
Integrated Web Searching: Crawler-Initiated Probe
Selection and Content Summary Extraction

Amr El-Helw
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

aelhelw@cs.uwaterloo.ca

Aseem Cheema
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
apscheem@cs.uwaterloo.ca

ABSTRACT
A large percentage of the valuable data on the Internet is
stored into hidden databases that cannot be crawled or in-
dexed by traditional search engines. Metasearchers are help-
ful tools for searching over many such databases at once
through a unified query interface. They should be used to-
gether with traditional search engines to find data from all
over the Web. A critical task for a metasearcher is the selec-
tion of the most promising databases for the query, a task
that typically relies on statistical summaries of the database
contents. These statistics are collected by repeatedly prob-
ing a database with queries, retrieving the query results and
sampling them. It is very important to use query probes
that can return results that would give us the most repre-
sentative content summaries. In this paper, we present an
architecture that integrates traditional search engines and
metasearchers, and outline the potential points where the
two architectures need to interact. One of these points is
the choice of query probes to collect content summaries from
hidden databases. We present a new technique for iden-
tifying candidate values that can be used in the probing
process. Our probe identification technique is the first to
utilize traditional web crawlers to locate these values. We
also present a new approach to use the extracted probes
to compute the content summaries by selecting only data-
bases that would produce useful results when queried with a
particular probe. In addition, we propose an algorithm for
analyzing the returned result pages, and finding links that
lead to actual results. This new algorithm is the first to ex-
ploit several characteristics of result pages and utilizex these
characteristics to achieve its goal. Finally, we evaluate our
techniques thoroughly using a variety of databases, includ-
ing several real web-accessible databases. Our experiments
indicate that our new approach produces content summaries
that truly represent the underlying databases, which helps
the metasearcher in its database selection task. Also, it is
a step on the way of building integrated searching systems
that can search both the publicly indexable web, and the
hidden web databases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005 Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

1. INTRODUCTION
The World-Wide Web is growing rapidly, which makes it
very difficult for users to locate the available information
by simple browsing. Searching the web is today’s standard
to find information in any field of knowledge. Well-known
search engines (e.g. Google and Yahoo!) crawl and index
huge numbers of web pages to make their information avail-
able to users. However, the larger portion of the Web is not
stored as crawlable Web pages, but hidden inside databases
that are accessible only through search interfaces (thus the
term Hidden Web [5]). Users can only use these interfaces to
pose their queries, and their results are returned as dynami-
cally generated Web pages. The contents of these databases
cannot be crawled or indexed by search engines.

One way to search into the Hidden Web is using Metasearchers.
A metasearcher can return results from multiple databases.
The metasearcher’s operation can be summarized in three
main steps. Given a query, the first step is “Database Selec-
tion” where it selects the most suitable databases to answer
this query. The next step is “Query Translation”, where the
query is converted into a suitable form for each of the se-
lected databases. The final step is “Result Merging”, where
the results returned from all databases are merged and re-
turned to the user.

Database selection is the most important step since it de-
termines the sources in which results might be found. If the
wrong databases are selected, a result might not be returned,
even though it does exist. Database selection algorithms are
based on statistics that represent the contents of each data-
base. These statistics are usually called content summaries.
The content summaries often include the document frequen-
cies of the words that appear in the database, plus perhaps
other simple statistics.

Database selection algorithms are given a user’s query (usu-
ally in the form of one or more keywords). Based on the
available content summaries of multiple databases, the al-
gorithm decides which databases are most relevant to this
query. Therefore, these content summaries have to be accu-
rate, up-to-date, and truly representative of the underlying
data.

Computing these content summaries is not a trivial task. To
compute the content summary of a database, the database
is probed with a large number of queries, the returned docu-
ments (Web pages) are retrieved and sampled, and the doc-

ument frequency of each word in the retrieved documents
is stored. A fundamental issue in this process is choosing
the probes. Poor probes might result in completely missing
documents that address a certain topic, and therefore some
words would be missing from the content summaries.

In this paper, we propose an architecture to integrate tra-
ditional web searching with metasearching. In the proposed
scheme, components from both systems work together to
find the most relevant results for a user’s query.

We then focus on the problem of content summary extrac-
tion. We propose a new approach for finding “good” probes
that can be used in content summary extraction. The pro-
posed scheme requires some interaction between the metasearch-
ing components and ordinary crawlers, to extract possi-
ble probe values during the process of crawling static Web
pages.

We also propose a scheme to use the collected probe values
to actually probe the databases, identify the result pages and
discard irrelevant contents from them, sample them and ex-
tract their content summaries, using every term in its proper
context, and giving higher priority to most popular terms,
thus extracting more accurate summaries especially for pop-
ular terms.

The contributions of this paper are (a) a novel technique
for identifying probe values, (b) a new idea for selecting
which probes to use with which databases, and (c) a new
algorithm for analyzing search result pages and identifying
the links that lead to actual results.

The rest of the paper is organized as follows. Section 2 gives
the necessary background and the related work. Section
3 presents the proposed architecture for an integrated web
searching system that combines traditional web searching
and metasearching. Section 4 outlines our new technique to
find values that can be used as probes. Section 5 presents
a novel approach for content summary extraction that uses
the probes identified earlier. The experiments in Section 6
show that our method extracts very representative content
summaries. Finally, Section 7 concludes the paper.

2. RELATED WORK
In this section we give the required background and report
the related efforts. Section 2.1 briefly describes existing
techniques for finding candidate probe values. Section 2.2
describes existing methods of probing hidden web databases,
and which databases to use with which probes. Then, sec-
tion 2.3 discusses methods of identifying the results in the
returned pages.

2.1 Probe Identification
Many ways have been recommended by researchers for find-
ing probes. Callan et al. [1, 2] present an algorithm for con-
tent summary collection, in which there are two variants for
probe identification. The first variant, called RandomSampling-
OtherResource (RS-Ord for short) picks a random word from
the dictionary. The second variant, called RandomSampling-
LearnedResource (RS-Lrd) selects the next probe from among
the words that have been already discovered during sam-
pling. However, there are some problems associated with

these approaches. Since RS-Ord selects a random word from
the dictionary, there would be a lot of times where a probe
would return no results (which is wasted effort). On the
other side, since RS-Lrd selects a word from the already
sampled documents, this means that all probe values are
dependant on the first probe, so a poorly chosen first probe
might affect the whole process.

Raghavan and Garcia-Molina [11] used a task-specific data-
base, populated with label-value pairs for different form
fields. This database is initialized manually by filling in
labels and associated values. It can also collect more val-
ues from finite-domain form elements (e.g. lists and combo-
boxes) that it encounters. However, this approach was not
intended for content summary extraction, but rather for
crawling.

Ipeirotis and Gravano [8] proposed a focused probing tech-
nique that can actually classify the databases into a hier-
archical categorization. The idea is to pre-classify a set of
training documents under some categories, and then extract
different terms from these documents and use them as query
probes for the databases. Naturally, in this approach, a
probe cannot belong to more than one category, and the
documents returned for this probe give more weight to its
associated category.

Another approach is proposed in [7]. In this approach, they
start by randomly selecting a term from the search inter-
face itself. They claim that most probably this term will
be related to the contents of the database. The database
is queried with this term, and the top k documents are re-
trieved. A subsequent term is then randomly selected from
terms extracted from the retrieved documents. The process
is repeated until a pre-defined number of documents are re-
trieved. This technique eliminates the need to have a pre-
defined set of categories, and therefore does not have the
problem of a probe that can belong to multiple categories.
However, this technique has the same problem as the RS-
Lrd described earlier. The retrieved documents are heavily
dependent on the first probe (which is randomly chosen),
because all subsequent probes are selected from the docu-
ments retrieved from the first one. The fact that the first
probe is randomly selected from the search interface means
that it could be any term in the page, which might not be
very relevant to the contents of the database. And as a re-
sult of that, all (or most of) the subsequent documents will
not be representative of the database.

In our approach, we present a new method of identifying
values that can be used as candidate probes for Hidden Web
databases. Our approach involves some integration with
traditional web crawlers to identify these potential probes
while crawling. This is explained in more detail in section
4.

2.2 Database Probing
This problem deals with selecting which probe(s) to use on
which database(s), in order to get results that can be rep-
resentative of the database, i.e., covers most of the terms in
that database, and with an indicative sample frequency for
each term.

Most of the researches in this field did not address this ques-
tion, or just decided to use the available probes on all the
databases. This, of course, is a time-consuming process,
without any considerable gain, because an unsuitable probe
would not return any results that can be sampled (the only
information gained here is the frequency of the probe itself,
which would be zero in this case).

However, the focused probing approach proposed in [8] tack-
les this problem. The goal of this approach is to place a
database in an appropriate category as well as to collect
its content summaries. In the first step, the database is
probed with all probes belonging to general categories. The
database is assumed to belong to the category whose probes
return the greatest number of results. Subsequently, the
database is further investigated by using probes from the
subcategories of the current category, and so on.

As mentioned in section 2.1, this approach has the disadvan-
tage that it does not handle the fact that a database might
belong to more than one category (for example, a database
about sport injuries should be in both the sports and the
health categories). In that case, the database is only cate-
gorized under one of them, and queries related to the other
category would not consider this database.

Our technique discussed in section 5.1 uses a heuristic to
choose which probes to use with which databases, which
would produce more representative content summaries.

2.3 Result Set Identification
When a database is queried (either with a probe or with an
actual user query), the metasearcher should be able to an-
alyze the returned page (which contains a set of links that
represent the results of the query). These pages usually con-
tain a considerable amount of irrelevant data (or noise), in
terms of advertisements, navigational items (menus, previ-
ous/next links, etc.), or even other links that might be point-
ing to totally irrelevant data. The system should be able to
identify those links that represent the actual results of the
submitted query. Moreover, in case of content summary col-
lection, the metasearcher should follow these links, retrieve
the corresponding pages, and again, identify the portions of
these pages that represent the actual data that would be
sampled.

Most of the result pages follow some template that has a
considerable amount of text used only for presentation pur-
poses. Hedley et al. [6] proposed a method to identify Web
page templates by analyzing the textual contents and the
adjacent tag structures of a document in order to extract
query-related data. In this paper, a Web page is repre-
sented as a sequence of text segments, where a text segment
is of the form (text; tag; tag). The mechanism to detect
templates is described as follows:

1. Text segments of documents are analyzed based on
textual contents and their adjacent tag segments.

2. An initial template is identified by examining the first
two sample documents.

3. The template is then generated if matched text seg-
ments along with their adjacent tag segments are found

from both documents.

4. Subsequent documents retrieved are compared with
the template generated. Text segments that are not
found in the template are extracted for each document
to be further processed.

5. When no matches are found from the existing tem-
plate, document contents are extracted for the gener-
ation of future templates.

A similar approach is presented in [3] to analyze the result
page and extract relevant information.

In [7], they go further by representing the document content
by text segments and their neighboring tag segments, which
they refer to as Text with Neighboring Adjacent Tag Seg-
ments (TNATS). The neighboring adjacent tag segments of
a text segment are defined as the list of tags that are located
immediately before and after the text segment until another
text segment is reached. The neighboring tag segments of
a text segment describe how the text segment is structured
and its relation to the nearest text segments. A text seg-
ment, txs, is defined as: txs = (txi, tg−lstj , tg−lstk), where
txi is the textual content of the ith text segment, tg − lstj

and tg−lstk represent tags located before and after txi until
another text segment is reached. This gives better represen-
tation of the document, and then the same algorithm as in
[6] is used to identify the template.

However, these techniques might still miss links that do not
belong to the template, and that would be mistaken as ac-
tual results in the page. Our technique described in sec-
tion 5.2 uses this algorithm as a first step, and then further
processes the remaining contents taking into consideration
some observed characteristics to precisely identify the re-
sults.

3. PROPOSED ARCHITECTURE
Figure 1 depicts an architecture that integrates traditional
searching components and metasearchers. The dotted rec-
tangles represent each of the two individual systems, and
the thick arrows represent potential points of interaction.
The first possible interaction is that the crawler can have
a secondary task (besides crawling and storing web pages),
which is to populate the probe repository. Other possible
interactions between the two systems can include exploiting
feedback from the search engine (in terms of most frequently
queried keywords) that can also be used as potential probes
for hidden web databases. Moreover, both systems must
interact when returning the results to the client, since re-
sults from both sources should undergo some sort of global
ranking.

Section 4 discusses the first interaction, i.e. using the crawler
to populate the probe repository. The other interactions can
be further investigated in future research.

4. IDENTIFYING CANDIDATE PROBES
As mentioned in section 2.1, it is important to choose good
probes that, when used to query the database, would re-
turn results that would result in very representative content
summaries.

Repository

Search
Engine

Ranking
Crawler(s)

Client

Feedback
Probe

Repository
Prober/Sampler

Sampled
Pages

Content Summary
Extractor

Database
Selector

Query
Translator

Result
Merger

Crawl
Control Indexes

Indexer

Feedback

Static
Web

Pages

 Hidden Web
Databases

WWW T
ra

di
ti

on
al

 S
ea

rc
h

E
ng

in
e

M
et

as
ea

rc
he

r

Figure 1: Integrated Web Searching Architecture

To accomplish this, we present an approach that depends on
traditional web crawlers. A traditional web crawler is sup-
plied with a set of starting URLs. For each of these URLs,
the crawler retrieves and parses the page with that URL,
extracts any hyperlinks in it, and adds these hyperlinks to
a queue of URLs. In the next cycle, the crawler extracts a
URL from the queue (based on some order) and repeats the
same process.

However, most crawlers avoid links that have query para-
meters in them. These links are usually of the form:

http://x.y.z?param1=value1¶m2=value2&...

When a crawler encounters a link of this form, it simply
ignores that link, and does not add it to its queue. This is
mainly for the following reasons:

1. These links do not point to web pages, but rather to
scripts that dynamically generate web pages. The gen-
erated web pages can be countless and change very
frequently, depending on the passed parameters, there-
fore they are not meant to be crawled or indexed.

2. These links might lead to potential Spider Traps. A
spider trap is a script that is designed specifically so
that when a crawler tries to crawl it, it will keep crawl-
ing it over and over again indefinitely. Spider traps are
usually implemented by providing links that have dif-
ferent parameters but point to the same script, so the

crawler would think they are different links. Some ap-
proaches are used to handle this problem, like limiting
the links collected from the same domain to a certain
limit.

Our approach makes use of these parameterized links, in-
stead of completely ignoring them. In our proposed system,
when a crawler encounters a link of this form, it should ex-
tract the parameter-value pairs, and store them in what is
called a Probe Repository. These values can be good candi-
dates for probing the hidden web databases.

In the following subsections, we discuss the details of this
approach. Section 4.1 discusses the Probe Repository, and
how values are stored in it, and section 4.2 describes some
heuristic rules that we used to identify values that can act
as good probes.

4.1 The Probe Repository
The probe repository is the core of the probing module. It
is used to store the candidate probes that are extracted by
the crawler, so they can later be used to probe the hidden
databases.

The structure of the probe repository is shown in Figure
2. For each candidate probe, we store the parameter name
and the value that have been encountered while crawling.
Section 4.2 describes which parameter-value tuples are con-
sidered as candidate probes, and which are not.

ID Parameter Value Frequency

Figure 2: Probe Repository

url_queue.add(start_URLs);
while(not url_queue.empty()){
 url = url_queue.get();
 page = crawlpage(url);
 crawled_queue.add(url);
 url_list = extract_urls(page);
 for each u in url_list{
 if (u contains parameters){
 param_list = extract_params(u);
 refine(param_list, heuristics);
 for each p in param_list{
 if((p.name, p.value) in probe_repository)
 increment frequency for (p.name, p.value);
 else
 probe_repository.add(p.name, p.value, 1);
 }
 }
 else{
 if (u not in url_queue) and (u not in crawled_queue)
 url_queue.add(u);
 }
 }
}

Figure 3: Crawling Algorithm

The Frequency field is used as an indicator of this particular
probe’s popularity. If a certain probe is found many times
during crawling, it means that many pages have the same
links with the same parameter value. Thus, this value can
be considered as a popular item.

As a result of that, the crawling algorithm should be mod-
ified to include this functionality. A simple crawling algo-
rithm that incorporates probe extraction is shown in Figure
3. In this algorithm, if a link does not contain any pa-
rameters, the crawler proceeds normally (as a traditional
crawler). However, if a link with parameters is encountered,
the parameter names and values are extracted and added to
the repository. The step refine(param list, heuristics) is
explained in the next section.

4.2 Candidate Probe Heuristics
When collecting parameter names and values from hyper-
links to use them as probes, we noticed that not all of these
parameters can be useful for this purpose. This is mainly
because the values of these parameters can by proper Eng-
lish words, names, item codes, dates, sometimes even HTTP
session IDs (which are usually long sequences of letters and
numbers). To overcome this problem, we had to filter the
extracted parameters using some heuristic rules.

In our proposed scheme, a parameter name-value pair is
considered a valid candidate probe if all of the following
conditions hold:

1. Neither the name nor the value are numbers. Also,

the value should not contain any numeric digits (other
than those used to represent ASCII characters). This
is to filter out item codes.

2. The value is not a URL. This is because some web
sites pass page URLs as parameters to be used in redi-
rection.

3. The value is not a date.

4. The value is not a file path (same reason as rule 2).

5. The parameter name does not contain the words “id”
or “code” (for the same reason as rule 1).

6. The parameter name and value are less than or equal to
l characters in length (in our implementation, we used
l = 50 which produced very good results). This is also
to eliminate meaningless sequences of letters (mostly
used to represent session information and browser cook-
ies).

7. The parameter value is not a stop word.

The last rule states that the parameter value should not
be a stop word. Stop words are common words that ap-
pear in many different contexts without having a meaning
of their own. they are used either for grammatical pur-
poses, or to emphasize the meaning of a neighboring word
(or group of words). Examples of common stop words are
{a, an, the, of, more, etc.}. These words cannot be used as
probes basically because most databases do not allow query-
ing using stop words (because they can be found in every
possible result in the database). Therefore, using them as
probes is useless.

5. CONTENT SUMMARY EXTRACTION
After collecting terms that can be used as probes, the next
step is to use these probes to query the hidden web data-
bases, in order to form an idea about the contents of these
databases. In this phase we assume that the metasearcher
has a pre-defined list of databases that it uses for searching.
A lot of work has been done discussing how to actually find
hidden web databases so that this list can be constructed,
however, this is an independent problem and is not in the
scope of this paper. The interested reader is directed to [11,
9, 4].

In the next subsections, we explain some main issues that
affect the content summary extraction process. Section 5.1
answers the question of which databases should be used with
which probes to get representative results. Section 5.2 ex-
plains how to identify the results in the returned pages. Fi-
nally section 5.3 discusses the content summary extraction
itself.

5.1 Probing the Databases
As we already mentioned, for this part we assume that we
have a list of all the databases that we want to search. This
is shown in Figure 4a. For each database D, we store the
URL of the search interface of that database. Also, we store
a list of all the search fields in each of these interfaces, as
shown in Figure 4b. For each field, we store the field ID and
the field label. The field ID is used to query this database,

while the field ID and label together are used to match it
with suitable probes, as will be explained.

DBID DB URL

1 http://.....
2 http://....

DBID Field ID Field Label

1 kw Keywords
1 auth Author

(a) Databases

(b) Database Fields

Figure 4: List of Databases and their Fields

Given the probe repository that was populated by the crawler,
the Prober module gets probes from this repository, one at
a time, and uses them to query the database. The Prober
always selects the probe that has the following characteris-
tics:

1. It should not have been used for probing before.

2. Among all the unused probes, it should have the high-
est frequency. If more than one probe have the same
frequency, an arbitrary probe is chosen.

The frequency of a probe is an indication of how popular
this probe is, and therefore, how probable it is that a user’s
query might contain this probe’s value. As a result, it is
most desirable to use this value to probe the databases to
get information about their contents.

Now that the probe has been chosen , it is important to
choose the database(s) on which to use this probe. A naive
approach would use this probe on all available databases,
but this would incur extra overhead, in terms of both process-
ing power and network traffic.

To find the databases to probe, we select from the database
list, all those databases that satisfy any of the following
conditions:

1. The database has a field whose ID equals the probe
name.

2. The database has a field whose label equals the probe
name.

3. The database has only one search field.

The first two conditions are used for databases that have
an Advanced Search interface. These interfaces usually have
multiple fields, and these fields have IDs or labels that indi-
cate what kind of input is expected in them. This way, we
target only databases that expect the same domain of the

probe on hand. However, some search interfaces have only
a single field that accepts any keywords. It is not possible
to know what kind of inputs this database expects by ana-
lyzing its interface. For this purpose, we included the third
condition that basically allows the Prober to use a probe on
all databases that have a single field in their search interface.

In order to probe a database, a parameter name-value pair
is formed from the matching field ID and the probe value,
and this pair is appended to the database interface’s URL
(as retrieved from the stored database list in Figure 4a).
The Prober module has a time-out condition that prevents
it from waiting indefinitely for a database response, in order
to handle network problems and problems in the database
server itself.

5.2 Result Set Identification
Once the database is probed, it returns a page that contains
a set of links to the results of the submitted query. However,
this page usually contains more than just these links. If
the page contained only those links, it would be simple to
extract them in a manner similar to that of the crawler,
and just retrieve the target pages. However, as mentioned
in section 2.3, it is usually the case that this page might
contain a lot of other irrelevant links. These links might
be advertisements that point to other commercial web sites,
navigational links which can be used by the used to navigate
through the current site itself (for example, menu items or
links to more result pages), or links associated with each
result, but do not provide useful information in the case of
content summary extraction (for example, in some online
markets, each item might have a link that would lead to a
page with possible payment methods, or terms of agreement
that the user has to read before purchasing). Therefore, an
important step in collecting content summaries, is to identify
those links that represent the actual results of the posed
query.

As mentioned in section 2.3, most result pages, follow some
kind of a template that describes the presentation of the
page. This template is usually the same for all result pages
that belong to the same database, regardless of the submit-
ted query, except for some minor differences that can be
encountered.

So, as a first step to eliminate irrelevant links from the result
page, we used the approach presented in [7], in which the
page contents are represented as Text Segments And their
neighboring Tag Segments (TNATS). Each TNATS entry is
a tuple of the form (txi, tg − lstj , tg − lstk). For example,
consider the HTML source code in Figure 5. The TNATS
representation of this fragment would be as shown in Table
1.

The algorithm in [7] detects the template at run time by con-
tinuously comparing pages retrieved from the same source
(after converting them to the TNATS representation), and
identifying the common parts between these pages. These
parts constitute the template of this specific database. Then
the algorithm makes another pass on the pages removing
this common part from them, so that only the non-template
contents are left.

Table 1: TNATS representation of Figure 5
txi tg − lstj tg − lstk

Results <html><head><title> </title></head><body><hr><h3><i>

1. 21 inch TV set </title></head><body><hr><h3><i> </i></h3><i>

Color: </i></h3><i> </i>

Black </i>
<i>

...

…
<HTML><HEAD><TITLE>Results</TITLE></HEAD>
<BODY>
<HR><H3><I> 1. 21 inch TV set</I></H3>
<I>Color: </I>
Black

<I>Weight (KG): </I>
5

…

Figure 5: HTML source

However, in our approach, we chose to execute the template
identification phase offline, i.e. before the actual operation
of the system. We used an automated process to issue mul-
tiple queries at each database, and retrieve the returned
pages. These pages are compared, and the common parts
are identified. These parts form the template of this data-
base, and is stored in the database list that is accessible to
the Prober.

At runtime, the Prober retrieves this stored template, matches
it with the results returned from the database being queried,
and removes all common items from the returned result
page, thus the remaining data do not contain any of the
template items.

However, this does not solve the problem completely. In
most of the cases there are still some links that do not belong
to the template but that do not lead to actual results. In
order to remove these links, we introduced a new algorithm
based on some observations about the characteristics of the
result links, and the non-result links.

Observation 1 All result links point to pages in the same
domain of the database interface.

Observation 2 All result links have very similar URLs that
differ only in the last part (which is usually in the form
of some parameter-values).

Observation 3 In most (if not all) of the results, the key-
word that initiated the search is present either in the
link text itself, or in the snippet directly following the
link.

The algorithm to extract the result links is shown in Figure
6. The algorithm first starts by constructing a tree with
all the links in the page (after removing the template data).
Using observation 1, the root of this tree is the domain of the
search interface, and only links that belong to this domain

Algorithm GetResultSet(){
 // Construct the link_tree
 url_list = extract_urls(page);
 link_tree = null;
 link_tree.addnode(db_domain);
 for each url in url_list{
 if (url.domain = db_domain){
 level_list = url.split();
 current_node = link_tree.root;
 for each level in level_list
 if (level not in current_node.children)
 current_node.addchild(level)
 current_node = level;
 }
 }
 }
 // Get the subtree with maximum number of leaves
 leaf_list = link_tree.get_leaves();
 parent_list = null;
 for each leaf in leaf_list{
 if (leaf.parent in parent_list)
 parent_list.increment(leaf.parent);
 else
 parent_list.add(leaf.parent, 1);
 }
 max_parent = parent_list.getmax();
 return max_parent.children;
}

Figure 6: Result Identification Algorithm

are added to this tree. A link is represented in the tree
as follows. Consider this link http://x.y.z/a?id=1. The
tree branch that represents this link would be a root node
(http://x.y.z) that has a child (a) that has a child (id=1).
The depth of the branch is the number of levels in the link.

To construct the tree, the algorithm collects all links in the
page. Each link is split into its individual levels. Any link
that does not belong to the domain of the database is dis-
carded (observation 1). A branch representing each link is
added to the tree, adding any nodes that do not already
exist.

Once the tree is constructed, and according to observation
2, all result links should be found as leaf nodes that have the
same parent. So, the algorithm collects all the leaf nodes of
the tree, with their parents, then finds the parent that has
the maximum number of children (this should be the subtree
containing the result links).

Note that, in Figure 6, the line

max_parent = parent_list.getmax();

finds the parent that has the maximum number of children
that have the search keyword in the link text or in the

snippet (observation 3). This observation is very important
in fact, since sometimes there are other subtrees that have
more children but do not contain the keywords in their text.

To illustrate the technique, consider the following exam-
ple. Assume that a query to the database whose domain
is (http://x.y.z) returned a page that has the following
hyperlinks:

http://x.y.z/a?id=1

http://a.b.c/a?id=1

http://x.y.z/a?id=5

http://x.y.z/b?id=6

http://x.y.z/c

http://a.b.c/

http://x.y.z/a?id=23

According to our algorithm, all the links that are pointing
outside the domain (http://x.y.z) will be discarded, and
the remaining links will be arranged in a tree structure, as
shown in Figure 7. In order to extract the result links, the
algorithm searches for the largest number of leaf nodes that
have the same parent, which in this case would be the leaf
nodes whose parent is the node “a”, assuming that the link
text of these nodes contains the keywords that initiated the
query.

http://x.y.z

a

id = 1 id = 5 id = 23

b

id = 6

c

Figure 7: Tree Representation of Hyperlinks

5.3 Extracting summaries
Once the result links are identified, the Prober retrieves the
corresponding result pages. To make sure that each result
page is never retrieved more than once, the URLs of these
pages are stored, and only pages with new URLs are re-
trieved.

For each retrieved page, once again template detection and
removal take place. The remaining text is filtered to remove
stop words, and then the inverse document frequency (IDF)
for each of the remaining words is incremented.

6. EXPERIMENTAL RESULTS
This section presents the results of the various experiments
carried out throughout this research.

6.1 Experimental Settings
For these experiments, we had to implement two modules.
The first module is the web crawler, based on the algorithm

shown in Figure 3, including the probe extraction function-
ality. The second module is the Prober that uses the col-
lected probes to extract content summaries from hidden web
databases.

The crawler and the prober were implemented in Java, and
ran on a Pentium IV (2.8 GHz) machine with 1 GB of main
memory. For the probe repository, we used an Oracle 10g
database server, running on another Pentium IV (3.0 GHz)
machine, with 1 GB of main memory.

We carried out our probing and content summary extraction
on the following hidden web databases:

ACM Digital Library (http://portal.acm.org/dl.cfm)
a collection of scientific research papers and articles.

IEEE Xplore (http://ieeexplore.ieee.org) another library
of scientific research material.

CanLearn (http://www.canlearn.ca) learning and edu-
cation resources in Canada.

Walmart (http://www.walmart.com) a popular online
shopping portal.

Gately’s (http://www.gatelys.com) a furniture retail store
online interface.

Barnes & Noble (http://www.barnesandnoble.com) an
online bookstore.

CiteSeer (http://citeseer.ist.psu.edu/cs) a scientific lit-
erature digital library.

All probing or querying was done through the search inter-
faces of these databases.

When carrying out our experiments, we were interested in
the following: (a) examining the effectiveness of the probe
extraction technique by determining the rate by which “pop-
ular” probe values are found (section 6.2), (b) evaluating the
accuracy of the result identification algorithm (section 6.3),
and (c) evaluating the extracted content summaries and de-
termining whether or not they truly represent the data in
the databases (section 6.4).

6.2 Probe Extraction
In this experiment we tested the effectiveness of our probe
extraction scheme. We let the crawler crawl web pages and
collect probes during the crawling process. The crawler
module crawled about 4,000 web pages from different web-
sites. In order to guarantee that the crawler crawls different
web-sites, we started the crawler with some initial URLs
of web directories like Yahoo! directory1, and Google direc-
tory2.

We measured the rate of probe extraction, i.e. the number
of new probes found per page. Figure 8 shows at the be-
ginning of the crawling process, the number of new probes

1http://dir.yahoo.com
2http://directory.google.com

0

0.5

1

1.5

2

2.5

3

0 400 800 1200 1600 2000 2400 2800 3200 3600

Number of Crawled Pages

R
at

e
o

f F
in

d
in

g
 P

ro
b

es
 (#

 n
ew

 p
ro

b
es

/p
ag

e)

Figure 8: Probe Extraction Rate

Table 2: Most Popular Probes
Probe Frequency
page = p1 3500
hl = en 2288
tmpl = story 2117
src = ym 2108
lineup = us pacific 910

found is relatively high, and then it decreases until it be-
comes fairly stable at the rate of about 0.5 probes/page.
This is mainly because, after the initial transient stage in
the crawling process, the probe repository will contain a
considerable amount of probes, so the chance that a probe
encountered later already exists in the repository increases,
and thus the rate of finding a new probe decreases. This
shows that a considerable amount of “popular” probe val-
ues are identified early in the crawling process.

However, since we extract probes from hyperlinks, popular
probes do not have to be proper English words, as long as
they are popular (i.e. the same probe is found multiple
times), because they can generate a number of results from
the databases, and that is what we look for in a probe.
Table 2 shows the most popular probes extracted in our
experiments while crawling 4,000 pages.

6.3 Result Set Identification
In this experiment, we used the probes collected earlier to
query the databases, in order to observe the effectiveness
of the result identification algorithm. We applied the al-
gorithm on the returned pages to identify the result links,
and then we compared these results with actual results that
we have manually identified for the same queries. This ex-
periment was carried out using 10 query probes over the 7
databases mentioned in section 6.1.

For each query on each database, we measured the following
three values:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CanLearn ACM IEEE Xplore Walmart Gately's Barnes &
Noble

Citeseer

Recall

Precision

Figure 9: Result Set Identification

Table 3: Number of Sampled Pages
Database #Pages
CanLearn 281
ACM 819
IEEE Xplore 619
Walmart 1003
Gately’s 85
Barnes & Noble 106

Nactual: the number of results returned by the database that
we have manually identified.

Nidentified: the number of results that are identified by the
algorithm.

Ncorrect: the number of results that have been identified by
the algorithm and which are in the manually identified
results as well.

These three values are then accumulated (summed) for each
database over the whole set of queries, and that provides us
with total Nactual, Nidentified and Ncorrect values for every
database. The reasoning behind this is that, as we noticed,
there is a maximum limit on the number of results being
returned by a query, so taking a summation over a number
of queries guarantees that the contribution of each query is
the same in the total.

Given these 3 parameters, we calculate the following 2 met-
rics for each database DBi:

Precision(DBi) = Ncorrect(DBi)/Nidentified(DBi)

Recall(DBi) = Ncorrect(DBi)/Nactual(DBi)

Precision is the percentage of correct identified results with
respect to the total identified results. Recall is the per-

Table 4: A Sample of the Extracted Content Summaries
Database CanLearn ACM IEEE Xplore Walmart Gately’s Barnes & Noble
#Pages 281 819 619 1003 85 106
Sample canlearn, 281 computer, 762 paper, 617 product, 1002 quantity, 82 bestseller, 104
Words education, 281 publish, 747 cite, 617 price, 975 delivery, 70 recommended, 104
(word, freq) tuition, 233 information, 722 article, 519 gift, 969 sale, 65 textbooks, 91

credentials, 207 library, 714 volume, 432 department, 917 room, 50 biography, 89
degree, 153 survey, 705 issue, 360 seller, 916 bedroom, 27 document, 89

centage of correct identified results over all actual results
returned by the database. Figure 9 shows the results of the
comparison. It shows the precision and recall of the algo-
rithm in case of each database.

Five of the seven databases show considerably good recall.
Note that the recall represents the percentage of actual re-
sults that were captured by the algorithm. One reason for
low recall in some databases (for example, Barnes & Noble)
is due to the “not so meaningful” query probes. If the query
probe is not a meaningful word, it does not usually appear
in the link text, and thus the link is not considered as a
valid result. One other reason for low recall is that some of
the search interfaces use stemming, so again the submitted
probe value would not necessarily exist in the link text (al-
though a word similar to it might exist, but our algorithm
does not handle this case), and therefore the link would not
be recognized. However, there are two possible solutions for
this problem, which we have not implemented due to time
limitations. These possible solutions involve modifying the
part of the algorithm that looks for the probe value in the
link text. It can be modified to do either of the following:

• Perform approximate string matching instead of exact
string matching, so any word that is similar to the
probe value would be considered as a match.

• Enumerate all words that have the same stem as the
probe value, and search for all of them in the link text,
instead of searching only for the probe value itself.

The precision metric can be considered as the reverse mea-
sure of noise. Noise is the number of extra links that are
mistakenly identified by the algorithm as being result links,
although they are not part of actual result set returned by
the database. As depicted in Figure 9, in most cases, preci-
sion is quite similar to the recall. Databases with good recall
have good precision as well. The reason for low precision in
some cases is the inability to identify the cases where no
actual results are returned. When databases return no re-
sults, our algorithm still tries to find the result set. Hence,
it recognizes the wrong result set and precision decreases.
The precision can be improved considerably by implement-
ing heuristics to identify zero results being returned. This
can be achiever for example by storing HTML templates
for the “zero results” cases for each database, and trying to
match these tamplates with the returned pages at runtime.
However, this was not implemented in our algorithm. Some
research efforts have already been done to identify the cases
where no results are returned. The reader is referred to [11,
3].

Overall, the algorithm shows convincing results and is able
to identify the result sets. The study covers only seven data-
base due to some manual efforts involved in querying the
databases. But we strongly believe that the algorithm will
work well on a wider range of databases as well. We believe
that with minor changes and implementation of heuristics to
identify zero result pages, the effectiveness can be improved
to a large extent

6.4 Content Summary Extraction
In this experiment, we used the probes collected earlier to
extract content summaries from the databases listed in sec-
tion 6.1. It is not possible to know the actual number of
pages that can be generated from each database. These are
practically infinite, therefore, our measure was the document
frequency of every sampled word relative to the number of
documents sampled from the database. The total number of
pages sampled during our experiment from each database,
is shown in Table 3.

After we retrieved pages from the database, we used the
Porter stemming algorithm [10] to find the stem of each
encountered word in these documents, after removing stop
words. We used a stemming algorithm because it makes
more sense to collect statistics of word stems as opposed to
words themselves, since there can be different forms of the
same word in different documents, which should contribute
to the frequency of a single word stem.

The extracted summaries were very representative of the
underlying databases. Table 4 shows some of the words
sampled from each database, with the sample document fre-
quency of each word.

7. CONCLUSION AND FUTURE WORK
In this paper we presented an architecture for integrating
current search engines with hidden web metasearchers, and
outlined some of the potential points where the two archi-
tectures can interact.

We then focused on one of these points, which is probe iden-
tification for content summary extraction. In section 4, we
presented a novel approach for collecting these probes. The
proposed approach depends on incorporating web crawlers
into the probe identification process by extracting candidate
values from hyperlinks during crawling, taking into consid-
eration some heuristic rules, to identify values that can be
used for probing databases.

In section 5.1, we described a method to use the collected
probes for computing content summaries, by using these
probes in their context, in order to get content summaries

that best represent the underlying databases.

Finally, in section 5.2, we presented a new technique for
identifying the hyperlinks that lead to user query results
among other irrelevant links that exist in the result page.
Our technique first attempts to discard the template por-
tions of the page that are used only for presentation pur-
poses, and then it exploits some observations about the char-
acteristics of the result links and their relationship with their
domain and with each other, by arranging them into a tree
structure, in order to identify only those links that point to
actual result pages.

The experiments carried out in section 6 demonstrate that
our approach succeeds in computing content summaries that
are truly representative of the actual data in the hidden
database, and therefore can be relied upon in the database
selection phase of metasearching.

The next immediate step in this work would be to improve
the proposed techniques. For example, in section 6.3 we out-
lined some ideas that can be investigated to improve the pre-
cision and recall of the result identification algorithm. Fur-
thermore, more heuristics can be incorporated in the probe
extraction technique to filter out more useless probe values.

As long term future work, it would be useful to further
investigate the necessary measures that have to be taken
in order to fully integrate traditional web search engines
and metasearchers. As already outlined in section 3, there
are manu points that can be explored. For instance, feed-
back from the search engine (in terms of most popular user
queries) is currently used to dynamically control the crawl-
ing process, in order to give high priority to pages that might
be an answer to their queries. The same idea can be applied
in metasearching by using the user query feedback as po-
tential probing candidates to aid in the content summary
extraction process. This approach was never tackled before
and therefore needs further investigation to determine its
usefulness. In addition, if the two searching architectures
are to be integrated, the results returned from both have to
be merger before returning them to the user. This intro-
duced a new problem, that is, assigning an overall rank to
the results returned from both sources taking into consider-
ation the individual ranks that the results from each source
have.

8. REFERENCES
[1] J. Callan and M. Connell. Query-based sampling of

text databases. ACM TOIS, 19(2):97–130, 2001.

[2] J. Callan, M. Connell, and A. Du. Automatic
discovery of language models for text databases. In
Proc. of ACM SIGMOD conf., pages 479–490, 1999.

[3] J. Caverlee, L. Liu, and D. Buttler. Probe, cluster,
and discover: Focused extraction of qa-pagelets from
the deep web. In Proc. of the 20th ICDE conf., 2004.

[4] A. de Carvalho Fontes and F. S. Silva. Smartcrawl: A
new strategy for the exploration of the hidden web. In
Proc of the 6th ACM WIDM workshop, pages 9–15,
2004.

[5] D. Florescu, A. Levy, and A. Mendelzon. Database
techniques for the world-wide web: A survey.
SIGMOD Rec., 27(3):59–74, 1998.

[6] Y. Hedley, M. Younas, A. James, and M. Sanderson.
Query-related data extraction of hidden web
documents. In Proc. of the 27th ACM SIGIR conf.,
pages 558–559, 2004.

[7] Y. Hedley, M. Younas, A. James, and M. Sanderson.
A two-phase sampling technique for information
extraction from hidden web databases. In Proc. of the
6th ACM WIDM workshop, pages 1–8, 2004.

[8] P. G. Ipeirotis and L. Gravano. Distributed search
over the hidden web: Hierarchical database sampling
and selection. In Proc. of the 28th VLDB conf., pages
394–405, 2002.

[9] J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F.
Laender. Collecting hidden web pages for data
extraction. In Proc. of the 4th ACM WIDM workshop,
pages 69–75, 2002.

[10] M. F. Porter. An algorithm for suffix stripping. pages
313–316, 1997.

[11] S. Raghavan and H. Garcia-Molina. Crawling the
hidden web. In Proc. of the 27th VLDB conf., pages
129–138, 2001.

