CS856

HyperQueries: Dynamic Distributed Query
Processing on the Internet

Alfons Kemper, Christian Wiesner
VLDB Conference, 2001

Presented by: Yasemin Ugur
02/23/05



Introduction

Context: Building an open market place on the internet (for data
providers and clients)

Aim: Providing a data integration and distributed query processing
capabilities

Requirements:
— Keeping local sites autonomous and heterogeneous
— Controlled access to site’s sensitive data
— Scalable to large number of sites

Approaches:

— Mediator-based: Integrated schema of the data on the mediator, and
sub-query executer and wrappers on each data source



QueryFlow

« Market place host act as a mediator; contains integrated schema tables
(e.g. Product catalog table), and provides registration services

« Each provider register their data to a virtual table, and defines hyperlinks
for virtual attributes (and provide associated HyperQuery)

| ProductDescription | Supplier | Price

Battery, 12V 32 A Supplier 1 | hg://supplierl.com/Electrical /Price?ProdID=CB1232
Battery, 12V 55 A Supplier ] | hyg://supplierl.com/Electrical /Price?ProdID=CB1255
Tires 175/65TR14 Supplier2 | hg://supplier2.com/Prica?ProdKey=175/65TR14

Spark Plug VX Supplier 3 | hyg: //supplier3.com/PricaeFoxUSA ! Currency=USD?ID=12

SQL
select h.*, p Price as Price / query
frorm HyperQuerylnputStrean b,
Products p
(/I-;Q\ whete hPtodID = pProd ID
\Market Place
Human

. Catalog input/
]
register = | / a Application-
derived

)

hyper
N i ] Another
" HyperQuery

Tl

HvperQueries 3




HyperQuery Processing

* Simplified algorithm:
— For each tuple of the virtual table being processed (Dispatch operator)

» Process the hyperlink in the virtual attribute (s), and push the object-specific
parameters, and input objects to the remote site that the hyperlink points to

 Input object and object-specific parameter is evaluated by the query sub-plan
(HyperQuery) on remote site , and output object is sent back to the market
place (or surrounding sub-plan)

» The sub-plan is instantiated once for the same URI (with different parms)

— Merge all the result objects and return back to the user (Union operator)

* One-level (simple) or multi-level queries

t 1 J
u Y
m _.-'U‘._
. Qegmlior & h e .
S — é
i Gt Pl
| -
One-level multi-level multi-level
hierarchical broadcasting



HyperQuery Processing

* On remote site (SQL query example):

Price@Supplierl A

Join (h.prodID = p.prodID)

/\

Extract URI (h.ProdDesc, prodID) RDBMS Wrapper (prodld, Pri¢e)
Receive (h.ProdDesc, h.Price) 3

I

The operators such as join, selection are built-in operator implementation of the ObjectGlobe.



More details on QueryFlow

* Implementation specific optimization in order to reduce the amount
of data transferred on network
— Push selection predicates into the sub-plans on remote host

— Avoid passing attributes that are not involved 1n the subplan to remote
host

— Use cache to avoid processing of the same virtual attribute (at least in
intra-query) due to duplicates

» Additional attributes (that are not requested by the user) can be
returned from sub-plans using a container attribute (initially
specified by the schema on the mediator)



Registration

* A new service should be easily integrated into the system, and clients
and providers should be able to access them without effort

» E.g. Registration of new suppliers, products and HyperQueries

( <ProductRegistration ) QueryFlowServiceManager (“RegistrationStatus )
<Product id="4711"> 1 4 ‘ s 6 <Product id="4711">
<ProductDescription= - - = - OK
Spark Plug VX e "
-’Plr)o diic@escription> determineService execute =/Product>
<Price 1sVirtual="true"> | i T . L. .
hq:// .. | : | \:-.-Regxstrat1onbtams--> )
</Price= 2! e T - ; '
= r RegisterSupplier ! '
</Product= R : I
= 41
</ProductRegistration= ol ' '
~ - ~ < t-»| RegisterHyperQ o
Z egisterHyperQuery : |
e | S
| L
. -
L RegisterProduct




Other Systems (ObjectGlobe, Mariposa)

Running example: searching for the specific car part’s details (material, price)

*  QbjectGlobe:

= Each supplier associate their corresponding that data source with the theme of
car parts (with a set of predefined attributes), and register the attributes

= Each data source has to be (as long as quality parameters are not violated)
queried to see if a requested part is provided by this supplier

= The query processing enforce the user’s quality constraints (time, charge,
cardinality data) and adapts accordingly

= Employ different query capabilities of different sites (not only data) for better
query execution plan (e.g. performing a join of two themes on cycle provider
that 1s physically close to the data providers, rather than shipping each scanned
data back to client to perform this join operation)



Mariposa query processing

« Data layout: horizontally partitioned table fragments, and replicas

* 3-modules: clients, middleware, local site manager.

» Each participant site can join the system by advertising it services and bidding on queries

*  Client submits query with a required budget (how much the user is willing to pay for the
query execution within ¢ timeframe, whether a user is willing to sacrifice performance for
a lower charge)

» Parser finds the metadata (e.g. location of each fragment) from the name server for each
table requested in the FROM clause of query

*  Query processing/optimization:

— (1%t phase): Generate a single-site query plan (ignores data distribution, assumes all fragments are
located on a single site)

— (2" phase): Decompose the single query plan into fragmented query plan: decompose each
referenced table node into subqueries (one per fragment), and joins are into join subquery for
each pair of fragment join

— Sends out bid request to sites that might be interested
— Each bidder (local site) returns (Cost,Delay,Expiration)
— Middleware accepts bids, constructs a final plan, and informs local sites of their jobs

« Sites (storage manager) can buy and sell fragments based on the estimated revenue from
the fragments



Comparison

e Mariposa

» Each supplier only register that their horizontal fragmentation for the car part
table

« Depending fragmentation criteria and user query, some of the fragment
providers may not be required to be involved in the query execution plan

» Objective is to construct a query plan within user’s cost/$ and time budget

» De-centralized / point-to-point decision-making to find a optimized global
query plan

*  QueryFlow:
» Each car parts supplier register its product (e.g. product name) & hyperlinks

for attributes (virtual attribute) that should be obtained from the supplier itself
each time the query is issued

* Only the suppliers that have product name matching with the user query would
be contacted to find the actual value for the other attributes

» The cost (time, price, ..) of the query is not considered
» Does not deal with limited/different query capabilities of sites

» Seem to be applicable to specific type of application (e.g. supply-chain)
10



References

The URL for ObjectFlow project:
http://www-db.in.tum.de/research/projects/OG/OnlineDemo/queryflow.shtml

HyperQueries: Dynamic Distributed Query Processing on the Internet,
Alfons Kemper and Christian Wiesner, Internal Technical Report, University of Passau,
October 2001.

QUEL as a Data Type. M. Stonebraker, E. Anderson, E. Hanson, and B. Rubenstein. In
Proc. of the ACM SIGMOD Conf. on Management of Data, 1984.

Mariposa: A Wide-Area Distributed Database System. M. Stonebraker, P. Aoki, W.
Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. In the VLDB Journal 1996.

An overview of Mariposa system:
http://redbook.cs.berkeley.edu/redbook3/mariposa.html

11



Comments

12



