates can be treated as one us-
ing our incremental approaches. However, it has been
observed in existing systems that the majority of data
changes occur at a small percentage of peers, due to
the free-rider problem [4].

4. Batched Data Changes: Data changes in our study
are modeled sequentially. That is, data changes and
the running of the incremental update scheme do not
happen concurrently. This is a requirement for obtain-
ing bounds on protocol convergence time. Kempe et al.
[18] show that the Push-Synopsis protocol converges
exponentially fast in the face of failures, only if these
failures do not occur concurrently with the execution
of the protocol. We also maintain this assumption in
order to simplify our analysis.

5. Globally Synchronized Protocol: For simulation
purposes, all peers are globally synchronized and our
protocol proceeds in the form of rounds. In each round,
peers exchange information with and perform local ag-
gregations before the end of the round. This process
continues in a globally synchronized fashion. This as-
sumption is only made for analytic simplicity and does
not affect the correctness of our proposed techniques.

6. Identical Peer Configurations: We assume that
the peers maintain identical configurations and are
identical in every way. We also assume that peers
possess enough resources to compute and store infor-
mation as necessary for the computation of global sta-
tistics. This is a reasonable since the amount of data
and processing power required extremely small relative
to the capacities that individual nodes in P2P system
typically have on the Internet today.

7. Uniform Network Characteristics: Finally, we also
assume that the network itself has stable and uniform
characteristics throughout. This assumption allows us
to concentrate on the performance of the proposed in-
cremental schemes in isolation, as we do not model
network-level inconsistencies such as packet loss and
congestion.

6. SIMULATIONS
In this section, we study the performance of our proposed

incremental algorithms as well as existing naive drop and
recompute schemes presented in the literature. Section 6.1
discusses the simulation methodology we use for our com-
parisons along with the metrics that are used in order to
gauge the performance of each of the schemes. Section 6.2
presents our simulation results for different scenarios.

6.1 Simulation Metrics
We have implemented a compact simulator in C that al-

lows us to experiment with many different network topolo-
gies, aggregation schemes, and routing protocols. Our focus
is on the routing protocol component, within which we com-
pare our incremental techniques with traditional epidemic
protocols. We use the following performance metrics for our
comparison.

Accuracy. We use the mean error in the local esti-
mate of the global aggregate to quantify the accuracy of
each of the schemes. The mean error is defined as et =
1
N

1
mt

P
|m̂t − mt|, where m̂t is the local estimate of the ag-

gregate, mt is the true value of the aggregate, and N is the
total number of nodes in the network. The closer this value
is to zero, the closer the local value is to the actual value in
the network. The two factors that affect accuracy are the
aggregation technique and, for the incremental schemes, the
update algorithm.

Protocol Cost. The cost of a protocol can be determined
by its message overhead. Message overhead is the number
of messages expended by the protocol to converge to the
correct value. Cost can also include the size of the message
and the amount of state that needs to be maintained at each
node in the network. However, since the message size and
state are components of the aggregation mechanism, we do
not consider them in our cost function, as we are focusing
exclusively on routing protocol. The factors that primarily
affect cost are the aggregation technique and the routing
protocol.

Convergence Time. The convergence time of the proto-
col is a measure of how fast the protocol is able to converge
to the correct value of the aggregate. Convergence time is
measured in terms of the number of rounds until conver-
gence, where each round represents a fixed time interval in
which a node or set of nodes gossip amongst each other2.
More abstractly, the convergence time itself is defined as an
epoch of time which varies for different protocols. We de-
fine the relevance of epochs further as we present our results
in section 6.2. The factors that affect the time for conver-
gence include the aggregation technique, routing protocol,
and topology.

Robustness. The robustness of each of the schemes is
characterized by the protocol’s resilience to node/link fail-
ures and high-churn rates in the network. Since our change
model only considers changes to the data at individual peers
and does not consider node/link failures or node joins, we
defer simulating such changes as part of future work. The
robustness of the protocol depends fundamentally on the
routing protocol and the underlying routing topology. Al-
though we do not directly address robustness in our study,
we present a sensitivity analysis which shows that our tech-

2The actual length of the round depends on the underlying
transmission medium and is therefore not explicitly assigned
in our simulations

niques apply to larger and more sophisticated topologies as
well as simple cliques.

In each of our simulations, we report the average mea-
sure over 500 epochs to minimize statistical variation in our
results. In order to analyze the affect of updates on the
system, we begin our simulations with a stable network, i.e.
the global statistic has converged. Once the network has
converged, we induce updates at a specific number of nodes
and observe the behaviour of the epidemic protocol. Un-
less otherwise indicated, our network size includes 512 peers
that participate in the protocol; and for incremental random
walk schemes, we use a total of 512 random walks.

6.2 Simulation Results
We have chronologically divided our results into separate

sections in order to distinguish between the importance of
each result. Specifically, we have categorized our results
into the following: (1) incremental techniques vs. full re-
computation approaches, (2) incremental routing protocols,
(3) multiple random walk analysis, and (4) protocol sensitiv-
ity analysis. Each result logically follows from the previous
result.

In our simulations, each peer maintains a single value that
it contributes to the entire global statistic of the network.

6.2.1 Incremental vs. Re-computation
Here we show that incremental techniques are better than

re-computation techniques for semi-stable networks.

2 4 8 16 32 64 128 256 5121

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226
Time (Round Number)

M
ea

n
Er

ro
r

Random Walk Incremental Random Walk Number of Updates

Figure 4: Accuracy of random walk protocols as updates

are made in the system; the points at the top of the graph

indicate the number of updates injected into the system

at that point in time.

Accuracy. We compare our incremental techniques with
re-computation schemes and present our results for accuracy
in Figures 4 and 5. Here we compare the accuracy over time
of each scheme. An epoch in this graph is the time between
injecting updates into the system and the time it takes for
the error of both schemes to drop to zero. Figure 4 indicates
that the incremental random walk protocol has almost neg-
ligible error for very small amounts of updates when com-
pared to the re-computation version of random walk which
continually jumps to almost 100% when data changes are in-
troduced in the system. Gossip-based and flood techniques
(Figure 5) exhibit similar trends. In general, we see that as
the number of updates increases in the system, the effective-
ness of the incremental approach decreases. However, for a

2561 512162 4 8 32 64 128

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (Round Number)

M
ea

n
Er

ro
r

Flood Incremental Flood Number of Updates

Figure 5: Accuracy of flooding protocols as updates are

made in the system.

moderate number of updates (e.g. 256 updates/epoch), in-
cremental techniques remain superior in terms of accuracy.

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60
Number of Updates

C
on

ve
rg

en
ce

 T
im

e
(N

um
be

r o
f R

ou
nd

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

N
um

be
r o

f M
es

sa
ge

s

Gossip Incremental Gossip Incremental Gossip Messages Gossip Messages

Figure 6: Impact of updates on performance of gossip

protocols.

Convergence Time. From the left axis in Figure 6, we see
that our incremental gossip scheme reduces the convergence
time by as much as 20% over traditional gossip for small
numbers of updates. In the re-computation scheme, since
peers drop and recompute the summary, the re-computation
scheme takes longer to converge. The relative effectiveness
of incremental schemes drops off as the number of updates
increases. This is due to the observation that as the number
of updates is increased (e.g. to point where every node is
updated), a full re-computation is unavoidable. Random
walk results (Figure 7) follow similar trends; we achieve a 2.9
times improvement in convergence time for a small number
of updates, and a decrease of 68% even for large numbers
of updates. Flood maintains the fastest convergence times
since updates are instantaneously sent to all nodes in the
clique. Incremental flood and flood perform identically.

Protocol Cost. The right axis in Figure 6 represents the
total number of messages transmitted throughout the run-
ning of the protocol until convergence. We observe that in-
cremental gossip has less message overhead than traditional
gossip since it requires additional rounds to converge, due
to re-transmitting previously dropped statistics. However,
for larger number of updates, since almost all the data in

0

5

10

15

20

25

0 10 20 30 40 50 60
Number of Updates

C
on

ve
rg

en
ce

 T
im

e
(N

um
be

r o
f R

ou
nd

s)

0

10000

20000

30000

40000

50000

60000

70000

80000

N
um

be
r o

f M
es

sa
ge

s

Random Walk Incremental Random Walk
Incremental Random Walk Messages Random Walk Messages

Figure 7: Impact of updates on performance of random

walk protocols.

the network is being modified, dropping and re-computing
the entire global statistic requires approximately the same
number of messages than the incremental schemes.

Random walk results (Figure 7) exhibit much larger dif-
ference in the number of messages. The primary reason for
this variation is due to the way in which our incremental
scheme behaves. Since our scheme explicitly propagates up-
dates from the update point instead of from random points
in the network, the number of messages required to carry
the update to all the nodes in the network is substantially
reduced. Therefore, for random walk, our incremental ran-
dom walk scheme provides significant cost savings.

For flooding schemes, the number of message is determin-
istic. In our incremental flood scheme, since updates always
propagate from the update point, and since we assume an
underlying clique topology, the message overhead for incre-
mental flood is equal to the number of peers in the network
N . However, in traditional flood since each peer floods to all
of its neighbours, the message overhead is N2. Therefore, in-
cremental flood is more cost effective than traditional flood.

As our results indicate, all our proposed incremental schemes
outperform the corresponding traditional re-computation schemes
in all dimensions when the number of updates are moder-
ate. We present similar results on more complex topologies
in section 6.2.4.

6.2.2 Comparing Incremental Routing Protocols
We provide a comparison of the different incremental rout-

ing protocols, proposed in Section 4.1. Since we are using
order and duplicate sensitive techniques to achieve exact re-
sults, the accuracy is the same for each of the incremental
routing protocols. Therefore, it is unnecessary to compare
routing protocols using this metric.

Convergence Time. Figure 8 presents a comparison of the
convergence time of incremental gossip, random walk, and
flood. Since the underlying topology is a clique, the con-
vergence time for flood is one since each update is flooded
to all of the nodes in one time step. Therefore, flood pro-
vides the lowest convergence time in comparison to the other
approaches, but comes at a significant cost, as show next.

Incremental random walk performs the next best for a
moderate number of updates, outperforming incremental
gossip by up to 50%. This improvement is due to the ef-
fective update-specific propagation mechanism used in in-

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120
Number of Updates

C
on

ve
rg

en
ce

 T
im

e
(N

um
be

r o
f R

ou
nd

s)

Incremental Gossip Incremental Random Walk Incremental Flood

Figure 8: Impact of updates on convergence speed of

incremental protocols.

cremental random walk. Since update messages are initi-
ated by the updated nodes, the update spreads more effec-
tively through the network than in incremental gossip. In in-
cremental gossip, since communication is not update-aware,
many message exchanges do not convey useful information.
However, for a larger number of updates, since the updates
are spread out uniformly across the nodes, the benefit of an
update-aware propagation mechanism diminishes and incre-
mental gossip begins to perform better. This is evident from
the point at which the two cross on the graph. Therefore,
when the number of updates is high, such as in a chaotic
system, it is more desirable to use incremental gossip.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120
Number of Updates

N
um

be
r o

f M
es

sa
ge

s

Incremental Gossip Incremental Random Walk Incremental Flood

Figure 9: Impact of updates on cost of incremental pro-

tocols.

Protocol Cost. Figure 9 illustrates the message overhead
of our three incremental techniques. We see that the flood-
ing scheme performs poorly since each individual update is
flooded out to all of the nodes. Therefore, the overhead for
flooding is approximately NM , where N is the number of
peers in the network and M is the number of updates that
have been introduced in the system in a given epoch.

Since incremental gossip is not update-aware, the mes-
sage overhead is approximately independent of the number
of updates. The message overhead in incremental random
walk increases in the same fashion as the convergence time,
as more messages are required to propagate more updates.
The point at which the random walk curve crosses the incre-

mental gossip curve is the same point as on the convergence
time graph. Therefore, we see that the message overhead of
the protocol is directly related to the convergence time.

We observe that for a moderate number of updates, incre-
mental random walk outperforms incremental gossip both
in convergence time and message overhead. However, as the
number of updates increase (i.e. as the system becomes more
chaotic), incremental gossip performs better. This leads us
to believe that a hybrid scheme may be more suitable to
achieve better overall performance. We discuss possibilities
for such an approach as part of future work.

6.2.3 Effect of Multiple Random Walks
In this section, we analyze the affect of multiple random

walks on the performance of incremental random walk. We
provide these results as an extension of our study on incre-
mental random walks. As discussed in the previous section,
we do not consider accuracy for these set of results. Based
on previous results, we have chosen to fix the number of
updates to 16. We then compare the performance of each
scheme with different network sizes. This allows us to gauge
how well the scheme is able to scale up to larger networks.

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500
Number of Peers

C
on

ve
rg

en
ce

 T
im

e
(N

um
be

r o
f R

ou
nd

s)

32 Walks 64 Walks 128 Walks 256 Walks 512 Walks

Figure 10: Effect of increasing number of random walks

on convergence time

Convergence Time. Here we analyze how fast the scheme
is able to converge with different numbers of walks initiated
from the update points. Figure 10 illustrates our results.
We observe that for large network sizes and a small num-
ber of walks (e.g. 32), doubling the number of walks re-
sults in approximately a 50% decrease in the convergence
time. However, we see diminishing returns as we continue
to double the number of random walks for a fixed network
size. We hypothesize that the initial increases in number
of walks cause a large decrease in convergence time since a
larger number of walks can be used to propagate the up-
dates through the network. However, after a point, over-
provisioning the number of walks does not provide signifi-
cant benefit since the network has become saturated by the
random walks. Nevertheless, we see a significant decrease in
the overall convergence time as the number of random walks
increases.

Protocol Cost. In Figure 11, we see that increasing the
number of random walks does not significantly increase the
message overhead. We observe that for a 16 fold increase in
the number of random walks (e.g. using 512 vs. 32), we see
only a 55% increase in the message overhead. This is an un-

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500
Number of Peers

N
um

be
r o

f M
es

sa
ge

s

32 Walks 64 Walks 128 Walks 256 Walks 512 Walks

Figure 11: Effect of increasing number of random walks

on message overhead

expected result since increasing the number of walks would
seem to increase the message overhead. However, since our
scheme is co-operative, where multiple random walks are
able to carry updates for each other, resulting in reduced
the convergence time and thus reduced message overhead.

These results are encouraging and indicate that increased
performance is achievable by utilizing multiple random walks.
Although we don’t specifically present results for robustness,
we hypothesize that multiple random walks are more robust
then a single random walk. Since multiple random walks al-
low multiple nodes to receive updates concurrently, a failure
of a fraction of peers in the system can still allow the up-
date to be propagated successfully, given that the network
has not been partitioned. This justifies our use of multiple
random walks in the results presented earlier.

Node Values: Degree
0

0

1

2

3

3

4

5

6

6

7

8

9

9

10

11

12

Figure 12: Sample 100 node PLRG topology, generated

using BRITE. The line graph on the left represents the

frequency of node degrees.

6.2.4 Effect of Topology
We now perform a sensitivity analysis of our schemes by

executing our schemes on more complex topologies. For such
topologies, we have employed power-law random graphs (PLRGs),
discussed in section 3.1.1. We used the BRITE [22] topol-
ogy generator to construct such topologies. An example of
a PLRG generated by BRITE for a network of size 100 is

presented in Figure 12. Due to space limitations, we omit
results for flooding protocols.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500
Number of Updates

C
on

ve
rg

en
ce

 T
im

e

0

10000

20000

30000

40000

50000

60000

70000

80000

N
um

be
r o

f M
es

sa
ge

s

Incremental Gossip Gossip Incremental Gossip Messages Gossip Messages

Figure 13: Performance of gossip protocols in a network

with complex topology.

0

10

20

30

40

50

0 100 200 300 400 500
Number of Updates

C
on

ve
rg

en
ce

 T
im

e
(N

um
be

r o
f R

ou
nd

s)

0

10000

20000

30000

40000

50000

60000

70000

80000
N

um
be

r o
f M

es
sa

ge
s

Incremental Random Walk Random Walk Incremental Random Walk Messages Random Walk Messages

Figure 14: Performance of random walk protocols in a

network with complex topology.

In Figures 13 and 14, we see that the relative performance
of incremental gossip and incremental random walk is virtu-
ally the same as the results presented using a clique. Our in-
cremental schemes outperform the re-computation schemes
in all cases. However, the statistical variation in the re-
sults is higher for these experiments than they are for the
clique topology. Due to the heavy-tailed distribution of
node degrees, the average degree a node is low. We hy-
pothesize that if, in the early rounds of the protocol, very
high-degree nodes are encountered, the convergence time
decreases sharply since the node is able to disseminate in-
formation to other nodes much faster. However, since the
dissemination is inherently random, the protocol may not
encounter high-degree nodes later in the execution of the
protocol, and it will take much longer to converge, resulting
in long convergence times and high message overhead. Nev-
ertheless, in the average case, we see that the trends from
the clique topology carry over to PLRG-like topologies.

7. RELATED WORK
The work presented in this paper focuses on supporting

consistency of global statistics for P2P networks. To the

best of our knowledge, no other study has been done that
specifically addresses this problem for global statistics. How-
ever, since this work overlaps with a number of different
fields, including global state maintenance and gossip-based
dissemination and aggregation, we provide an overview of
the most relevant work in these areas.

Global state maintenance in traditional centralized or small-
scale distributed systems is a well-studied problem. The
most well-known technique is the Chandy-Lamport Snap-
shot protocol [8]. Although this protocol has some very
interesting theoretical properties, it is not suitable for large
scale distributed environments such as P2P systems since
it does not support intrinsic characteristics of such systems
such as massive distributions and high-volatility. Therefore,
its applicability is limited in such scenarios and other tech-
niques are required.

There has been a recent interest in using gossip-based pro-
tocols for computing global statistics in P2P systems [23, 18,
9]. Many techniques have been proposed that support such
computation for both traditional peer-to-peer networks op-
erating across the Internet as well as recent P2P wireless
ad hoc networks that operate under more constrained con-
ditions. In our work, we focus on the former and assume
the use of a P2P file-sharing application3 (as discussed by
Zaharia et al. [29]).

Many gossip-based systems have been proposed that as-
sume a structure/hierarchy (e.g. Tree or DAG) on the nodes
in the network in order to allow easy aggregation of statistics
[20, 30]. These techniques have been shown to scale well,
however, they do not meet the robustness requirement of
P2P systems and require excessively high amounts of main-
tenance overhead during at even moderate volatility rates.
Recently, unstructured techniques, such as random gossip,
have been extensively studied to combat these problems and
our work follows such trends.

Flooding techniques have been investigated in order to
meet the robustness requirement. However, studies have
shown that flooding does not provide fast convergence times
in grid-like networks [18]. Other intelligent flooding ap-
proaches like directed diffusion [14] have also been proposed
that are able to direct specific kinds of information between
different nodes. However, even for these techniques, no
theoretical bounds on convergence times have been shown.
Recently, probabilistic propagation mechanisms have been
studied that aim to improve on the drawbacks of flooding.
Kempe et al. [18] have proposed a linear-synopsis approach
that uses uniform/randomized gossip (push-synopsis) for in-
formation dissemination to compute global statistics. They
provide theoretical results showing that such protocols are
able to converge exponentially fast. Boyd et al. [7] have also
shown that a Semi-Definite Program mechanism can be used
to construct optimal randomized gossip protocols. Jelasity
et al. [17] extend the push-synopsis approach and propose a
push-pull technique that supports a weaker network connec-
tivity model. They also provide empirical results support-
ing the performance of their technique. However, neither of
these works address consistency of the computed statistics
and simply advocate re-computing them at fixed intervals
(automatic restarting). Zaharia et al. [29] also propose a
similar approach in their study. We have shown in this work
the benefits of an incremental approach and present empir-

3We discuss such constraints and limitations as a part of
future work

ical results quantifying the advantages of such a technique
over a complete re-computation.

Random walks have also been explored for information
dissemination in peer-to-peer networks. Gkantsidis et al.
[12] present both theoretical as well as empirical results to
show that such techniques are highly effective for searching
and network overlay construction. Zhong et al. [31] also
present bounds on convergence times for random-walks in
non-uniform membership peer-to-peer systems. Our work
complements this area since we show that random-walks are
also very effective for incremental information dissemination
of data updates/changes in the network.

Many aggregation mechanisms have also been proposed
in the literature that support the construction of synopses
(sketches) for both order and duplicate sensitive and insen-
sitive techniques for information aggregation (to prevent is-
sues like double-counting). Nath et al. [23] are the first to
introduce the Order and Duplicate Insensitive (ODI) synop-
sis approach that uses a clever FM counting algorithm for
representing synopses. The resulting synopsis is in the form
of a compact bit vector that represents the aggregate statis-
tic. In parallel, Cosidine et al. [9] have also proposed a very
similar sketches technique. Additionally, Kempe et al. [18]
have also proposed an ODI push-synopsis approach that dis-
seminates information by dividing each local synopsis into
individual shares and sending these shares to neighbouring
nodes. On the other end of the spectrum, Order and Du-
plicate Sensitive (ODS) techniques have mostly been used
in the structure-based gossip protocols indicated above. In
this preliminary study, we also adopt an ODS approach and
leave extensions to ODI as part of future work.

8. FUTURE WORK
In this section, we briefly outline some avenues that we

consider as part of future work.
Sophisticated Topologies. In our study, we have con-

sidered only unstructured topologies. We would also like to
investigate other topologies that can be used for computing
tighter bounds on the convergence of the routing protocols
(e.g. TAG, Hypercubes, etc). In addition, we would also
like to investigate the robustness of the protocols on such
topologies. In this regard, we would like to follow the ap-
proach proposed by Kempe et al. [18], who adopt a multi-
path routing technique for added robustness and use FM to
avoid problems of double counting.

Other Aggregation Mechanisms. We are also looking
into investigating other aggregation mechanisms that can
be used to generate aggregate statistics and extend them as
part of our incremental approach. As is discussed by Keshav
[19], we are especially interested in exploring techniques to
enhance the FM counting algorithm proposed by Nath et al.
[23] since it has some nice properties in terms of performance
and cost of the aggregation technique (i.e. compact message
sizes). Since this approach is inherent lossy, it becomes hard
to determine the contributions that have been made to each
of the bit vectors. We propose a delete vector approach that
can be used to support incremental updates to the synopsis.
We leave the details for future work.

Enhanced Change Model. This work only considers
modifications to the data values which is not fully repre-
sentative of the dynamics of peer-to-peer systems. We plan
to study the behaviour of the incremental schemes under a
more realistic change set that incorporates all of the aspects

that we initially proposed in our change model. In doing
so, we hope not only to gain further insight into the perfor-
mance of the schemes, but also to enhance them in order to
deal with the different dimensions of volatility in the system.

Thresholding Schemes. In this work, we only con-
sider the version of the update algorithm that activates itself
whenever any update occurs in the system. Other possibili-
ties include utilizing a thresholding mechanism that decides
when to initiate updates. The threshold can be fixed ahead
of time or can be adapted to changes over time based on the
dynamics of the system (i.e. the degree of churn in the sys-
tem). We do not argue the merits of either approach in this
work and are currently exploring these techniques in greater
depth.

Hybrid Routing. Our simulation results indicate that
a combined routing scheme appears to be more efficient for
maintaining up-to-date global statistics. Specifically, for low
churn rates, we advocate using an incremental random walk
propagation approach. When the churn rate reaches a point
at which the incremental gossip scheme outperforms the
incremental random walk scheme, we switch to the gossip
scheme instead. This allows our work to be easily extended
to chaotic networks discussed in the introduction section of
the paper.

Proactive Updates. As outlined in section 3, maintain-
ing up-to-date global statistics can be classified into proac-
tive and reactive schemes. In this work, we have only con-
centrated on reactive schemes that detect staleness and react
to it. Proactive schemes are more difficult to construct since
they require a priori information about the future state of
the network and peers. If such information is inaccurate,
the resulting scheme may potentially degrade the accuracy
and performance of global statistics computations. There-
fore, these class of schemes must provide a high degree of
accuracy in predicting the future behaviour of the network.
Although this may seem to be an insurmountable task, our
preliminary survey of the area has provided some interest-
ing avenues for further exploration [25], which we plan to
investigate.

9. CONCLUSION
This work has addressed the problem of maintaining up-

to-date global statistics. We first provide a fundamental
classification of the problem domain. We discuss how exist-
ing techniques fit into this classification. Using our classi-
fication, we introduce incremental approaches to maintain-
ing up-to-date global statistics. We also present an evalu-
ation showing that existing techniques, which use a naive
approach, perform poorly in comparison to our incremental
schemes. Using our approach, we are able to reduce conver-
gence times by as much as 50%.

We also show that there exists a point after which it will
be more efficient to use incremental gossip to compute the
global statistic rather than using incremental random walk.
Being aware of this point is important for efficiently main-
taining freshness of such statistics, and we propose to inves-
tigate a hybrid routing scheme in the future.

To the best of our knowledge, this is the first serious treat-
ment of incremental approaches to maintaining freshness of
global statistics in P2P systems. Our ongoing efforts include
evaluating the other aspects of the problem as well as our
proposed hybrid solution.

Acknowledgements
The ideas in this work owe much to ongoing discussions with
Dr. Srinivasan Keshav.

10. REFERENCES
[1] Gnutella. http://www.gnutelliums.com/.

[2] Kazaa. http://www.kazaa.com.

[3] Text Retrieval Conference (TREC).
http://trec.nist.gov.

[4] E. Adar and B. Huberman. Free riding on gnutella,
2000.

[5] N. Bailey. The Mathematical Theory of Infecious
Diseases and its Applications. Hafner Press, 1975.

[6] W. Balke, W. Neidi, W. Siberski, and U. Thaden.
Progressive distributed top-k retrieval in peer-to-peer
networks. In Proceeding of 21st International
Conference on Data Engineering (ICDE), April 2005.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Gossip algorithms: Design, analysis and applications.
In Proceedings of INFOCOMM 2005, March 2005.

[8] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Trans. Comput. Syst., 3(1):63–75, 1985.

[9] J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate aggregation techniques for sensor
databases.

[10] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. SIGOPS Oper. Syst. Rev., 22(1):8–32,
1988.

[11] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput.
Syst. Sci., 31(2):182–209, 1985.

[12] C. Gkantsidis, M. Mihail, and A. Saberi. Random
walks in peer-to-peer networks. In Proceedings of
INFOCOMM 2004, March 2004.

[13] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and
D. Suiu. What can databases do for peer-to-peer? In
WebDB 2001.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed diffusion: A scalable and robust
communication paradigm for sensor networks. In
Proceedings of ACM/IEEE International Conference
on Mobile Computing and Networking, Aug. 2000.

[15] S. Jain, R. Mahajan, and B. Niswonger.
Self-organizing overlays. Technical report, Washington
University, 2000.

[16] M. Jelasity, A. Montresor, and O. Babaoglu. Towards
secure epidemics: Detection and removal of malicious
peers in epidemic-style protocols. Technical Report
UBLCS-2003-14, University of Bologna, Nov. 2003.

[17] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Journal, 15(5), November 2004.

[18] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information.

[19] S. Keshav. Personal communications.

[20] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad hoc

sensor networks. In Proceedings of USENIX OSDI,
December 2002.

[21] D. Malkhi, M. Noar, and D. Ratajczak. Viceroy: A
scalable emulation of the butterfly. In Proceedings of
the PODC, July 2002.

[22] A. Medina, A. Lakhina, I. Matta, and J. Byers.
BRITE: an approach to universal toplogy generation.
In Proceedings of MASCOTS, Aug. 2001.

[23] S. Nath, P. Gibbons, S. Seshan, and Z. Anderson.
Synopsis diffusion for robust aggregation in sensor
networks. In Proceedings of SenSys ’04, November
2004.

[24] M. T. Ozsu and P. Valduriez. Principles of distributed
database systems. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1991.

[25] S. Saroui, K. Gummadi, and S. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proceedings of the SPIE/ACM Conference
on Multimedia Computing and Networking (MMCN)
2002, January 2002.

[26] S.E.Robertson and S.Walker. Okapi/Keenbow at
TREC-8. In Proceedings of the Eighth Text REtrieval
Conference (TREC-8), pages 151–162, 1999.

[27] A. Sung, N. Ahmed, D. Hadaller, R. Blanco, H. Li,
and M. Soliman. A survey of data management in
peer-to-peer systems, April 2005.

[28] C. Tang and S. Dwarkadas. Hybrid global-local
indexing for efficient peer-to-peer information
retrieval. In Proceedings of the Symposium on
Networked Systems Design and Implementation
(NSDI), June 2004.

[29] M. Zaharia and S. Keshav. Adaptive peer-to-peer
search. In Submitted for Publication, January 2005.

[30] J. Zhao, R. Govindan, and D. Estrin. Computing
aggregates for monitoring wireless sensor networks.

[31] M. Zhong, K. Shen, and J. Seiferas. Non-uniform
random membership management in peer-to-peer
networks. In Proceedings of IEEE INFOCOM, March
2005.

