
Supporting Range Queries in Schema-Heterogeneous
Peer-to-Peer Systems

CS856 - Web Data Management - Winter 2005

Mohamed Ali Soliman
School of Computer Science

University of Waterloo

m2ali@cs.uwaterloo.ca

Rolando Blanco
School of Computer Science

University of Waterloo

rmblanco@uwaterloo.ca

ABSTRACT
Current data sharing Peer-to-Peer (P2P) systems provide
minimal or no support for the processing of range queries in
heterogeneous data sources. Query processing is typically
performed by selecting peers hosting data that contain the
attributes in the query. When the data sources are semanti-
cally very close, this attribute-occurrence based selection of
participant peers may not be discriminatory enough – since
the attributes may be contained in most of the peers. In this
work we propose techniques to improve the selection of par-
ticipant peers when processing range queries. We assume
an unstructured P2P system and high semantic common-
ality among data sources. Our proposal is based on the
maintenance of catalogue information at specialised super-
peers. Super-Peers store detailed information that describe
the data at neighbouring peers, as well as summarised in-
formation about other super-peers’ catalogues. By using its
catalogue, a super-peer is able to identify the neighbouring
peers that are relevant to the range conditions specified in
a query. The catalogue also allows the super-peer to route
the query to other super-peers close to peers that may have
data pertinent to the query. We present a storage represen-
tation for catalogue information, and specify how the cat-
alogue and summary information are used and maintained.
Evaluation of several of the proposed techniques is done by
implementing a P2P system using the JXTA framework.

1. INTRODUCTION
P2P systems are massively distributed systems for re-

source sharing. Made popular by the success of file sharing
applications [11, 14, 15], more recent P2P systems attempt
to support sharing of structured data [7, 16, 17, 21]. In a
P2P system that allows to query structured data, a key is-
sue is the identification of peers hosting data relevant to a
given query. The most frequent approach to identify these
relevant peers is to determine if the entities and attributes
in the query occur at the peers’ data sources. In some P2P
systems with no data heterogeneity, peer selection is further
improved by storing summary information of the values for
the attributes in a peer [10]. When the data sources are
semantically close and the queries include range conditions,
the problem of selecting relevant peers is further compli-
cated. Identifying peers with similar entities and attributes
to the ones in the query is no longer an option, since most
of the peers will have data sources that relate to the query.

SELECT product_dim, prod_cost

FROM products

WHERE product_class = ’TV’

AND product_unit = ’INCHES’

AND product_dim BETWEEN 17 AND 21

AND product_cost BETWEEN 100 AND 200

Figure 1: Motivating Example

To motivate the discussion of the requirements that a P2P
system must meet in order to support efficient execution of
range queries, assume a P2P application that allows “store”
peers to sell items on the web. Although no global schema
is imposed in this example, we assume a high degree of sim-
ilarity among data sources. A typical query in the system
may be the selection of the stores that carry a certain prod-
uct within a certain price range. Figure 1 shows an exam-
ple of such a query. For simplicity, we have chosen to use
SQL in the example, but the techniques we propose apply
to non-relational data sources as well. Furthermore, a test
implementation of these techniques uses a XML querying
language, and assumes XML-based data sources. When us-
ing attribute and entity occurrence, most peers will be iden-
tified as relevant to the query in Figure 1. This is due to the
close semantic similarity among data sources. One option to
improve the peer selection criteria is to maintain range in-
formation for the attributes for which range conditions are
commonly specified in queries. For example, range infor-
mation for the attribute product cost could be maintained
in the system. In this case, only peers carrying products
with prices between $100 and $200 would be identified as
containing relevant data for the query. If TVs are only a
small fraction of the products with prices in the $100 to
$200 range, the peer identification strategy is still unsat-
isfactory. Peers selling TVs, as well as peers selling other
products in the desired price range, would be identified as
relevant. Therefore, to better identify the peers relevant to
a query, it is necessary to store not only range information,
but information about the attributes on which the range at-
tributes are functionally dependent. In the example, this
implies storing the price range for each one of the product
classes in the system.

In this work we propose extensions to schema heteroge-
neous unstructured P2P systems to efficiently support pro-
cessing of range queries. The core of our proposal is a cat-

1

alogue framework for the selection of peers relevant to a
given range query. When compared to current approaches,
our catalogue framework improves query processing perfor-
mance in systems such that:

• There is high semantic similarity between data sources
in the system

• There is a very large number of peers

• Location of the data can not be altered

• A high percentage of queries are range queries

• Range conditions are specified for a small subset of
attributes

• Attribute updates happen no more than a few times a
week

• Peers providing data have an incentive to participate
in the system

• Best effort, good enough answers are acceptable

We assume an unstructured P2P system where peers are
connected to super-peers. Super-Peers are specialised peers
that store catalogue information, process queries submitted
by peers, and route queries to promising peers. Catalogue
information at the super-peers is categorised as Super-Peer-
to-Peer (SP-to-P) when it describes the data source from
a particular peer, or Super-Peer-to-Super-Peer (SP-to-SP)
when it summarises the SP-to-P catalogue from another
super-peer. SP-to-P catalogue information is used by a
super-peer to decide if a neighbouring peer stores data rele-
vant to a query. SP-to-SP catalogue information is used to
route a query to a super-peer that may have neighbouring
peers with data relevant to a query. The main contributions
of our work are:

• A distributed catalogue for the efficient processing of
range queries in large P2P systems.

• Techniques for the maintenance and distribution of
catalogue information.

• Strategies to balance the load among the super-peers
maintaining the catalogue

• Implementation of a test bed P2P system and evalua-
tion of several of the proposed techniques.

The rest of this paper is organised as follows. In Section 2
we present other proposals to support range queries in P2P
systems and related work. In Section 3 we present the design
of our catalogue, how the catalogue is constructed and main-
tained, and how it supports the processing of range queries.
In Section 4 we describe enhancements to the catalogue that
allow the distribution of the load among super-peers. The
implementation of a P2P system providing most of the pro-
posed catalogue functionality is presented in Section 5, as
well as some experiments evaluating the techniques. Finally,
conclusions and future work are presented in Section 6.

2. BACKGROUND AND RELATED WORK
Structured P2P systems excel at exact matching queries,

but have hash key distribution and load balancing issues
when used to support range queries. Schema heterogeneity
is an issue in structured systems as well, since most of these
systems assume a single global schema. Semi-structured
and unstructured systems seem to be better suited for range
queries. But most of the unstructured systems assume low
semantic similarity among data sources. Under this assump-
tion, selection of relevant peers based on attribute occur-
rence is acceptable, even when processing range queries. In-
tegration of heterogeneous data sources, on the other hand,
has been one of the main areas of research in data sharing
unstructured P2P systems.

2.1 Range Queries in Structured P2P Systems
Most of the work to support range queries in P2P system

has been proposed for schema homogeneous structured sys-
tems [3, 8, 5, 9, 12, 19]. Gupta et al [12] present a Chord [20]
based system where similar ranges are hashed to the same
peer using locality sensitive hashing. To avoid increased
loads on peers hosting the entries for popular ranges, range
data is locally cached by peers. No schema heterogeneity nor
multi-attribute ranges are allowed. Sahin et al [19], propose
a CAN [18] based system with two dimensions. Ranges for
a given attribute define a square bounded by lower/higher
values. No schema heterogeneity nor multi-attribute ranges
are supported in this work. Another CAN based system
with support for range queries is presented by Andrzejak et
al [3]. In this proposal nearby ranges map to nearby CAN
zones. Interval keepers are responsible for subintervals of the
attribute’s domain. Each peer reports its current attribute
value to the appropriate interval keeper. Single attribute
queries are routed to interval keepers by propagating the
query in two waves. In the first wave, the query is prop-
agated to neighbours that intersect the query and have a
higher interval than the current peer. In the second wave,
the query is propagated to the peers that have a lower inter-
val. Although data updates are supported, attribute keep-
ers must be maintained for each single attribute for which
a range condition can be specified in a query. Multiple het-
erogeneous data sources are not allowed in this work.

In the Multi-Attribute Addressable Network (MAAN),
Cai et al [9] propose a Chord based system with a local-
ity preserving hashing function that guarantees a uniform
hash distribution if data values are uniformly distributed. In
MAAN, multiple attributes are supported by having multi-
ple hash functions, one per attribute. Multi-attribute queries
are decomposed into multiple sub-queries, each on one at-
tribute. Chord-routing for a sub-query is done using the
appropriate attribute hash. No considerations are made in
MAAN with regards to support for heterogeneous schemas.

Skip Graphs, a non-DHT based structured system that
supports range queries, is proposed by Aspnes et al [5].
Query ranges are naturally supported in skip graphs since
values are logically ordered in the Level 0 (the root ring).
Skip graphs suffer from scalability issues since there is one
peer in the skip graph per attribute value. To overcome
this scalability problem, in a more recent work [4] Apsnes
et al propose a skip graph based on buckets. Each bucket
contains a set of values, and one of the values in the bucket
is promoted to the skip graph. A given query is routed to
the bucket or buckets that contain the ranges. Buckets are

2

linked together in order, so that it is possible to traverse
the buckets once the first value within the range has been
identified. Skip graphs based systems exhibit load balanc-
ing issues when some few queries are very popular. No work
has been done to support heterogeneous schemas nor multi-
attribute range queries in skip graph systems.

Yet another structured P2P system that supports range
queries is Mercury [8]. In Mercury peers are grouped in
virtual hubs, one per attribute. Peers within a hub are ar-
ranged into a circular overlay. Each peer is responsible for
a continuous range. Peers are linked to all virtual hubs
causing scalability problems when there is a large number
of attributes. Load balancing is performed by probing peers
and inviting lightly loaded peers to join heavily loaded hubs.
There is no support for heterogeneous schemas in Mercury.

A catalogue framework for structured P2P systems is pro-
posed by Galanis et al [10]. The catalogue is distributed on
a Chord based system and is used to locate data stored in
XML repositories. Although there is mention of both struc-
tural and attribute value summaries in the catalogue, most
of this work deals with the representation of structural sum-
maries only.

2.2 Range Queries in Unstructured P2P Sys-
tems

Several unstructured systems provide support for hetero-
geneous or multiple schemas [16, 17, 21]. Our proposal to
store and maintain catalogue information in super-peers is
inspired by the Edutella system [16]. Our work differs from
Edutella’s in that we explicitly support functional depen-
dency and range information. Edutella’s support for ranges
relies on schema-specific knowledge, where values for an at-
tribute imply a range for other attributes. For example, in a
data repository storing document information, the value of
an attribute “document category” may imply a range of val-
ues for the attribute “document subcategory”. In this exam-
ple, Edutella would consider a condition document category
= ’DATABASES’ as specifying a specific range of values
for the attribute document subcategory: DISTRIBUTED,
CENTRALISED, RELATIONAL, NETWORK, HIERAR-
CHICAL, ..., etc. Another difference between our proposal
and Edutella’s is the support for multiple heterogeneous
data schemas. Edutella supports a predetermined number
of schemas, while we do not impose a limit in the num-
ber of schemas in the system – although we do assume that
the schemas are semantically close. The way catalogue in-
formation is maintained among super-peers also differs in
our proposal. We propagate catalogue information to super-
peers based on a need-to-know basis. Catalogue information
is cached while the information is of interest to the super-
peer (i.e. while there are queries running at the super-peer
that require the cached catalogue information from the other
super-peer). In Edutella, catalogue information at a super-
peer is propagated to all other super-peers.

Our approach to integrate heterogeneous data sources is
similar to PeerDB’s [17], where attribute name similarity
is used to determine schema mappings. Peers register al-
ternate names for the attributes in their schema, and these
alternate names are used to identify attribute equivalence
even if their names differ – assuming at least one of their
alternate names match. In PeerDB human intervention is
required to validate schema mappings done by the system.
In our proposal, given our assumption of semantic similar-

ity among schemas, we do not require human intervention
and consider schema mappings deduced by the system as
valid. PeerDB does not provide explicit support for range
queries. Hence, any peer with attributes relevant to a query
will be visited irrespectively of the value or range conditions
specified in the query.

Piazza [21], is another unstructured P2P system that sup-
ports heterogeneous data sources. Queries submitted to the
system are reformulated based on storage descriptions that
refer to relations/attributes in another peer schema. No
specific considerations are made in Piazza with regards to
range queries. Other proposals focusing on the integration
of heterogeneous data sources are the Chatty Web [2] and
the Local Relational Model (LRM) [7]. In th Chatty Web,
peers route queries to other peers for which no schema map-
pings exists. Responses are then analysed to decide the se-
mantic similarity among the data sources. Based on this
analysis, candidate mappings among the schemas are de-
fined. In the LRM, queries are reformulated based on co-
ordination formulas that describe the data sources on other
peers. Neither the Chatty Web nor the LRM attempt to
improve processing of range queries. In Piazza, the Chatty
Web and LRM, mappings among different data sources are
made by peers when there is a motivation to share data (“on
a need-to-interact basis”), and are maintained by the peers
themselves. Contrasting with our proposal, in these systems
queries are executed at the peers themselves, rather than at
specialised super-peers. Moreover, queries can not be prop-
agated to other peers unless semantic mappings exist among
intermediate peers.

3. CATALOGUE SUPPORT FOR RANGE
QUERIES

Given the range query in Figure 1, a catalogue framework
should be able to: (1) identify the peers with data reposi-
tories containing the attributes in the query (product class,
product unit, product dim, and product cost), and from those
peers, (2) determine the ones for which the query conditions
hold. The first problem relates to the integration of hetero-
geneous data sources. The second problem relates to the
support of range conditions.

In our catalogue framework, we assume an unstructured
P2P system with peers connected to super-peers. Super-
Peers are specialised, high capacity peers, that store cata-
logue information and process queries. A peer wishing to ex-
ecute a query, submits the query to its connected super-peer
for processing. The super-peer uses the catalogue to route
the query to promising peers – the peers that may store data
relevant to the query. As shown in Figure 2, there is no di-
rect connection between peers, and peers communicate to
each other via super-peers (peers are labelled P in the Fig-
ure). We make no assumptions with regards to the topology
of the connections among super-peers, nor impose a proto-
col that peers must follow to attach to a super-peer when
first joining the system. The catalogue at each super-peer
stores SP-to-P (super-peer to peer) and SP-to-SP (super-
peer to super-peer) information. The SP-to-P information
describes the data sources and attribute value ranges of the
peers connected to the super-peer. The SP-to-SP informa-
tion allows a super-peer to identify other super-peers close
to data sources that may contribute data to the results of
a query. Logically, the SP-to-SP part of the catalogue can

3

. . .

P

P

P

P

P

P

P

P P

P

P

PP

P

P

P

P

P

P

P
P

P

P P

P

P

PP

P

P

P

P

P

P

P

P
P

P P

P

P

PP

P

P

P

P

P

P

P

P

P

P P

P

P

PP

P

P

. .
 .

. .
 .

Superpeer

Superpeer Superpeer

Superpeer

. . .

Figure 2: Super-Peer P2P System

be considered an aggregation of the SP-to-P information.
Assuming a large amount of data sources in the system, im-
plementing the SP-to-SP part of the catalogue as the union
of the SP-to-P information is not a viable option due to scal-
ability issues. In section 3.2, we present different options to
address this issue, including the use of summaries, caching,
and on-demand utilisation.

We now focus on how the SP-to-P and SP-to-SP parts of
the catalogue support the integration of heterogeneous data
sources and the processing of range queries.

3.1 SP-to-P Catalogue Information
The SP-to-P catalogue allows a super-peer to determine

which peers have data sources compatible with a query; and
from these peers, it allows the super-peer to identify the
ones with data in the ranges specified by the query.

Upon joining the system, peers register the entities and
attributes that they want to make available for querying, as
well as the data ranges for the attributes for which range
conditions are commonly specified in queries. A peer sub-
mits its registration to the super-peer it is connected to.
The registration is valid for a time to live TTL interval and
peers must re-register their data sources before the TTL ex-
pires if they want to keep their data available to the system.
The TTL is set by the peers and must fall within a valid
range as specified individually by each super-peer. We refer
to the description of the entities and attributes in the reg-
istration as the schema description, and the specification of
range information as the range descriptions.

3.1.1 Schema Descriptions
When a super-peer receives a query Q for processing, it

must first identify the peers attached to the super-peer that
contain the entities and attributes mentioned in the query.
These entities and attributes in Q can be represented as a set
T of pairs (Eq, aq) where Eq is the name of the entity, and aq

is the name of the attribute in Eq. For the query in Figure
1, the set T is { (products, product class), (products, prod-
uct unit), (products, product dim), (products, product cost)
}.

The names used in Q to refer to entities and attributes
may not match the names used by the peers. Hence, peers
are advised to register not only the names of the entities and
attributes in their data sources, but also synonyms or alter-

nate names that may be used in queries to refer to the same
data. In the program implementing the catalogue (Section
5), we refer to these synonyms/alternates for an attribute
as its keywords. For each neighbouring peer P and each en-
tity Ep in the peer’s data source, a super-peer keeps the
names registered by P for Ep and each of its attributes
ap. We use the function syns(Ep) to refer to the names
of the entity Ep for peer P , and syns(Ep, ap) to refer to
the names of the attribute ap of entity Ep in peer P . For
simplicity, we assume that the name of the entity is in the
synonyms set for the entity (Ep ∈ syns(Ep)), and that the
name of attribute is in the synonyms set for the attribute
(ap ∈ syns(Ep, ap)). For the example in Figure 1, possi-
ble sets of synonyms for the entity products in a peer are:
syns(products) = { products, sale items, article, merchan-
dise }. The synonyms for the attribute product class in
the same peer are syns(products, product class) = { prod-
uct class, product, prod type, prod class, prod group, item }

In a real-world deployment of a framework as the one we
propose, we expect super-peers to provide feedback to peers
with regards to the names commonly used in the queries.
This feedback would allow peers to improve the alternate
names for their attributes and entities. Another possible
deployment scenario is one in which queries are predeter-
mined by the applications running in the system. Hence the
assumption in this scenario is that there are few or no ad-hoc
queries. The names used by the applications to refer to enti-
ties and attributes could be provided to peers. Peers would
then specify the name equivalences between the application
queries and their own data sources.

Given a query Q, the super-peer must be able to extract
the set T of entity/attribute pairs, and based on the schema
information registered by the peers, identify the set Ps of
peers hosting the entities and attributes in T . Formally,
assuming the existence of a function sim e(s1, s2) able to
decide if the strings s1 and s2 are similar, the set Ps contains
the peers P for which:

∀(Eq, aq) ∈ T : ∃Ep :“
(∃Sp ∈ syns(Ep) : sim(Eq, Sp))∧ (3.1)

(∃S′
p ∈ syns(Ep, aq) : sim(aq, S

′
p)

”
(3.2)

Condition (3.1) specifies that the peer has an entity Ep with
a synonym similar to the entity Eq in the query. Recall that
the name of the entity Ep is itself in the synonym set, so
the names of Ep and Eq may be the same. Condition (3.2)
requires that each query attribute aq of Eq must be similar
to a synonym of an attribute in Ep.

The implementation of the similarity function sim may
be as simple as a character-by-character comparison, or it
may use information retrieval techniques similar to the ones
in [17].

3.1.2 Range Descriptions
Once the super-peer has identified the set Ps it must de-

cide, based on the range conditions in Q, which peers from
Ps have data relevant to the query. In order to identify the
relevant peers, the super-peer keeps range information for
the neighbouring peers in its catalogue. For a peer P , range
information for an attribute r that is functionally dependent
on a set of attributes K = {k1, k2, ..., kn}, is specified by a
set R of tuples:

4

R = { (v11, ..., vn1, min1, max1, nvals1),
(v12, ..., vn2, min2, max2, nvals2),
. . . ,
(v1m, ..., vnm, minm, maxm, nvalsm) }

where vji represents a valuation of attribute kj in the
i − th tuple; (mini, maxi, nvalsi) represent the minimum,
maximum, and number of values for attribute r when the
attributes k1, ..., kn have values v1i, ..., vni. For the example
in Figure 1, if r = product cost and K = {product class},
a tuple specifying range information for TVs will look like
(TV, (100, 300, 20)). This tuple indicates that there are 20
TVs in the $100 and $300 price range. A more detailed range
specification would be K = {product class, product unit,
product dim}. In this case, an example tuple representing
the fact that there are 10 TVs of 17 inches in the price range
$100 and $150, would be (TV, inches, 17, 100, 150, 10). A de-
tailed range specification can be used only if queries specify
values for all attributes in K. Hence the type of queries ex-
pected to be executed should influence the specification of
ranges.

The level of detail when specifying ranges must strike a
balance between the number of tuples in R and how dis-
criminatory the range is. If R is too large, storage costs
increase; if R is too small, irrelevant queries may be sent
to a peer. In this latter case, the effect would be similar
to that of not having range-specific information to optimise
range queries. In general, the number of values in all ranges
should be much greater than the number of entries in R:X

0≤i≤m

nvalsi � |R|

Another important consideration is the distribution of val-
ues within a range. In a range specification (mini, maxi,
nvalsi), we assume a uniform distribution of values be-
tween mini and maxi. Hence, if (mini, maxi, nvalsi) =
(100, 500, 20), and a query specifies a range condition with
values 400 and 500, we assume that the peer will potentially
have five values in the 400 to 500 range. The number of
values in a range is used by the super-peer to rank peers
relevant to a query. Assuming a range condition qmin ≤ r
≤ qmax, the ranking of peers is determined by the sum of
the expected number of values in the ranges intersecting the
query range:X

i:qmin≤maxi∧
qmax≥mini

nvalsi ∗
min(qmax, maxi)−max(qmin, mini)

maxi −mini

This rank is used by the super-peer to decide the order in
which the query is sent to peers for execution. Favouring
peers with more data within a query range may or may not
be desirable based on the type of application running in the
system. For example, the ranking is acceptable when in-
tegrating bibliographic databases, where users may want to
receive as many answers as possible. On the other hand, in a
commerce application integrating stores selling goods, users
may be more interested in price than volume. Similarly, the
system may need to guarantee that no store is favoured over
others. Ranking of candidate peers to resolve a query is nev-
ertheless an interesting problem. When the number of peers
that have relevant data to a query is potentially very high,
sending the query to all peers for execution is not a viable
solution. Besides the ranking, other options to further limit
the number of peers participating in a query include impos-

val_func_deps_zk

Ra Rb Rc

R1 R2 R3 R4 R5 R6 R7 R8 R9

Ra Rb Rc

R1 R2 R3 R4 R5 R6 R7 R8 R9

Ra Rb Rc Rd

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

. . .

. . .

. . .

. . .

. . .

range_attr_1

range_attr_k

val_func_deps_11

val_func_deps_21

val_func_deps_m1

val_func_deps_1k

Figure 3: SP-to-P Catalogue Structure

ing a ceiling based on a system parameter or specified as part
of the query, and to only consider answers received within a
time interval. Yet another option, is to distribute the load
so that queries are sent to relevant peers in a round-robin
fashion. Therefore, due to the potential diversity of appli-
cations, a P2P system should provide several configurable
options to allow tuning and enhancement of the techniques
used to select among the peers with relevant data.

Range information is provided by the peers to the neigh-
bouring super-peer as part of the registration of their data
sources. Logically, the data source registration is stored in
the SP-to-P catalogue as shown in Figure 3. Associated to
each range attribute there are sets of valuations for the at-
tributes in K (recall that K is the set of attributes a range
attribute depends on). An R-tree [13, 6] indexes the ranges
for the attribute given a K valuation. The leaves in the
R-tree point to the peers that store data in the given range
and the number of values in the range for each peer.

When a peer specifies the set R that describes the range
information for an attribute r, the super-peer integrates this
information to the catalogue by following the Algorithm 1.
Range information is added to the R-tree associated to the
valuation of the attributes in K. If no entry in the catalogue
matches the range attribute r and the valuation of attributes
in K, a new entry is added to the catalogue. This new entry
is associated to a new R-tree containing the given range.
Since the names of the attributes in R may not match the
names in the catalogue, the super-peer uses the synonyms
specified in the range registration to determine if an entry
for a r, v1i, ..., vni ∈ R already exists in the catalogue or not.

Algorithm 1: Addition of Range Information

foreach (v1i, ..., vni, mini, maxi, nvalsi) ∈ R do1

if ∃val func deps : (r, val func deps) ∈2

catalogue ∧ val func deps = (v1i, ..., vni) then
Add the range (mini, maxi) to the R-tree3

associated to the catalogue entry for
(r, val func deps)

else4

create a new catalogue entry (r, v1i, ..., vni)5

and a R-tree with the range (mini, maxi)
end6

end7

5

. . .

R−Tree (DVDs)
. . .

product_cost product_class = TV

product_class = DVD

product_class = CD

R−Tree (TVs). . .

R−Tree (CDs)

Figure 4: SP-to-P Catalogue Example

To illustrate Algorithm 1, Figure 4, shows the catalogue
entry for the attribute product cost, assuming that this at-
tribute is functionally dependent on the attribute product class.
A peer specifies a set R of ranges for product cost, and values
for product class as follows:

R = { (TV, 150, 3500, 80),
(DV D, 2, 60, 1300),
(Printer, 40, 300, 25) }

For (TV , 150, 3500, 80), the algorithm adds the range
(150, 3500) to the R-tree associated with product class =
TV. The node in the tree corresponding to the range points
to the peer’s identity and the the number of values in the
range (80). Since there is an entry for product class = DVD,
similar processing occurs for (DV D, 2, 60, 1300). Assum-
ing no entry in the catalogue for product class = Printer,
processing (Printer, 40, 300, 25) requires the creation of a
new entry for product cost with valuation product class =
Printer, and the association of a new R-tree containing the
range (40, 300).

3.1.3 Scalability Considerations
The proposed catalogue structure assumes high similarity,

not only in the attribute and entities among data sources,
but also in the functional dependencies for the range at-
tributes. If the functional dependencies differ considerably
between peers, the proposed catalogue does not scale well.
The reason is the potential for having as many entries and
R-trees as different valuations of functional dependencies ex-
ists. In this situation, it is better to alter the structure of the
catalogue and associate the R-trees to the range attributes
directly. In this variation, nodes of the R-trees point to the
peer identifiers, the number of values in the range, and the
valuation of dependent attributes.

Once a super-peer has identified and ranked the neigh-
bouring peers storing data relevant to a query, the next step
in the processing of the query is the routing of the query
towards super-peers close to promising peers. The selection
of these super-peers is based on the information contained
in the SP-to-SP part of the catalogue.

3.2 SP-to-SP Catalogue Information
Super-Peers summarise their own SP-to-P catalogue and

make the summary available to other super-peers. The sum-
maries from remote super-peers constitute the SP-to-SP cat-
alogue.

3.2.1 Schema Summaries
Information about the entities and attributes occurring at

Algorithm 2: Aggregation of Entity/Attribute In-
formation

summ = {}1

foreach entity Ep in SP-to-P do2

if ∃Es ∈ summ :3

summ syns(Es) ∩ syns(Ep) 6= ∅ ∧
(∀as ∈ attrs(Es) : ∃ap ∈ attrs(Ep) :
summ syns(Es, as) ∩ syns(Ep, ap) 6= ∅) then

summ syns(Es) =4

summ syns(Es) ∪ syns(Ep)
foreach as ∈ attrs(Es) do5

summ syns(Es, as) =6

summ syns(Es, as) ∪ syns(Ep, ap)
where ap is the attribute in Ep such that
summ syns(Es, as) ∩ syns(Ep, ap) 6= ∅

end7

else8

summ = summ ∪ Ep9

summ syns(Ep) = syns(Ep)10

foreach ap ∈ attrs(Ep) do11

summ syns(Ep, ap) = syns(Ep, ap)12

end13

end14

end15

neighbouring peers is summarised by aggregating the syn-
onyms and eliminating duplicated names. The aggregation
of synonyms follows the Algorithm 2. For an entity Ep in
the SP-to-P catalogue, the condition in line 3 identifies the
entity Es already in the summary that has similar name
and attributes to Ep. The function summ syns in the al-
gorithm is equivalent to the function syns defined for the
SP-to-P catalogue but refers to the synonyms for a particu-
lar entity or attribute in the SP-to-SP catalogue instead. If
such entity Es exists in the summary, the synonyms of Ep

not already in the synonyms of Es are added in line 4. Sim-
ilar processing for the attributes of Ep is done in lines 5 to
7. If there is no entity Es in the summary that corresponds
to Ep, Ep is added to the summary in lines 9 and 10, and
Ep’s attributes are added in the loop in lines 11 to 13. The
intention of the algorithm is to identify if an entity in one
peer is already in the summary, and only add new entries
otherwise.

Summaries are distributed to other super-peers. Super-
Peers receiving the summary, tag the information with the
identifier of the source super-peer. These summaries allow
a super-peer S to identify a set SPs of super-peers close
to data sources with entities and attributes relevant to a
query Q. As with the SP-to-P catalogue, the identification
of super-peers SPs is based on the existance of a function
sim able to decide if two entities or attributes are similar.

3.2.2 Range Summaries
Given a range attribute r and a valuation of the depen-

dency attributes in the SP-to-P catalogue, the range infor-
mation for the attribute r is summarised by taking the min-
imum and maximum values in the R-tree for the attribute.
The number of values associated to r in the summary is
computed by adding the number of values for each of the
ranges in the R-tree. A super-peer stores the summaries
for each other super-peer in a structure similar to the one

6

used to store ranges in the SP-to-P catalogue (see Figure 3).
The main difference between the SP-to-P representation of
ranges and the SP-to-SP representation is that the R-trees
associated to the ranges in the SP-to-SP catalogue refer to
summary ranges for particular super-peers instead of peers.
Hence the leaves of the R-tree in the SP-to-SP catalogue
point to super-peers and their number of values for the spe-
cific range. The number of values is used to rank super-peers
relevant to a query. Considerations about this ranking and
its applicability are similar to the ones presented in section
3.1 for peers.

3.2.3 Maintenance of Summaries
Associated to each super-peer summary there is a mono-

tonically increasing version number and a TTL specified by
the super-peer providing the summary. A super-peer sets
the TTL based on the frequency of SP-to-P registration up-
dates made by its peers. Summaries can be sent (pushed) to
the super-peers when the TTL expires, or super-peers can
request the summary (pulled) if the local copy has expired.
The version number of the local copy at the super-peer is
transmitted to the source super-peer as part of the request
for the summary. The source super-peer can then provide
the new summary if the version is out of date, or inform the
super-peer if the version is still the latest. Whether to imple-
ment pushed or pulled distribution of summaries depends on
the expected number of super-peers in the system and the
characteristics of the applications running on the system.
Pushing summaries may be acceptable when the number of
super-peers in the system is small, or the summaries are not
frequently updated.

As with entity and attribute information, the space re-
quired to store the range information in the SP-to-SP cata-
logue is proportional to the semantic similarity of the data
sources close to each of the super-peers. Another factor af-
fecting the space requirements is the number of super-peers
in the system. In cases where the number of super-peers
or the semantic disparity among data sources impose un-
acceptable space requirements for the SP-to-SP catalogue,
an alternative to storing the summary of each super-peer
is to request the summary information on-demand. In this
scenario, super-peers would maintain basic schema informa-
tion about the other super-peers in the system. For each
other super-peer, the SP-to-SP catalogue would store just
the name and synonyms of the entities in data sources close
to the super-peer. When processing a query Q in a super-
peer S, the SP-to-SP catalogue would be used to determine
the super-peers that may potentially be relevant to Q. S
would then contact each of the identified super-peers and
request the summary for the attributes and ranges in Q.
This information would then be used to identify the super-
peers close to data sources storing data in the data ranges
specified in Q.

To improve performance of the query processing, and as-
suming that there are some queries more popular than oth-
ers, summary information can be cached locally at super-
peers when requested on-demand. The version information
associated to each summary can be used to determine if a
cached summary is still valid once the TTL associated to
the summary has expired.

3.3 Propagation of Peer Registrations
When peers re-register their data sources, changes with

respect to the previous registration need to be propagated
to the SP-to-P and SP-to-SP catalogues. A naive approach
to implement the propagation is to delete the previous regis-
tration, and add the new one. This approach does not work
well when the data re-registered by the peer is similar to its
previous registration. A more efficient approach is to com-
pare the new and previous registration and propagate only
the changes. Possible changes are structural modifications
and range changes. Structural modifications include the ad-
dition or removal of entities or attributes. Range changes
include the modification of existent ranges, and the spec-
ification of new ranges and valuations for the dependency
attributes. The propagation of the change to the SP-to-P
catalogue is implemented by actions local to the super-peer.
The propagation of the change to the SP-to-SP catalogue
needs to be handled with care since it affects all the copies
of the super-peer’s summary in the system. A super-peer
may decide to propagate changes to its summary informa-
tion only after a number of changes threshold is exceeded,
after a time interval, depending on the change, or any com-
bination of these. Irrespective of the strategy used, when
the summary is updated, the version number associated to
the summary should be increased. In order to reduce the
amount of data transmitted to other super-peers when a
summary changes, the super-peer could send the delta be-
tween the old and new versions of the summary. Deltas
would then be applied to the local copy of the summary by
the receiving super-peers.

4. LOAD DISTRIBUTION STRATEGIES
Load distribution imbalances may occur in the system

when some ranges are more popular than others. Another
reason is the existence of few data sources relevant to a pop-
ular query. Given our assumption that the location of the
data sources cannot be altered, strategies to balance the
load distribution in the system need to be implemented at
the super-peer level.

When a range is popular, the super-peers close to the data
sources relevant to the range will receive requests for sum-
mary information and execution of the queries. By imple-
menting caching of summary information as proposed in Sec-
tion 3.2, the system reduces the load on the popular super-
peers. Some strategies to reduce the load due to requests
for query execution include:

• Splitting the range among several super-peers

• Caching query results at the super-peer where the query
originated

• Reassigning peers with data sources to other less loaded
super-peers

• Combinations of the above

In a range split, a range g is divided into sub-ranges g1, g2,
..., gn, such that g = g1 ∪ g2 ∪ ... ∪ gn and gi ∩ gj = ∅
for i 6= j. Ideally a data source for a peer P would have
data relevant to only one gi. If this is not the case, the
peer P will be associated to all super-peers hosting ranges
relevant to P ’s data. The range re-registration process at P
needs to be aware of what ranges are hosted in what super-
peers, and only re-register applicable information with each
of these super-peer. This procedure increases the state in-
formation kept at P . An alternative is to have P re-register

7

all of its information with the original super-peer, and have
this super-peer split the registration information and send
the pieces to the super-peers hosting the sub-ranges. In this
case, the re-registration functionality in P is unaffected by
the range split. The state information in the super-peer
is increased though, since it now needs to keep track of
the ranges that have been split. The original super-peer
still needs to use some of its resources to process P ’s re-
registrations. Queries arriving at the super-peers hosting
the sub-ranges are re-routed to the original super-peer, un-
less direct communication to P is allowed from super-peers
P is not attached to.

Caching query results at super-peers is an effective way
to balance the load when changes to the data sources are
infrequent. Maintenance of the cached copies becomes an
issue when the data source are updated or when there is
high peer volatility in the system.

Reassigning peers to other data sources to distribute the
load is probably the most straightforward way to deal with
load balances in the system. Super-peers need to keep infor-
mation about its load and be able to rank the neighbouring
peers based on how much load they contribute to the super-
peer. When the load at a super-peer exceeds a threshold,
the super-peer identifies what other, less loaded super-peers,
can take some of its neighbouring peers. The load thresh-
old can be individually set by each super-peer based on its
capacity, or the system can impose the same value for all
super-peers.

As with other functionality proposed in this work, a P2P
system should implement various techniques for load bal-
ancing and allow the configuration and tuning of these tech-
niques based on specific application requirements.

5. IMPLEMENTATION AND EXPERIMEN-
TATION

In this section we present experimental results obtained
by implementing some of the techniques proposed in our
catalogue framework using the JXTA P2P platform [1, 22].
We describe the implementation details in the context of
JXTA and report the results obtained by conducting a set
of experiments evaluating different performance metrics.

5.1 Implementation in JXTA
JXTA is a set of protocol specifications, developed by Sun

Microsystems, to handle the communication among partici-
pants in a P2P system. The JXTA protocols are language-
independent, and define a set of XML messages to coordi-
nate different aspects of P2P networking.

Peers publish the functionality they offer to other peers
as services in the network. These services are available only
when the peer is connected to the system. Peers use the
JXTA Peer Discovery Protocol to discover the services that
other peers have published. One of the services that can
be offered by a peer is its readiness to accept direct peer
connections. The JXTA Pipe Binding Protocol provides a
mechanism to bind peers through pipes, which are virtual
communication channels that encapsulate all networking de-
tails. A Pipe is bound to a certain TCP port at one peer
and can be discovered by other peers when it is published
as a service in the JXTA network. Pipes are unidirectional,
meaning that data travels in only one direction. However,
bidirectional pipes can be implemented using two unidirec-

Peer

SuperpeerP
3. Create output pipe,
generate input pipe adv
and send it to super−peer

2. Respond to binding
request

4. Receive pipe adv,
create output pipe and
send confirmation to peer

JXTA P2P Network

1. Send pipe−binding request

Figure 5: Establishing Bidirectional Pipes

tional pipes. Pipes are also asynchronous, meaning that
data can be sent or received at any time, which allows peers
to act independently of one another.

5.1.1 Peer Registration
In our implementation, a super-peer declares its readiness

to serve other peers by creating an input pipe on a free
TCP port and publishing the pipe advertisement, which is
an XML file incorporating the pipe ID and other related
information. A peer, that chooses to connect to that super-
peer, uses the Discovery Protocol to locate the super-peer
pipe advertisement. The peer sends a discovery message to
other known peers which inspect their own caches for the
required advertisement and either respond to the discovery
request or forward the request to other peers. Eventually,
information about pipe advertisement is located and sent
back to the initiating peer. At that time, the peer sends a
pipe-binding request to the super-peer which responds with
a pipe-binding answer message confirming that the bind-
ing request is accepted. When the peer receives the answer
message, it creates an output pipe to bind itself to the super-
peer. Furthermore, the peer creates an input pipe and sends
its advertisement (using its output pipe) to the super-peer
to be able to receive further messages from the super-peer
in an asynchronous fashion. Therefore, a bidirectional pipe
is established between the peer and super-peer for future
message exchange. The pipe setup procedure is depicted in
Figure 5.

The super-peer’s input pipe serves as a common entry
point that is shared among all the connected peers and is
used to submit peer requests to the super-peer. On the
other hand, peer input pipes are specific to the owning peer;
i.e. a peer input pipe receives messages from the super-peer
directed only to that peer. The super-peer keeps a list of all
the input pipe IDs of connected peers. The peer attaches
its input pipe ID to every message sent to the super-peer so
that the super-peer can identify the source of the message
and therefore return the answer via the correct path.

The first message sent by the peer to the super-peer, af-
ter establishing the communication path, describes the data
the peer is willing to share with other peers. As specified
in Section 3.1, this is referred to as peer registration. In
our implementation, a peer registration message is an XML
file describing a certain property, e.g. price, its range, num-
ber of values and a set of keywords related to that prop-
erty. The property corresponds to a range attribute. The
set of keywords specify the synonyms or alternate names
for the property. Keywords are used by the super-peer to
cluster the property registrations received from “schema-
heterogeneous” peers into separate groups each containing
potentially similar range attributes. This is based on the in-
tuition that the more common keywords between two prop-
erties, the more likely it is that they are semantically close.

8

<?xml version=”1.1”?>
<PeerRegistration>

<PipeId>
urn:jxta:uuid-5961626164162614E50472050325033222
CD113577B4B29BEAFD52FCC2CD2D204

</PipeId>
<Property>

<Name> Price </Name>
<Range> 100 200 </Range>
<NumValues> 40 </NumValues>
<Keywords>

Television, TV, Cost, Charge, ProductPrice
</Keywords>

</Property>
<TTL>

<Hours> 2 </Hours>
<Minutes> 30 </Minutes>

</TTL>
<Attributes>

<Attribute>
<Name> ProductClass </Name>
<Value> TV, Television </Value>
<Keywords>

class, type, prod class, category, prod category
</Keywords>

</Attribute>
<Attribute>

<Name> ProductSize </Name>
<Value> 20 </Value>
<Keywords>

size, dim, dimension, screen size, screen dim
</Keywords>

</Attribute>
</Attributes>

</PeerRegistration>

Figure 6: Peer Registration Message

The peer registration message also lists some of the attributes
that property is functionally dependent on. Each of these at-
tributes is described by its name, value and keywords. The
super-peer stores peer registrations for some predefined TTL
period as indicated by the message. The peer has the re-
sponsibility of refreshing its registration at the super-peer
before the TTL expires, otherwise it will be dropped from
the SP-to-P catalogue. Figure 6 illustrates a sample registra-
tion message describing the price property of TV products
that a peer is selling.

5.1.2 Catalogue Structure
The registration messages sent by different peers are used

to build the SP-to-P catalogue at the super-peer. The cat-
alogue groups peers according to their data attributes and
range information. In addition, each super-peer keeps track
of all the other known super-peers in the SP-to-SP cata-
logue.

The main function of the SP-to-P catalogue is to support
the identification of promising peers that can answer a given
range query. These promising peers can be determined, with
a high probability, by inspecting the following peer proper-
ties:

• Keywords: The number of common keywords be-
tween the peer’s data source and the query.

• Range Information: Whether the range in the peer’s
data source intersects with the range specified by the
query or not.

Peers are filtered based on keywords first, and then based
on range information.

The identification of ranges that intersect with the query
range is performed by using R-trees. We use 1-dimensional
R-trees to index range information of different sets of peers.
Given a certain query range, traversing the R-tree allows to

<?xml version=”1.1”?>
<PeerQuery>

<PipeID>
urn:jxta:uuid-59616261646162614E50472050325033222
CD113577B4B29BEAFD52FCC2CD2D204

</PipeID>
<Property>

<Name> Cost </Name>
<Range> 50 150 </Range>
<Keywords>

TV, Price, TVPrice ,TVCost, Television
</Keywords>

</Property>
<Attributes>

<Attribute>
<Name> Type </Name>
<Value> TV, Television </Value>
<Keywords>

class, category
</Keywords>

</Attribute>
</Attributes>

</ PeerQuery >

Figure 7: Peer Query Message

efficiently return the set of peers with ranges intersecting
with the query range.

The SP-to-P catalogue is comprised of a set of n entries
{< ki, Ri >; i=1..n}; where ki is the keyword vector for
the ith peer set and Ri is an R-tree that indexes the range
information of all peers inside the ith peer set. When a
peer registration message is received by a super-peer, the
peer’s property name and keywords are extracted forming
a peer keyword vector v. The super-peer finds every key-

word vector kj where
|v

T
kj |

|v| ≥ MIN SIMILARITY. The peer

keyword vector v is then merged with all kj ’s and the peer
range information is inserted in all Rj ’s. If the set {kj} is
empty, a new entry is appended to the SP-to-P catalogue
containing v and a R-tree indexing only the peer range in-
formation. MIN SIMILARITY is a system parameter that was
decided to be 0.4 after conducting experiments. Hence the
similarity function (Section 3.1.1) in our implementation is
defined based on the number of matches among keyword
vectors and a threshold MIN SIMILARITY value.

The SP-to-SP catalogue stores summary information about
the neighbouring super-peers. Each super-peer sends peri-
odically a summarised registration message to all the known
super-peers containing information about the peers connected
to it. Hence, summary information for the SP-to-SP cat-
alogue is registered by super-peers following the pushing
strategy described in Section 3.2.3. The super-peer regis-
tration message contains a set of keyword vectors describ-
ing different peer properties. The super-peer registration
expires after the TTL period specified in its registration.
The SP-to-SP catalogue is comprised of a set of m entries
{< ki, spi >; i=1..m}; where ki is the keyword vector asso-
ciated with the super-peer set spi. The catalogue entries are
constructed based on keyword intersection in a way similar
to the SP-to-P catalogue described above.

5.1.3 Query Processing
Queries are represented as XML messages submitted by

peers to super-peers. The query message specifies the re-
quired data property, range, property keywords and addi-
tional data attributes. The keywords are used to identify
peers that support that property under potential naming or
structural heterogeneity. A sample query message is shown
in Figure 7.

The super-peer uses its catalogue to forward the received

9

query to potentially promising peers. The SP-to-P cata-
logue is propped with the query keyword vector q that con-
tains property name and keywords. The super-peer finds all
entries in the SP-to-P catalogue with a keyword vector kj

satisfying
|q

T
kj |

|q| ≥ MIN SIMILARITY. The R-trees for these

entries are used to identify the peers with data intersecting
the query range. The registration messages for those peers
are then loaded from the super-peer catalogue. The addi-
tional attributes included in peer registration messages are
compared against the additional query attributes to find the
potentially equivalent attribute pairs based on common key-
words. A peer is considered a candidate to answer a query
if its attributes are equivalent to at least 60% of the query
attributes.

The resulting promising peers are ranked based on the ex-
pected number of relevant results that they can return. This
rank is based on the assumption that data values are uni-
formly distributed over data ranges, as described in Section
3.1.2. Peers are then queried in rank order after reformu-
lating the queries according to the registration of each peer.
The results are sent back to the super-peer which forwards
any received results to the peer who initiated the query in
a streaming fashion.

The SP-to-SP catalogue is also propped using a keyword
vector containing all query keywords. The common key-
words between query and SP-to-SP catalogue entries are
used to decide the super-peers that a query should be for-
warded to. Results are sent back to the super-peer where
the query initiated.

5.2 Experimental Results
To study the performance of the proposed techniques, we

used J2SE5.0 to implement the discussed functionality on
the JXTA platform. All the experiments were run on a
3GHz Pentium IV PC with 1 GB of RAM and a 40 GB
hard disk, running Windows XP.

We spawned multiple instances of peers and super-peers
on the same PC to represent an actual P2P network. Peer
instances bootstrap to the JXTA network in an uncontrolled
manner. This means that different peer instances could be
connected to the JXTA network through different interme-
diate peers. Therefore, messages of one peer instance have
to pass through the JXTA network to reach other peer in-
stances on the same PC. Furthermore, JXTA protocols do
not guarantee message delivery. A message can be lost if
it is passed to an intermediate overloaded peer. We believe
that these conditions simulate actual P2P environments.

The keyword datasets were collected from commercial web
sites of TV, stereo and car vendors. The collected keywords
include around 30 different alternate names for each one of
the most commonly used data attributes of these products.
Product price was taken as the property for which range
conditions are most frequently specified in queries. Peer
registration messages were generated by selecting keywords
from the datasets independently and uniformly at random.
Each registration message describes a certain product with
a random number of product attributes besides price. Each
data attribute is associated with a maximum of 5 different
keywords to represent the case where users do not associate
many keywords in their product registrations.

The system setup is comprised of a P2P network with 3
super-peers serving a number of peers ranging from 50 to
3000. Each peer selects its super-peer randomly and regis-

ters only one product type. A query message requests data
about a certain product type (e.g TVs) by specifying ran-
domly selected price ranges and data attributes. The query
attributes are associated with keywords selected from the
keyword datasets of that product.

5.2.1 Recall and Precision
In this experiment we measure the Recall and Precision

metrics for query results. We use the standard definitions
of both metrics:

Recall =
No. of relevant retrieved results

Total no. of relevant results

Precision =
No. of relevant retrieved results

Total no. of retrieved results

A data source (peer) is defined to be relevant to the query
if its registration message: (i) is about the product requested
by the query, (ii) specifies a range that intersects with the
query range, and (iii) includes all the attributes specified by
the query. Any registered peer with the previous properties
is expected to return answers for the query.

We injected different queries into the network and com-
pared the specifications of each query message against the
registration messages of the returned peers as well as the
rest of peers existing in the network. Figures 8 and 9 show
the measured Recall and Precision metrics of query answers
obtained for different product types. Each point is the av-
erage of 5 independent runs with a different query message
in each run.

The recall metric shows stable system behaviour regard-
less of the network size. The standard deviation for the
recall metric is around 0.01 for each of the three product
types. The relatively small recall levels can be attributed to
the fact that all query messages had a maximum of only 5
keywords associated to each of their attributes. The recall
level depends on the number of keywords associated with
query attributes. By increasing the number of keywords,
the size of the returned results also increases. This is evi-
dent by repeating the same experiments with a maximum
of 10 keywords per each query attribute. The Recall level
increased by an average of 35% ,22% and 16% for TV, stereo
and car queries respectively.

On the other hand, the precision metric dropped by an
average of 19% when increasing the network size from 50
to 3000 peers. The drop is expected because by increasing
the network size, the number of registrations with different
keyword specifications also increases, which makes it harder
to find relevant results using queries of limited number of
keywords.

It can be inferred from these results that using super-peers
to give feedback to the peers about the mostly used attribute
keywords in peer registrations can enhance both the recall
and precision. Queries expressed in widely used keywords
are expected to find more matches than the ones expressed
in randomly chosen keywords.

5.2.2 Response Time
In this experiment we measure the average query response

time for different network sizes. The query response time is
affected by the number of peers that are contacted to process
the query. Reducing this number of participant peers is
crucial in P2P systems to guarantee their scalability. The
SP-to-P and SP-to-SP catalogue information are primarily

10

Recall

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 200 300 500 1000 3000

Total no. of peers in the network

TVs
Cars
Stereos

Figure 8: Recall

Recall

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 200 300 500 1000 3000

Total no. of peers in the network

TVs
Cars
Stereos

Figure 9: Precision

used to for this purpose in order to limit flooding queries to
only potentially relevant peers.

To study the effect of increasing the network size on the
query response time, we injected the same queries into net-
works with different number of peers and measured the aver-
age response time of 5 different queries in independent runs
over each network size. Table 1 shows the results obtained
for different query types.

The average response time increased by a factor of 6 while
the network size increased by factor of 600. The measured
response time represents the actual communication time plus
the time taken by super-peers to process queries, contact rel-
evant peers, and aggregate results. The measured response
time did not exceed 0.13 seconds for the largest tested net-
work (3000 peers); this result shows the efficiency of the
proposed catalogue services in pruning the search space.

5.2.3 Effect of Range Information
The purpose of this experiment is to evaluate the effect

that the range information in the catalogue has on recall
and precision. In order to carry out this experiment we cre-
ated a variation of our system where the range information
(indexed by R-trees) is omitted from the catalogue. Hence
in this variation, peers relevant to a query are selected based
on structural information (data attributes) only. Since this
is the default behaviour of most unstructured P2P systems,
this experiment provides some insight as to how our tech-
niques improve processing of range queries when compared
with unoptimised systems.

The recall was not affected by the omission of range infor-

Table 1: Average Query Response Time (msec)
Network Size TV Queries Car Queries Stereo Queries

50 peers 18 15 16
100 peers 26 16 19
300 peers 29 22 22
500 peers 39 25 29
1000 peers 66 33 47
3000 peers 127 85 124

Precision

0.00

0.20

0.40

0.60

0.80

1.00

50 100 200 300 500 1000 3000

Total no. of peers in the network

With Range Info
Without Range Info

Figure 10: Effect of Range Information on Precision

mation. This is due to the fact that the set of peers found
relevant to the queries is a super set of the set of peers
found relevant when using range information. On the other
hand, precision dropped significantly due to the increase in
the number of peers to which the query is forwarded. Fig-
ure 10 shows the precision drop experienced when omitting
range information from catalogues as the number of partic-
ipants in the system increases. The average precision drop
is around 49% over three different query types and differ-
ent network sizes. The result emphasises the importance
of indexing data ranges to support efficient range queries
in unstructured P2P environments when the schemas are
semantically close.

6. CONCLUSIONS AND FUTURE WORK
Research on data sharing P2P systems should focus on

analysing the requirements imposed by the applications run-
ning on such systems. In this work we have looked at range
queries and the type of functionality required to efficiently
support their processing in unstructured P2P systems. Specif-

11

ically, we presented a catalogue framework that allows the
identification of peers with data sources relevant to a given
query. The framework is based on the assumption of high
semantic similarity among the data sources. We have looked
at different types of applications and how the framework can
be adjusted to meet their requirements. Through experi-
mentation we have study the performance of our catalogue,
and we have found a substantial improvement in precision
when evaluated against a P2P system implementing the tra-
ditional attribute-occurrence approach for selection of peers
relevant to a query.

Future work related to our proposal includes the evalu-
ation of the different alternatives presented for the imple-
mentation of the catalogue. Areas worth investigating are
the efficient representation of summaries in SP-to-SP cat-
alogues, the distribution of changes in the catalogue, tech-
niques for ranking peers relevant to a query to avoid star-
vation or unfair situations, elimination of the assumption of
uniform distribution of data ranges and possibly the use of
histograms instead, evaluation of load balancing techniques,
and development of a P2P system with open interfaces to
allow for the experimentation and evaluation of diverse im-
plementation alternatives.

7. REFERENCES
[1] Project jxta web site: http://www.jxta.org.

[2] K. Aberer, P. Cudr-Mauroux, and M. Hauswirth. The
chatty web: Emergent semantics through gossiping. In
WWW ’03: Proceedings of the twelfth international
conference on World Wide Web, pages 197–206. ACM
Press, 2003.

[3] A. Andrzejak and Z. Xu. Scalable, Efficient Range
Queries for Grid Information Services. In Proceedings
of the IEEE International Conference on P2P
computing, 2002.

[4] J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load
balancing and locality in range-queriable data
structures. In Proceedings of the 23rd annual ACM
symposyum on Principles of Distributed Computing,
PODC 04, pages 115–124, 2004.

[5] J. Aspnes and G. Shah. Skip graphs. In SODA ’03:
Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 384–393,
Philadelphia, PA, USA, 2003. Society for Industrial
and Applied Mathematics.

[6] N. Beckmann, H.-P. begel, R. Schneider, and
B. Seeger. The r*-tree: An efficient and robust access
method for points and rectangles. In SIGMOD
Conference Proceedings, pages 322–331, 1990.

[7] P. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
management for peer-to-peer computing: A vision. In
Workshop on the Web and Databases, WebDB, 2002.

[8] A. R. Bharambe, M. Agrawal, and S. Seshan.
Mercury: supporting scalable multi-attribute range
queries. volume 34, pages 353–366, New York, NY,
USA, 2004. ACM Press.

[9] M. Cai, M. Frank, J. Chen, and P. Szekely. Maan: A
multi-attribute addressable network for grid
information services. In GRID ’03: Proceedings of the
Fourth International Workshop on Grid Computing,
page 184, Washington, DC, USA, 2003. IEEE

Computer Society.

[10] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt.
Locating data sources in large distributed systems. In
Proceedings of the 29th VLDB Conference, 2003.

[11] Gnutella. http://rfc-gnutella.sourceforge.net/,
2005.

[12] A. Gupta, D. Agrawal, and A. Abbadi. Approximate
Range Selection Queries in Peer-to-Peer Systems. In
Proceedings of the First Biennial Conference on
Innovative Data Systems Research (CIDR), 2003.

[13] A. Guttman. R-trees : A Dynamic Index Structure for
Spatial Searching. In Proc. of ACM SIGMOD Int.
Conf. on the Management of Data - SIGMOD Record
14(2), pages 45–57, 1984.

[14] KaZaA. http://www.kazaa.com/, 2005.

[15] Napster. http://www.napster.com/, 2001.

[16] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek,
A. Naeve, M. Nilsson, M. Palmér, and T. Risch.
Edutella: a p2p networking infrastructure based on
rdf. In WWW ’02: Proceedings of the eleventh
international conference on World Wide Web, pages
604–615, New York, NY, USA, 2002. ACM Press.

[17] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Peerdb:
A p2p-based system for distributed data sharing. In
Intl. Conf. on Data Engineering (ICDE), 2003.

[18] S. Ratnasamy, P. Francis, M. Handley, and R. Karp.
A scalable content-addressable network. In
SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols
for computer communications. ACM Press, 2001.

[19] O. Sahin, A. Gupta, D. Agrawal, and A. Abbadi.
Query Processing Over Peer-to-Peer Data Sharing
Systems. Technical report, University of California at
Santa Barbara, 2002.

[20] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. Kaashoek, F. Dabek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup protocol for internet
applications. In SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies,
architectures, and protocols for computer
communications. ACM Press, 2001.

[21] I. Tatarinov, Z. Ives, J. amd, A. Halevy, D. Suciu,
N. Dalvi, X. Dong, Y. Kadiyaska, G. Miklau, and
P. Mork. The piazza peer data management project.
ACM SIGMOD Record, 32(3), 2003.

[22] B. J. Wilson. JXTA. A Text Book ,
http://www.brendonwilson.com/projects/jxta/index.shtml.
2001.

12

