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ABSTRACT
XML has become the new standard for data integration and
exchange over the Web. So, more and more Web query sys-
tems are being developed for querying XML data over the
Web. As an XML query language, XPath has gained a lot of
popularity due to its simplicity and expressive power. The
performance of a Web query system can be significantly im-
proved by using materialized views. Materialized view se-
lection is a difficult problem that is further complicated by
the nature of the Web. As more data is becoming in XML
format, addressing the view selection problem becomes even
more important for XML Web query systems. In this paper,
we present a novel technique for recommending materialized
XPath views in XML Web query systems. Our approach in-
volves the use of views with minimal overlapping providing
a better utilization of the available storage space in the cen-
tral query server. We use an efficient heuristic algorithm for
choosing the optimal set of views for materialization. The
experimental results presented in this paper show significant
performance improvements resulting from materializing the
views that our algorithm recommends.

1. INTRODUCTION
XML has become a standard for data integration and ex-
change over the Web. As more and more data on the Web
appear in XML format, there is currently a lot of interest in
developing systems for querying XML data on the Web. Ex-
amples of XML Web query systems include Niagara [16] and
Xyleme [19]. Furthermore, several query languages exist for
querying XML data. Due to its simplicity and expressive
power, XPath has become a very popular XML query lan-
guage and an increasing number of Web query applications
are using XPath to query XML data.

A typical Web query system consists of a central query server
and many data sources. Users of the query system submit
queries to the central server. Upon receiving the query, the
central server parses the query and contacts the relevant
data sources. When the central server receives the results
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from the data sources, it merges these results and then sub-
mits the final result back to the user. In an XML Web query
system, incoming queries to the central server are XPath
queries and the data sources store XML data.

There has been a significant work in improving the perfor-
mance of Web query systems. One of such work deals with
speeding up the query processing by storing some XML data
from the data sources on the central server. Thus, when
the central server receives a query, it may supply its re-
sults using the XML data stored in its cache. One way for
storing the XML data in the central server is by using ma-
terialized XPath views. An XPath materialized view is a
pre-computed XPath query result that is stored (or materi-
alized).

Choosing the appropriate materialized views results in sig-
nificant performance improvements in Web query systems.
However, there are many challenges:

1. There is a limited storage space available in the cen-
tral server. The size of XML data stored in the data
sources is large, so only a small portion of it can be
stored in the central server. Thus, it is important to
select the materialized views that will lead to the most
reduction in the total execution time of the most fre-
quent queries.

2. Several characteristics of the Web make view selection
even harder. Obtaining accurate statistics about the
performance of the data sources and the communica-
tion medium may be difficult. Statistics are used to
estimate the execution time of the queries and hence
play a major role in evaluating and comparing the can-
didate materialized views.

3. Several challenges arise due to the nature of XML
data and XPath queries. XML data is semi-structured
data which may have a time varying schema. The
XPath query language is inherently different from the
query languages over relational databases. Further-
more, research on query optimization for XML data
is a relatively new area. We note that the view selec-
tion problem has been studied for relational databases.
However, due to the nature of XML data and XPath
queries, techniques from relational databases may not
apply (or other techniques may perform better) when
addressing the view selection problem for XML data.



The view selection problem can be stated as follows. Given
a workload, i.e. a representative set of queries and their
frequencies, find a set of materialized views such that using
them in the execution of the workload results in a reduc-
tion in the total cost. The selected set of materialized views
should be optimal i.e. it should provide the most reduc-
tion in the total cost when compared with other alternatives
of materialized views. Finally, the size of the materialized
views can not exceed the available space devoted for mate-
rialized views in the central query server.

In this paper, we present a new technique for addressing the
view selection problem for XML Web query systems. Given
a workload consisting of XPath queries and given statistics
about the data sources, our algorithm recommends a set of
materialized views that provides the most improvement in
the total performance of the workload.

To the best of our knowledge, the view selection problem
for XML data and XPath queries is not addressed in the
literature. This is due to the fact that research in the area
of XML query processing and optimization is relatively new.
Addressing this problem results in significant performance
improvements in XML Web query systems. By materializing
the optimal views, the total execution time of the workload
reduces. Furthermore, consumption of network and data
source resources is reduced. If financial costs are incurred
for the consumption of these resources, using materialized
views reduces the total financial costs incurred in querying
the system. In essence, the algorithm presented in this paper
is a novel idea addressing a crucial aspect for improving the
performance of XML Web query systems.

The first step of our algorithm identifies the candidate ma-
terialized views that seem to be relevant to the workload.
Given a workload, we construct a minimal set of views that
can answer all the queries in the workload. We use these
views as our candidate materialized views. By using a min-
imal set of views, we reduce duplicate storage of overlap-
ping XML data. Thus, our candidate materialized views
achieve a better utilization of the available space in the cen-
tral server.

After identifying the candidate materialized views, we apply
a greedy algorithm for enumerating the view subsets. We
assign each candidate view a benefit value based on the esti-
mated total reduction in the execution time of the workload
if the view is materialized. Similarly, we assign each view a
cost value based on the view size. Then, we model the view
selection problem as a Knapsack problem and use a greedy
algorithm for selecting the optimal set of views subject to
constraints on the available size. We use a simple cost model
to estimate the query execution time.

Consider the following motivating example. Assume a Web
query system having five data sources: s1, s2, s3, s4, and
s5. The data sources differ in how fast they return the re-
sults. A representative workload is found to consist of the
following queries, the frequency of each query is shown in
brackets: /s1/a/∗ (0.1), /s1/a/b (0.15), /s2/a/b[c] (0.05),
/s2/a/b[d] (0.12), /s3/a/b ∪ /s3/a/c (0.2), /s3/a/b (0.08),

/s4/a/{b} (0.1), /s4/a/{c} (0.07), /s5/a/b/c5 (0.05), and
/s5/a/∗/c5 (0.08). Note that there is a very large number of

potential candidate materialized views. Assuming that the
central server has an upper bound on the available storage
space, our problem is to select an optimal set of material-
ized views. A sample solution might be {/s1/a/∗, /s3/a/b∪
/s3/a/c, /s5/a/{b}/c}.

The following are the main contributions of this paper:

1. An efficient heuristic algorithm for recommending ma-
terialized XPath views for XML Web query systems.

2. An approach to better utilize the available space in
the central server by recommending materialized views
with minimal overlapping.

3. A generic cost model which can be easily extended
independent of the algorithm.

4. Our experimental results show an order of magnitude
reduction in the total execution time of the workload
when materializing the views recommended by our al-
gorithm.

The rest of the paper is organized as follows. In Section 2,
we give a brief background on the XPath query language
and materialized XPath views. Section 3 is the related work
section. Section 4 presents a formal definition of the mate-
rialized view selection problem along with the assumptions
we make. In Section 5, we describe our algorithm for rec-
ommending the materialized XPath views. We present the
results of a series of experiments in Section 6. Finally, brief
conclusions and future work are provided in Section 7.

2. BACKGROUND
In this section, we first give a brief background on XPath
query language. Then, we describe the materialized XPath
views used in this paper.

XPath [2, 1] is a standard language for querying XML data.
Essentially, XPath views an XML document as a tree with
node labels. An XPath query specifies a pattern for extract-
ing a set of subtrees rooted by nodes that match the pattern.
XPath is only used for querying XML documents and it does
not modify the contents of such documents.

In this paper, we use the following syntax for the XPath
language. It is borrowed from [17]:
q ::= /p | //p | q ∪ q | q − q
p ::= a | {a1, · · · , an} | ∗ | p/p | p//p | p[p] | p[p]
A query q is either an absolute location path of the form
/p or //p, the union of two queries q ∪ q, or the difference
of two queries q − q. An absolute location path /p selects
nodes reachable from the root node through paths matching
a relative location path p. An absolute location path //p
selects nodes matching the relative location path p starting
from any node.

A relative location path p can be a label test a matching
nodes having the label a or a negative label test {a1, · · · , an}
matching nodes with labels other than a1, · · · , an. p can
also be a wild card matching nodes with any label. The
relative location path can also be a concatenation of two



Figure 1: A sample XML document

location paths e.g. p/p and p//p. Finally, a location path
p1[p2] matches nodes reachable through p1 and also having
at least one path matching p2 beneath them. On the other
hand, p1[p2] matches nodes reachable through p1 and having
no path matching p2 beneath them.

The following are several sample XPath queries along with
the results of their execution on the XML document shown
in Figure 1. Consider the query //a which returns all a
nodes no matter where they are in the document. The re-
sult of executing this query is “Data 1, Data 7, Data 8,
Data 10”. Another query is /s1/A which returns all A nodes
that are children of the root node s1: “< a > Data 1 <
/a >, < b > Data 2 < /b >, < c > Data 3 < /c >,
< a > Data 7 < /a >”. The query /∗/A[b]/a returns a
nodes that are children of an A node that is a child of a
root node and has at least one child b: “Data 1”. Lastly,
the query /s1/A/{b, c} returns any child of a node matching
/s1/A such that it is not b nor c: “Data 1, Data 7”.

We note that the intersection operation q1∩q2 is not included
in the definition of the syntax above since it can be computed
by q2−(q1−q2). Similarly, the complement of q can be com-
puted by //∗−q. An example of a query using the ∪ operator
is /s1//a ∪ //B/∗ which returns “Data 1, Data 7, Data 8,
Data 9, Data 10”. Another example involving the set differ-
ence operator is /s1/C/∗− /s1/C/{a} which returns “Data
10.”

The next part of this section describes materialized XPath
views. As in relational databases, materialized XPath views
are used to speed up the processing of queries. A material-
ized view is a pre-computed query whose results are actually
stored (or materialized). Thus, a materialized XPath view
stores the result of the XPath view query statement. For in-
stance, a view /s1//a stores all elements a that are reachable
from a root node s1.

Figure 2: A sample view data structure

To answer queries with a materialized view, the view should
store certain information about its nodes. These include
node references, full paths, typed data values as well as
copied XML fragments [7]. Figure 2 illustrates the contents
of a view storing the XML data shown in the figure. Note
that node references to the XML data are stored since a
query might extract subelements of the view contents. We
note that a view definition language for creating material-
ized XPath views is beyond the scope of this paper.

A materialized view can be used in answering a query when
the query result is contained in the view. The problem of
deciding whether a query can be answered using a view is
referred to as the query containment problem. In [14], the
containment problem is shown to be co-NP complete even
for a restricted class of XPath queries.

A polynomial-time matching algorithm that is sound and
works in most practical cases is proposed in [7] for address-
ing the XPath query containment problem. To determine
whether an XPath query can be answered by a view, the
algorithm is used to check whether the query matches the
view. If there is a match, then this asserts that the view
can be used in answering the query. In this case, the an-
swer to the query needs to be extracted from the view. This
is done by creating a compensation expression that returns
the answer to the query if applied on the view. Consider,
for example, the view /s1/A and the query /s1/A/a. Using
the framework in [7], the query is formally matched to the
view and hence the view can be used to answer the query.
Applying the compensation step, the compensation expres-
sion a can be used to obtain the answer to the query from
the view.

3. RELATED WORK
There is currently a lot of interest in developing query sys-
tems that query XML data over the Web. Examples of such
systems include Niagara [16] and Xyleme [19]. Selecting the
appropriate set of views to materialize in a central server
is important to improve the performance of Web query sys-
tems. This work is a step towards improving XML Web
query systems.

There have been several papers addressing the view selection
problem in relational databases [5, 6, 9, 10, 15, 20]. How-
ever, there are several difficulties for addressing the problem
in XML databases. First, XML data has a semi-structured
schema which may vary with time. The techniques for re-
lational databases assume constant schema. Second, there
does not exist optimizers for XML databases as mature as
the optimizers used in relational databases. XML query



optimization is a relatively new area [13, 18]. Thus, any
technique recommended for selecting materialized views for
XML databases can not rely solely on the existence of effi-
cient optimizers.

The work in [7] presents a matching algorithm that can be
used to decide whether an XPath query Q is contained in
a given view V . The paper also suggests an algorithm for
generating a compensation expression that is applied on the
view to extract the solution to a query. Thus, results of [7]
address the following questions: “Can a view V be used to
answer a query Q”, and “if yes, how to extract the solution
to Q from V ”.

Having a solution to such questions has a significant impact
on our work. First, our algorithm must recommend mate-
rialized views that can be used in answering queries of the
workload. Thus, if a query is not matched to a view using
a matching algorithm such as the one in [7], then the view
should be considered as contributing no benefit at all to the
execution of the query. In other words, estimating the ben-
efit of using a materialized view to answer a query depends
foremost on the query being contained in the view. Second,
our work does not consider partial matching. Thus, if a view
can not be used to provide the full answer to a query but
can provide a partial answer, we can not use the view at all
since there is no algorithm that supports answering queries
using partially matched views.

A related problem to view selection is the view minimiza-
tion which is addressed for XPath queries in [17]. The view
minimization problem is stated as follows: “Given a set of
queries, construct another set of queries such that the an-
swers to the original queries can be constructed from their
answers, and the total size of their answers is minimal”. The
main goal of view minimization is to minimize the data sent
between servers and clients. On the other hand, the main
goal of the view selection problem, addressed in this paper,
is to choose a set of views that minimizes the cost of answer-
ing queries subject to constraints on the storage size of the
views.

The first step in our algorithm for recommending material-
ized views involves finding an equivalent set of queries that
can be used in answering the original workload and the in-
tersection of these queries is minimal. This step aims to
minimize the redundancy of the views by not storing the
same nodes belonging to different queries more than once.
Thus, [17] provides an algorithm that can be exploited in
our work in solving the view selection problem.

Techniques for obtaining statistics about the data sources
are inherently related to our work. Our cost model uses
these statistics in the estimation of query execution time.
In the literature, several techniques for building statistics
for XML data are proposed. Some of these techniques build
statistics for static XML data [3, 8]. Static XML data refers
to data that are in XML files on the Web. This is different
from the “hidden” XML data which sets in databases and
can only be accessed by posing queries over these databases.
Several techniques are proposed for collecting statistics for
the hidden Web [4, 12]. We note that our cost model is very
simplistic and we assume static data sources.

Figure 3: A Central query processing system

To the best of our knowledge, the view selection problem for
XPath queries is not addressed in the literature.

4. PROBLEM DEFINITION
Our goal is to suggest a heuristic algorithm that addresses
the view selection problem. The algorithm suggests a set
of XPath views to be materialized in a central server such
that the total execution time for a set of XPath queries
is minimized. Several solutions are suggested in relational
databases.

To have a better understanding of the complexity of select-
ing the optimal set of materialized views in Web query sys-
tems, we discuss issues relating to a centralized database sys-
tem containing relational data as shown in Figure 3. The
query processor receives queries and executes them using
the central database. Given a workload, the corresponding
view selection problem is to find the optimal set of material-
ized views that can be used to expedite the workload query
processing. The optimal configuration (materialized views)
should respect space constraints i.e. there is a space budget
that restricts the size and number of possible materialized
views. In typical relational database management systems,
the optimizer can be used to estimate the cost of executing
a query using a given configuration. In other words, there
already exists a cost model that can be used in enumerating
the candidate materialized views.

Figure 4 shows an XML Web query system. Here, there are
many nodes (sites). We assume that these sites store XML
data, or wrappers can be used to return data in XML format.
Users can run queries on these sites by accessing a central
query processor. Given a workload, our problem is to find
the optimal set of materialized views that can be cached and
used by the central query processor. Comparing this with a
centralized database system (Figure 4), we can not rely on
the existence of optimizers in the clients that can be used to
estimate the cost of queries. Furthermore, communication
costs between the central server and the clients must be
taken into account. This suggests that we need to develop
our own cost model that can be used to estimate the cost of
executing a query with a given set of materialized views.



Figure 4: An XML Web query processing system

In this paper, we address the view selection problem for
Web query systems involving XPath queries over XML data.
In this section, we first provide a formal definition of the
view selection problem that we attempt to solve. Then, we
discuss several assumptions that we make.

4.1 Formal Definition
A workload in the context of view selection refers to a set
of representative queries and their frequencies. The queries
in the workload are representative of the typical executed
queries in the query system. In our context, these queries are
XPath queries that are to be executed on the data sources.
Thus, a workload can be characterized as a set of pairs:

W = {(qi, fi), i = 1, 2, . . . , n}

where each qi is an XPath query and each fi is its assigned
frequency.

The view selection problem we address can be stated as
follows. Given a workload of XPath queries on XML data
stored in the data sources of a Web query system (Figure 4),
select a set of views to materialize in the central server V =
{V1, . . . , Vm} such that:

1. The total execution time taken by the central server
to process the workload using the materialized views
is minimal.

2. The total space occupied by V can not exceed the
available space devoted to materialized views in the
central server.

More formally, Let C(qi, V ) be the total cost incurred by
the central server in executing qi when the set of views V
is materialized. Note that there can be different measures
for the cost. For example, the execution time of a query
can be used as a cost measure. Another cost measure can
be based on other resource consumptions such as storage re-
sources or financial expenses incurred in accessing the data
sources. A combination of these can also be used as a cost
measure. In this paper, we focus on the execution time as a
cost measure and we use the term “cost of a query” to mean
the total execution time of the query. Note that cost mea-
sures are independent from the view selection problem and
algorithms, thus a different cost measure can be substituted
without any need to modify the algorithms.

Given a workload W = {(qi, fi), i = 1, 2, . . . , n}, our objec-
tive is to find a set of materialized views V such that:

1.

n∑
i=1

fiC(qi, V ) is minimal.

2.
∑
v∈V

Sv ≤ S where Sv is the size of the materialized

view v and S is the space limit available in the central
server for storing the materialized views.

4.2 Assumptions
In addressing the XPath view selection problem for XML
Web query systems, we make the following assumptions:

1. We assume static XML data sources. In other words,
the XML data on the sources are not updated. Other-
wise, the costs incurred in updating the materialized
views in the central server must be taken into account
in the objective cost function.

2. Each data source stores its data in an XML file. The
root element of the XML file identifies the source.
Thus, an XPath query that extracts subelements of
a particular source starts with the source id as the
root node for location paths. For instance, the query
/s1//∗ extracts all elements in the XML file of the
source s1.

3. We assume static workload. In other words, our algo-
rithm recommends a set of materialized views that is
optimal for the queries in a given workload. However,
workload changes happen frequently in a Web query
system. Instead of adaptively recommending a new set
of materialized views when the workload changes, our
algorithm must be re-executed on the new workload.
Even if this is the case, the recommended material-
ized views should still be relatively optimal for minor
changes to the workload.

4. The central query processor applies a matching algo-
rithm to decide if a materialized view can be used to
answer a query [7]. We assume no partial matching.
Thus, a materialized view can not be used at all in
answering a query when it holds partial results to the
query. In calculating the benefit of using materialized
views, a view would provide no benefit at all in an-
swering a query if it does not match the query.

5. Since data sources in a Web query system may not
be completely cooperative, we can not rely on the ex-
istence of optimizers in the data sources to provide
query execution cost estimates. We assume that opti-
mizers present in the data sources do not provide cost
estimates and therefore we develop a simple cost model
to approximate the query execution time at the data
source.

5. HEURISTIC ALGORITHM FOR RECOM-
MENDING MATERIALIZED XPATH VIEWS

The view selection problem is NP-hard even in the case of
no updates [11]. Thus, we focus on developing approxima-
tions and heuristics that recommend a set of materialized



views that is as close as possible to the optimal recommen-
dations. This is similar to the query optimization problem
in databases where the goal is to find a query execution plan
that is as close as possible to the optimal plan, rather than
finding the optimal plan which is proven to be difficult. An-
other result is the avoidance of materialized views that have
no benefits at all.

In this section, we propose a heuristic approximate algo-
rithm that addresses the view selection problem. First, we
present the architecture of our proposed system. Then, we
give a brief overview of the view selection algorithm. Finally,
we discuss the algorithm in details.

5.1 Architecture for Materialized View Selec-
tion

Figure 5 shows the architecture of our approach for view
selection. We assume that the input to the system is a
representative workload for which we need to recommend
materialized XPath views. The key components of the ar-
chitecture are: candidate materialized view selection, view
set enumeration, and the cost model.

Given a workload, the first step is to identify candidate
views. The aim of this step is to prune the large space
of possible materialized views in order to consider a smaller
subset of worthy views for enumeration. The space of pos-
sible views that can be constructed for a workload can be
huge. Consider for instance a query /s1/A/a. The following
views (among many others) are syntactically relevant: /s1,

/s1/A, s1/A/a, /s1//∗, /s1//a, /s1/ ∗ /∗, /s1/A/{b, c}, and
/s1/A/a ∪ /s2/∗. Other views are not relevant at all e.g.
/s2/∗ and /s1/B. Given the large number of possible views,
it is important to eliminate spurious views from consider-
ation early and consider views that are worthy for further
consideration.

Once the candidate materialized views are chosen, the next
step is to identify the optimal subset of these candidate
views. Since the number of candidate materialized views
may be large, there can be a very large number of possible
view subsets that need to be evaluated. Therefore, naive
enumeration of all view subsets may be infeasible. We use a
heuristic algorithm for recommending an optimal subset of
materialized views without enumerating all passible subsets.

In order to evaluate the benefit and cost of using a materi-
alized view in answering a query, the view set enumeration
component uses a cost model for estimating the query ex-
ecution time. The cost model is used to approximate the
query execution time in two cases:

1. A materialized view matches the query and thus is
used in the processing of the query.

2. There is no matching view and hence a data source is
contacted to execute the query and the results need to
be sent to the central server.

Due to the reasons mentioned in Section 4.2, cost model
component should not assume the existence of optimizers at
the data sources to provide cost estimates.

Figure 5: Architecture of the materialized view se-
lection Tool

5.2 An Overview of the Algorithm
Given a workload, we construct a minimal set of views that
can answer all queries in the workload. We use these views
as the candidate materialized views. The intuition behind
using a minimal set of views is to have views that are as dis-
joint as possible in order to better utilize the available space
in the central server by preventing the storage of duplicated
XML data.

After identifying the candidate materialized views, we apply
a simple greedy algorithm for enumerating the view subsets.
We assign each candidate view a benefit value based on the
estimated reduction in the execution time of the workload
if the view is materialized. Similarly, the cost of using a
view is the size of the view. Then, we model the problem
as an application of the classic Knapsack problem where
the objective is to maximize the benefit of all items in the
knapsack.

5.3 Algorithm Details
In this section, we give the details of the three components
of our algorithm. The first component is finding candidate
materialized views. The second component is the cost model
used to evaluate the benefits and costs of the views. The
third component deals with enumerating the space of view
subsets in order to pick the optimal set of materialized views.
Our algorithm recommends this optimal set of materialized
views.

5.3.1 Finding Candidate Materialized Views
Figure 6 shows the algorithm for finding candidate mate-
rialized views. In Step 1, a minimal view set is computed
such that it can answer the original queries of the workload.
An algorithm that computes a minimal view set is presented
in [17]. The intuition behind using a minimal view set is to
have a better utilization of the available space in the cen-
tral server. The answer sets of the queries of the original
workload may have a high degree of overlapping. Since a
minimal view set consists of views that are as disjoint as
possible, storing these views results in eliminating the re-
peated storage of the overlapping parts in the answer sets.
This saving maximizes the amount of XML data that can
be materialized in the central server.

The central query processor should be capable of construct-
ing the answer set for an original query q ∈M by using the
views in M ′. To construct the answer set, the central query
processor uses the techniques such as those discussed in [17].

Some of the views that are needed to answer a query q ∈M
may not be selected in the optimal set, so they may not be



Let M = {q1, . . . , qn} be the queries of the workload.
Let freq(qi) be the frequency of the query qi as specified
in the workload.

1. Transform M into M ′ = {q′1, . . . , q′m} such that
M ′ is a minimal view set that can answer all queries in
M .

2. Assign the frequency values for the views in M ′

using the following rule: “if qi ∈ M requires the merging
of l views in M ′, then add freq(qi)/ l to the frequency
value of each merged view”.

3. Use M ′ as the set of candidate materialized views

Figure 6: Algorithm for finding candidate material-
ized views

materialized. In this case, partial results to the query can be
computed using the materialized views available while the
rest of the results are obtained from the data sources. It is
important to distinguish this from partial matching.

Partial matching is not assumed by our algorithm. Thus, if
a query does not belong to the workload, then one of the
following two cases results when executing the query in the
central query server:

1. One of the materialized views matches the query. This
is the case when the query result is contained in the
view. The containment decision is made by the central
query optimizer which uses a matching algorithm such
as the algorithm in [7].

2. There are no matching materialized views. In this
case, the query results have to be obtained by contact-
ing the data sources and shipping back the results.
Thus, even if a view contains partial results to the
query, the data sources still have to supply the full
results to the query since the central query optimizer
does not support partial matching.

Thus, a view may partially benefit a query that is in the
workload since the central query processor knows the trans-
formation rules used in constructing the minimal view set
from the original workload. However, for queries not in the
workload, the query processor may not be able to apply any
transformation rule and a view can not benefit the query at
all when the view does not match the query.

Step 2 of the algorithm (Figure 6), aims to assign frequencies
to the views q′ ∈M ′. The new frequencies must preserve the
original frequency distribution. Thus, for example, assume
that q1 and q2 are the only two queries in the workload
and that their frequencies are f1 and f2, respectively. Also,
assume that obtaining the results for q1 requires the merging
of q′1 and q′2 where q′1, q

′
2 ∈ M ′. Similarly, obtaining the

results for q2 requires the merging of q′2 and q′3 where q′2, q
′
3 ∈

M ′. Then we assign frequencies as follows: q′1 is assigned
f1/2, q′2 is assigned f1/2 + f2/2, and q′3 is assigned f2/2.

5.3.2 Cost Model
We use a simple cost model to estimate the query execution
time. The execution time of a query can vary depending
on whether there exists a matching materialized view in the
central server or not. In the case that there is a matching
materialized view in the central server, the execution time
can be obtained by invoking the query optimizer of the cen-
tral server. In the other case when there is no matching
materialized view in the central server, the following equa-
tion is used to estimate the query execution time:

Total query execution time = the query execution time at
the data sources + the time for transmitting the results
back to the central server + the query execution time at
the central server

We estimate the query execution time at a data source using
the following formula:

The query execution time at the source = (the size of the
query results at the source [in bytes]) / (the source’s esti-
mated query processing rate [in bytes per second])

Similarly, we estimate the transmission time required to
send the query results from a data source to the central
server using the following formula:

The time of transmitting the results back to the central
server = the size of the query results at the source [in
bytes]) / (the source’s estimated transmission rate [in bytes
per second])

5.3.3 Workload Optimization
After determining candidate materialized views, this step
aims to find the optimal set of these views to be recom-
mended for materialization.

We model the problem of selecting materialized views as a
Knapsack problem and use a greedy algorithm for solving
it. In the Knapsack problem, each object has an associated
“benefit” and “cost”, and the objective is to include objects
in the knapsack such that: (1) the sum of the “benefit” of
the included objects is maximized, and (2) the sum of the
“cost” of the included objects does not exceed a specified
threshold (the size of the knapsack).

In modelling the materialized view selection problem as a
knapsack problem, the objects to be included are the can-
didate views suggested in the first step. The benefit for a
view is the improvement in the estimated execution time of
all queries in the workload that would result when the view
is materialized. The cost value assigned to a materialized
view is the size of the view, in bytes. The size of the knap-
sack is the maximum space available for the materialized
views in the central server. Thus, the objective function is
to maximize the benefit of all views in the knapsack subject
to the constraint on the total available space.

The following defines more formally the benefit of a mate-
rialized view. The benefit of a materialized view is the sum



Figure 7: Elapsed time of executing the workload
with and without materialized views

of the benefits of using the view in answering all queries in
the workload. The benefit of using a materialized view V in
answering a query Q is defined as follows:{

0 if V does not match Q,

net execution time(V,Q) otherwise.

The function net execution time(V,Q) is defined as follows:

(The total execution time ofQ without using a materialized
view − the total execution time of Q using the view V ) =
(The execution time of Q at the data sources + the time
for transmitting the results of Q back to the central server
− the execution time of Q at the central server using V )

Note that the execution time of Q at the central server using
the materialized view V can be obtained by invoking the
central server’s optimizer.

After assigning benefit and cost values to each candidate
materialized view, a greedy solution to the Knapsack prob-
lem can be obtained as follows. At each stage, select the
view which has the maximum benefit-to-cost ratio and keep
accepting views until the knapsack is full.

6. EXPERIMENTAL RESULTS
We designed the experiments with the aim of showing:

• The benefit of using materialized views to answer
queries.

• The effectiveness of our greedy algorithm in finding
the optimal set of materialized views.

• The advantage of applying transformations suggested
by [17] to the original workload in order to minimize
the overlapping between the materialized views.

Figure 8: Comparison of our greedy approach with
random selection among candidates

6.1 Experimental setup
We used Microsoft Visual Studio .net as our programming
environment because of its extensive XML and XPath sup-
port. We used C] as our programming language.

With the consideration of the time limit for this project, we
used relatively small data sources and workload as compared
to a real world scenario. So the experiments are illustrative
rather than exhaustive.

6.2 Benefit of Materialized Views
The goal of this experiment is to show the decrease in the
elapsed time of executing the workload with the materialized
views. The results are as expected and shown in Figure 7.
As we increase the storage limit for the materialized views,
the elapsed time of answering queries decreases. The reason
is that as more materialized views are stored in our central
server, more queries can be answered by using these materi-
alized views reducing the need for going to the data source
where the data originally sit.

6.3 Effectiveness of Our Greedy Approach
Remember that we take the original workload with the fre-
quency information of the queries and apply the transfor-
mations suggested by [17]. Then we have our candidate
materialized views. The goal of this set of experiments is to
evaluate the effectiveness of our greedy algorithm in select-
ing the optimal set of materialized views.

We evaluate the benefit of each candidate materialized view
by considering:

• The frequency of the queries for which this candidate
can be used.

• The size of the results of the queries for which this
candidate can be used.



Figure 9: Comparison of our greedy approach with
random selection among candidates

• The different characteristics of the data sources (We
assume that we are aware of the characteristics of the
data sources such as communication time with the
sources, query processing time of the sources, cost of
using the network and accessing the sources).

We determine the sizes of the candidate views by directly
querying the sources. Actually, we tried to develop some
techniques for the estimation of the sizes of the candidates
by using the original workload, but then our greedy algo-
rithm generally finds sub-optimal solutions due to the im-
precise estimations.

By using the benefit and size of each candidate materialized
view, we find an optimal set of candidates with a greedy
approach. Figure 8 is a comparison of our algorithm with the
random selection among these candidates. What we mean
with random selection is that we arbitrarily select some set
of candidates among the available candidates. We repeat
this random selection process for a number of times. In the
figure, averages of these are shown. In the figure, also the
minimums among these are shown. As can be seen, for most
of the cases, our algorithm finds the optimal set.

Figure 9 shows the results for the same workload and data
sources but with different data source characteristics. In
this case, the random selection gives worse results than the
previous case.

6.4 Advantage of Transformations
We apply the transformations suggested by [17] in order to
minimize the overlapping of data between the candidate ma-
terialized views. Thereby, we avoid storing the same data
more than once, and provide space for storing more materi-
alized views. Figures 10 and 11 justify our claim. Figure 10
compares our algorithm with the one which our cost model

Figure 10: Elapsed time with and without transfor-
mations

and greedy approach are directly applied on the original
workload (without applying the transformations). Figure 11
compares our algorithm with the one which random selec-
tion is done on the original workload (without applying the
transformations). We run the random selection algorithm
for a number of times and the results are the minimums and
averages of these. There are significant differences between
our approach and the other approaches which show the value
of applying these transformations.

Figure 12 shows the results with another workload which
have more intersecting queries (with intersecting queries, of
course we mean the results of the queries are intersecting).
As can be seen, as the intersections between the queries
increase, the value of transformations also increases.

6.5 Discussion
The experiments justify our two important contributions by
showing:

• The value of the transformations.

• The effectiveness in selecting the optimal set of ma-
terialized views.

As shown, transformations make the workload run faster by
providing space for more materialized views. As the inter-
sections between the queries in the workload increase, the
benefit of applying the transformations increases. Also, our
greedy algorithm, with our cost model, is able to find the
optimal set of materialized views for nearly all of the cases.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present an algorithm for recommending
materialized XPath views for XML Web query systems. The



Figure 11: Elapsed time with and without transfor-
mations

algorithm selects views that have minimum overlapping pro-
viding for a better utilization of the available space in the
central server. We use a simple greedy algorithm for enu-
merating the candidate views and choosing the optimal view
set. Our experiments show that materialized views recom-
mended by our algorithm outperform other alternatives.

In the future, we plan to extend our work to handle more
complexities faced in XML Web query systems. Mainly,
we aim to address the view selection problem under less-
restricted assumptions. These include the following:

1. Adding support for dynamic data sources where up-
dates are possible. In this case, costs incurred in up-
dating the materialized views must also be taken into
account.

2. Adding support for dynamic workloads. Thus, when
the workload changes, the algorithm should adaptively
recommend a new set of materialized views.

3. Supporting more complex cost models. One aspect of
a cost model relates to the accuracy of statistics on
the data sources and the communication network. A
future work should take the fuzziness of these statis-
tics over the Web into account. Another aspect of the
cost model is the cooperation of data sources. As opti-
mizers for XML databases become more mature, query
execution time at the data sources can be obtained by
invoking their optimizers.
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