
Complex Queries in DHT-
based Peer-to-Peer Networks

Matthew Harren et al.

Ali Taleghani

March 30, 2005



Outline

 Introduction
 Motivation
 Why not P2P Databases
 Substring Search
 P2P Query Processing
 CANDy
 Range Queries
 Conclusion & Comments



Introduction

 P2P storage networks
 Decentralized control
 Self-organization
 Large amount of data
 Distributed systems – each node has identical

capabilities
 Single point of failure is eliminated



Motivation

 Three basic search methods
 Centralized directory

 Single point of failure
 Scalability issues
 Allows for powerful queries

 ID-only access
 DHTs can be used - fast
 Exact match queries are possible

 Flooding query
 Different queries can be implemented
 Expensive in terms of network bandwidth



Motivation

 Complex query facilities over DHTs
 Preserve the DHT efficiency
 Want join, selection, grouping etc.
 Current paper provides direction of research



Why not P2P Databases

 Do not want perfect storage semantics and
carefully administered data
 Ease of use, scalability, robustness to volatility

 Users do not want to deal with DB
 All data seen relational at some level

 Can hide that level from user
 Want P2P query processing, separate it from

problem of storage



Textual Similarity Search

 Based on hash indexes
 Split string to be indexed into “n-grams”

 “Beethoven” split into Bee, eet, eth, tho, hov, ove,
ven

 Hash each n-gram and build index
 Given substring, split into n-grams

 “thoven” split into tho, hov, ove, ven



Textual Similarity Search

 Look up index for each n-gram in query
 Results are grouped by file ID

 “Beethoven” in our case
 For strict substring:

 # of same fileID must be equal to # of n-grams in
query

 For “Beethoven” and “thoven” it’s four
 Some post processing is still necessary



P2P Query Processing

 Broad Applicability
 Interact with user’s file-systems as existing P2P

systems
 Minimal Extension to DHT APIs

 No complication to current DHTs
 Need query processing that is portable across

multiple DHT implementations



Architecture

 Three layers
 Data storage (File System)
 Enhanced DHT layer (with networking)
 Query Processor



Data Store

 File-system or wrapper over database
 Iterator

 Scan through the set of objects
 Accessors to attributes of objects
 Metadata interface for objects
 Accessors to additional attributes



DTH Layer

 Iterator called lscan
 Scans through all DHT entries on a machine

 Callback newData
 Notifies higher layers when new data added
 Used to deal with insertions in timely manner
 Used for temporary tables



Query Processor

 Parallel implementation of query operators
 Specifying queries & iterating through results
 Support two query APIs:

 Graph-scripting for specifying explicit query plans
 Simplified SQL interface for declarative queries



Namespace

 DHT assumes flat identifier space
 Complex queries need to name tables,

tuples and fields
 Can implement hierarchical namespace

 Partition identifier in multiple fields
 Each field identifies objects of same granularity



Query Processing Operators

 Join relation R and S
 Query node initializes temp DHT namespace

TjoinID

 Node receives data from R
 Join attribute extracted & inserted into TjoinID

 newData calles QP layer to check local data for
matches

 Matches pipelined to next iterator in plan



Status of Project

 Join operation implemented using CAN
 Different Join variants implemented

 Each node performs join
 Hotspots in all dimensions discovered

 Storage
 Processing
 Routing



CANDy

 Content Addressable Network Directory
 Use two DHTs:

 Index DHT
 Stores property & index information
 Many resources can have same property

 Resource DHT
 Stores actual pointer to resources



CANDy Query Processing

 User agent identifies properties in query
 Using property descriptors

 Each property represents set of resIDs
 Query translated into sequence of set

operations on resID sets
 Query sent to storage nodes – handle sub-

query
 Last node returns results (resIDs) to user

agent



CANDy Query Processing



Range Queries

 Based on Range Search Trees (RST)
 RST is complete & balance binary tree
 Each node represents different range in system
 Each leaf node corresponds to single value in

system
 Each non-leaf corresponds to union of two

children’s ranges
 Range query decomposed into O(log Rq) sub-

queries (Rq is range length)



Range Search Tree

Range [1-7] broken down

into 3 sub-ranges



Conclusion

 A Framework for queries over DHTs
suggested

 Three layered architecture to handle
complex queries

 Join algorithm explained
 Implemented in CAN



Comments

 Join algorithm explained in little detail
 Network overhead

 Many details missing
 3 Layer architecture not a real contribution
 No other operators explained

 The problem of identifier exists in all
approaches

 None handles ALL complex queries



J. Gao, P. Steenkiste, (CMU), "Efficient Support for Range Queries in DHT-
based Systems" (CMU technical report)

D. Bauer, P. Hurley, R.Pletka and M. Waldvogel. Bringing Efficient Advanced
Queries to Distributed Hash Tables. In Proceedings of IEEE LCN, November,
2004

M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker and I. Stoica.
Complex Queries in DHT-based Peer-to-Peer Networks, In Proc. 1st Int.
Workshop on Peer-to-Peer Systems (IPTPS), 2002.


