Searching the Web

A. Arasu, J. Cho, H.Garcia-Molina, A. Paepcke and S. Raghavan

Ali Taleghani January 26, 2005

- Top 3 results for searching "Java"
 - Google
 - 1. java.sun.com
 - 2. <u>www.java.com</u>
 - javaboutique.internet.com
 - Altavista
 - 1. altova.com
 - oracle.com
 - vbcoffee.com (actual coffee site)

Overview

- Intro to searching the Web
- Crawling Web pages
- Storing crawled pages
- Indexing
- Ranking & link analysis
- Pitfalls of current searching
- Conclusion
- Google stats

Search Engine Structure

Crawling Web Pages

- Crawlers are small programs browsing Web
- Extract URLs from Web pages
- URLs passed to Crawler Control
- Crawler Control determines next URLs to visit & places on queue
- Crawler gets next URL from queue

Sample Crawler Code

```
Initialize:
  UrlsDone = ∅
  UrlsTodo = {''yahoo.com/index.htm'', ...}
Repeat:
  url = UrlsTodo.getNext()
  ip = DNSlookup( url.getHostname() )
  html = DownloadPage( ip , url.getPath() )
  UrlsDone.insert( url )
  newUrls = parseForLinks( html )
  For each newUrl
     If not UrlsDone.contains( newUrl )
     then UrlsTodo.insert( newUrl )
```

Challenges of Crawling

- Which pages should the crawler download?
- How should the crawler refresh pages?
- How should the load on Web sites be minimized?
- How should crawling be parallelized?

Page Selection

- What is "important"?
 - Interest Driven: Textual similarity
 - Popularity Driven: Page backlinks
 - Location Driven: Location of page P
- How does the crawler operate?
 - Want to visit important pages first
 - Can visit fixed # of pages or fixed # of "important" pages

Page Selection

- How to guess good pages to visit?
 - All URLs saved in queue
 - Crawler picks next URL so it has highest "value"
 - Value based on importance of page & is only an estimate

Refreshing Pages

- Pages have to be refreshed to be kept up-to-date
- Two strategies for refresh
 - Uniform all pages are refreshed
 - Proportional changing pages visited more proportionally (estimated)

Reducing load on Web sites

- Response from sites might be slow
- Not all domains wish to be crawled (robots.txt)
- Pages should be downloaded at reasonable rate – need concurrent connections
- Google tried to crawl an online game

Crawling in parallel

- Natural Unit of work is URL
- Different approaches:
 - Google uses centralized URL server
 - Another three crawling machines
 - Communication with URL server only
 - URL space can be divided into n pieces
 - Each machine completely in charge of one piece
 - Links outside an URL space are passed to appropriate server

STORAGE

- Page Repository has two functions:
 - Interface for crawler to store pages
 - Provide API for indexers to access
- Challenges
 - Scalability
 - Dual Access Modes: random / streaming
 - Large bulk updates
 - Obsolete pages

Designing a Distributed Page Repository

- Page Distribution across nodes
 - Uniform distribution
 - Hash distribution
- Physical Page Organization
 - Hash buckets pages distributed based on identifier
 - Random access supported using B-tree

Designing a Distributed Page Repository

- Update Strategies (generated by crawler)
 - Batch-mode / steady crawler
 - Batch-mode: Executed periodically
 - Steady: Runs without any pause
 - Partial / Complete crawls (batch-mode)
 - Partial: crawl subset of pages
 - Complete: Crawl all pages
 - Updates can be in-place or shadowing
 - In-place: Pages from crawler integrated immediately
 - Shadowing: Pages stored separately and updated later

Indexing

- Several different indexes built
 - Link index
 - Text index
 - Utility index
- Text indexes as an inverted index
 - Sorted list of locations for a term
 - Additional criteria considered (e.g. <H1>,
)

Index Partitioning

- Building inverted index requires scalable & distributed architecture
- Two strategies for partitioning index:
 - Local Inverted File
 - Node responsible for disjoint subset of pages
 - Query sent to all nodes, each return disjoint result
 - Global Inverted File
 - A node responsible for subset of terms
 - Query only sent to some nodes

Ranking & Link Analysis

- Web too large & unorganized
- Web pages not self descriptive
- Results of a query have to be sorted
- Sorting based on link structure
 - PageRank
 - HITS

PageRank

- Tries to capture notion of importance
- Rank of P based on # of links pointing to it
- Also considered: Importance of pages pointing to P
- Google used PageRank first
 - Google looks at anchor text -> non-text information becomes "searchable"

HITS Hypertext-Induced Topic Search

- Uses Authority and Hub score
- Authority pages most relevant to a query
- Hub pages point to authorities
- Hubs used to calculate authority pages
- Authorities hardly point to other authorities

Pitfalls of current Searching

- Impact of Search Engines on Page popularity
 - Experiments work
 - Popular pages get more popular & viceversa
 - Theoretical work
 - Unpopular pages need more time to become known
 - Once known, popularity increase quickly

Pitfalls of current Searching

- Scamming Google
 - "more evil than Satan" -> microsoft.com
 - "miserable failure" -> George W. Bush

- Many links made to point to a page
 - Hubs point to authorities...
- First one no longer works
 - It appears that Google no longer indexes this page

Conclusion

- Thorough overview of major aspects of searching the web
- Major problems associated with scale, rate of change & heterogeneity of Web
- Most work related to own experience (small data)
- Difficult to know what companies do as it is secret
- Paper discusses only "known" approaches
- Published at a time when little search engine success

Google vital stats (2001)

- ♦ 6000 Linux machines
 - 33 die every day
- ◆ 500TB of disk storage
- ◆ 1 Google day = 16.5 machine years
 - (6,000/365)
- ◆ 50 million queries per day
 - 1000 queries / sec
- 3 data replication centres

References

- Dustin Boswell: Distributed high-performance web crawlers: A survey of the state of the art. December 10, 2003.
- S. Brin, L. Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine. WWW7 / Computer Networks 30(1-7): 107-117
 (1998).
- http://www.cs.tcd.ie/Padraig.Cunningham/nds101/20.30IRWeb.p pt
- Junghoo Cho, Sourashis Roy "Impact of Web Search Engines on Page Popularity." In Proceedings of the World-Wide Web Conference (WWW), May 2004.

