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Introduction

 P2P storage networks
 Decentralized control
 Self-organization
 Large amount of data
 Distributed systems – each node has identical

capabilities
 Single point of failure is eliminated



Motivation

 Three basic search methods
 Centralized directory

 Single point of failure
 Scalability issues
 Allows for powerful queries

 ID-only access
 DHTs can be used - fast
 Exact match queries are possible

 Flooding query
 Different queries can be implemented
 Expensive in terms of network bandwidth



Motivation

 Complex query facilities over DHTs
 Preserve the DHT efficiency
 Want join, selection, grouping etc.
 Current paper provides direction of research



Why not P2P Databases

 Do not want perfect storage semantics and
carefully administered data
 Ease of use, scalability, robustness to volatility

 Users do not want to deal with DB
 All data seen relational at some level

 Can hide that level from user
 Want P2P query processing, separate it from

problem of storage



Textual Similarity Search

 Based on hash indexes
 Split string to be indexed into “n-grams”

 “Beethoven” split into Bee, eet, eth, tho, hov, ove,
ven

 Hash each n-gram and build index
 Given substring, split into n-grams

 “thoven” split into tho, hov, ove, ven



Textual Similarity Search

 Look up index for each n-gram in query
 Results are grouped by file ID

 “Beethoven” in our case
 For strict substring:

 # of same fileID must be equal to # of n-grams in
query

 For “Beethoven” and “thoven” it’s four
 Some post processing is still necessary



P2P Query Processing

 Broad Applicability
 Interact with user’s file-systems as existing P2P

systems
 Minimal Extension to DHT APIs

 No complication to current DHTs
 Need query processing that is portable across

multiple DHT implementations



Architecture

 Three layers
 Data storage (File System)
 Enhanced DHT layer (with networking)
 Query Processor



Data Store

 File-system or wrapper over database
 Iterator

 Scan through the set of objects
 Accessors to attributes of objects
 Metadata interface for objects
 Accessors to additional attributes



DTH Layer

 Iterator called lscan
 Scans through all DHT entries on a machine

 Callback newData
 Notifies higher layers when new data added
 Used to deal with insertions in timely manner
 Used for temporary tables



Query Processor

 Parallel implementation of query operators
 Specifying queries & iterating through results
 Support two query APIs:

 Graph-scripting for specifying explicit query plans
 Simplified SQL interface for declarative queries



Namespace

 DHT assumes flat identifier space
 Complex queries need to name tables,

tuples and fields
 Can implement hierarchical namespace

 Partition identifier in multiple fields
 Each field identifies objects of same granularity



Query Processing Operators

 Join relation R and S
 Query node initializes temp DHT namespace

TjoinID

 Node receives data from R
 Join attribute extracted & inserted into TjoinID

 newData calles QP layer to check local data for
matches

 Matches pipelined to next iterator in plan



Status of Project

 Join operation implemented using CAN
 Different Join variants implemented

 Each node performs join
 Hotspots in all dimensions discovered

 Storage
 Processing
 Routing



CANDy

 Content Addressable Network Directory
 Use two DHTs:

 Index DHT
 Stores property & index information
 Many resources can have same property

 Resource DHT
 Stores actual pointer to resources



CANDy Query Processing

 User agent identifies properties in query
 Using property descriptors

 Each property represents set of resIDs
 Query translated into sequence of set

operations on resID sets
 Query sent to storage nodes – handle sub-

query
 Last node returns results (resIDs) to user

agent



CANDy Query Processing



Range Queries

 Based on Range Search Trees (RST)
 RST is complete & balance binary tree
 Each node represents different range in system
 Each leaf node corresponds to single value in

system
 Each non-leaf corresponds to union of two

children’s ranges
 Range query decomposed into O(log Rq) sub-

queries (Rq is range length)



Range Search Tree

Range [1-7] broken down

into 3 sub-ranges



Conclusion

 A Framework for queries over DHTs
suggested

 Three layered architecture to handle
complex queries

 Join algorithm explained
 Implemented in CAN



Comments

 Join algorithm explained in little detail
 Network overhead

 Many details missing
 3 Layer architecture not a real contribution
 No other operators explained

 The problem of identifier exists in all
approaches

 None handles ALL complex queries
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