
1

CS856

HyperQueries: Dynamic Distributed Query
Processing on the Internet

Alfons Kemper, Christian Wiesner
VLDB Conference, 2001

Presented by: Yasemin Ugur
02/23/05

2

Introduction
• Context: Building an open market place on the internet (for data

providers and clients)

• Aim: Providing a data integration and distributed query processing
capabilities

• Requirements:
– Keeping local sites autonomous and heterogeneous
– Controlled access to site’s sensitive data
– Scalable to large number of sites

• Approaches:
– Mediator-based: Integrated schema of the data on the mediator, and

sub-query executer and wrappers on each data source
– ..

3

• Market place host act as a mediator; contains integrated schema tables
(e.g. Product catalog table), and provides registration services

• Each provider register their data to a virtual table, and defines hyperlinks
for virtual attributes (and provide associated HyperQuery)

QueryFlow

SQL
query

Human
input /

Application-
derived

Another
HyperQuery

hyper
links

register

HyperQueriesHyperQueries

4

HyperQuery Processing
• Simplified algorithm:

– For each tuple of the virtual table being processed (Dispatch operator)
• Process the hyperlink in the virtual attribute (s), and push the object-specific

parameters, and input objects to the remote site that the hyperlink points to
• Input object and object-specific parameter is evaluated by the query sub-plan

(HyperQuery) on remote site , and output object is sent back to the market
place (or surrounding sub-plan)

• The sub-plan is instantiated once for the same URI (with different parms)
– Merge all the result objects and return back to the user (Union operator)

• One-level (simple) or multi-level queries

One-level multi-level
hierarchical

multi-level
broadcasting

5

• On remote site (SQL query example):

HyperQuery Processing

Receive (h.ProdDesc, h.Price)

Extract URI (h.ProdDesc, prodID)

Join (h.prodID = p.prodID)

RDBMS Wrapper (prodId, Price)

Products p

 Selection predicate

Send

The operators such as join, selection are built-in operator implementation of the ObjectGlobe.

Price@Supplier1

6

More details on QueryFlow
• Implementation specific optimization in order to reduce the amount

of data transferred on network
– Push selection predicates into the sub-plans on remote host
– Avoid passing attributes that are not involved in the subplan to remote

host
– Use cache to avoid processing of the same virtual attribute (at least in

intra-query) due to duplicates

• Additional attributes (that are not requested by the user) can be
returned from sub-plans using a container attribute (initially
specified by the schema on the mediator)

7

Registration
• A new service should be easily integrated into the system, and clients

and providers should be able to access them without effort
• E.g. Registration of new suppliers, products and HyperQueries

8

Other Systems (ObjectGlobe, Mariposa)

Running example: searching for the specific car part’s details (material, price)

• QbjectGlobe:
 Each supplier associate their corresponding that data source with the theme of

car parts (with a set of predefined attributes), and register the attributes

 Each data source has to be (as long as quality parameters are not violated)
queried to see if a requested part is provided by this supplier

 The query processing enforce the user’s quality constraints (time, charge,

cardinality data) and adapts accordingly

 Employ different query capabilities of different sites (not only data) for better
query execution plan (e.g. performing a join of two themes on cycle provider
that is physically close to the data providers, rather than shipping each scanned
data back to client to perform this join operation)

Note: Query processing capabilities of the QueryFlow system are based on the ObjectGlobe

9

Mariposa query processing
• Data layout: horizontally partitioned table fragments, and replicas
• 3-modules: clients, middleware, local site manager.
• Each participant site can join the system by advertising it services and bidding on queries
• Client submits query with a required budget (how much the user is willing to pay for the

query execution within t timeframe, whether a user is willing to sacrifice performance for
a lower charge)

• Parser finds the metadata (e.g. location of each fragment) from the name server for each
table requested in the FROM clause of query

• Query processing/optimization:
– (1st phase): Generate a single-site query plan (ignores data distribution, assumes all fragments are

located on a single site)
– (2nd phase): Decompose the single query plan into fragmented query plan: decompose each

referenced table node into subqueries (one per fragment), and joins are into join subquery for
each pair of fragment join

– Sends out bid request to sites that might be interested
– Each bidder (local site) returns (Cost,Delay,Expiration)
– Middleware accepts bids, constructs a final plan, and informs local sites of their jobs

• Sites (storage manager) can buy and sell fragments based on the estimated revenue from
the fragments

10

Comparison
• Mariposa

• Each supplier only register that their horizontal fragmentation for the car part
table

• Depending fragmentation criteria and user query, some of the fragment
providers may not be required to be involved in the query execution plan

• Objective is to construct a query plan within user’s cost/$ and time budget
• De-centralized / point-to-point decision-making to find a optimized global

query plan

• QueryFlow:
• Each car parts supplier register its product (e.g. product name) & hyperlinks

for attributes (virtual attribute) that should be obtained from the supplier itself
each time the query is issued

• Only the suppliers that have product name matching with the user query would
be contacted to find the actual value for the other attributes

• The cost (time, price, ..) of the query is not considered
• Does not deal with limited/different query capabilities of sites
• Seem to be applicable to specific type of application (e.g. supply-chain)

11

References
• The URL for ObjectFlow project:

http://www-db.in.tum.de/research/projects/OG/OnlineDemo/queryflow.shtml

• HyperQueries: Dynamic Distributed Query Processing on the Internet,
Alfons Kemper and Christian Wiesner, Internal Technical Report, University of Passau,
October 2001.

• QUEL as a Data Type. M. Stonebraker, E. Anderson, E. Hanson, and B. Rubenstein. In
Proc. of the ACM SIGMOD Conf. on Management of Data, 1984.

• Mariposa: A Wide-Area Distributed Database System. M. Stonebraker, P. Aoki, W.
Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. In the VLDB Journal 1996.

• An overview of Mariposa system:
http://redbook.cs.berkeley.edu/redbook3/mariposa.html

12

Comments

