
Chord: A Scalable Peer-to-
Peer Lookup Service for

Internet Applications
Ion Stoica Robert Morris
David Liben-Nowell David R. Karger
M. Frans Kaashoek Frank Dabek

Hari Balakrishnan

CS856
Nabeel Ahmed

Outline
 P2Ps as Lookup Services
 Related Work
 Chord System Model
 Chord Protocol Description
 Simulation Results
 Current Status and Issues
 Extensions of Chord
 References
 Discussion

A P2P Lookup Service?

 P2P system:
 Data items spread over a large number of nodes
 Which node stores which data item?
 A lookup mechanism needed

 Centralized directory -> bottleneck/single point of failure
 Query Flooding -> scalability concerns
 Need more structure!

 Solution: Chord (a distributed lookup protocol)
 Chord supports only one operation: given key,

maps key on to a node

Related Work
 Unstructured Peer-to-Peer Systems

 Freenet
 KaZaa/Napster
 Gnutella

 Structured Peer-to-Peer Systems
 CAN
 OceanStore (Tapestry)
 Pastry
 Kademlia, Viceroy etc..

 To many routing structures? How to compare?

Related Work (Contd..)
 Routing Geometry: “Manner in which neighbors and routes are

chosen” Gummadi et al.[6]
 Classify Routing Geometries:

 Tree  PRR, Tapestry, Globe system, TOPLUS
 Hypercube  CAN,
 Butterfly  Viceroy
 Ring  Chord
 XOR  Kademlia
 Hybrid  Pastry (Tree/Ring)
 Maybe more….

 Compare degree of flexibility in routing geometries
 Neighbor Selection
 Route Selection

 Comparative discussion later…..

Chord System Model
 Design Objectives:

 Load Balance: Distributed hash function spreads keys
evenly over the nodes

 Decentralization: Fully distributed
 Scalability: Lookup grows as a log of number of nodes
 Availability: Automatically adjusts internal tables to reflect

changes.
 Flexible Naming: No constraints on key structure.

 Example Applications:
 Co-operative Mirroring
 Time-shared storage
 Distributed indexes
 Large-Scale combinatorial search

 Chord Protocol

 Assumption: Communication in underlying
network is both symmetric and transitive.

 Assigns keys to nodes using consistent
hashing

 Uses logical ring geometry to manage
identifier space (identifier circle)

 Utilizes (sequential) successor/predecessor
pointers to connect nodes on ring

 Distributes routing table among nodes
(Finger pointers)

Consistent Hashing

 Properties:
 Minimal Disruption: require minimal key

movement on node joins/leaves
 Load Balancing: distribute keys equally across

over nodes

Theorem: For any set of N nodes and K keys, with high
probability:

1) Each node is responsible for at most (1+e)K/N keys.
2) When an (N+1)st node joins or leaves the network,

responsibility for O(K/N) keys changes hands.

e = O(log N)

Consistent Hashing (Contd..)

 Consistent hashing function assigns each
node and key an m-bit identifier using SHA-1
base hash function (160-bits truncated to m).

 Node’s IP address is hashed.
 Identifiers are ordered on a identifier circle

modulo 2m called a chord ring.
 succesor(k) = first node whose identifier is

>= identifier of k in identifier space

Example Chord Ring

m = 6
10 nodes

Lookups in Chord

 Two techniques:
 Simple-Key Location scheme:

 State-maintenance O(1) [no finger table]
 Lookup-time O(N) [follow successor

pointers]
 Scalable-Key Location scheme:

 State-maintenance O(log N) [finger table]
 Lookup-time O(log N) [follow finger pointers]

Simple Key Location Scheme
N1

N8

N14

N21N32

N38

N42

N48

K45

lookup(45)

Scalable Key Lookup Scheme

 Finger Pointers
 n.finger[i] = successor (n + 2 i-1)
 Each node knows more about portion of circle

close to it!
 Query the finger-node that is nearest

predecessor of key (closest preceding finger)
 Recursive querying till immediate

predecessor p of key found
 Return p.successor

Scalable Lookup Scheme:
Finger Table

N1

N8

N14

N21N32

N38

N42

N48

N51

N56

N42N8+32

N32N8+16

N21N8+8

N14N8+4

N14N8+2

N14N8+1

Finger Table for N8

finger 1,2,3

finger 4

finger 6

finger [k] = first node that succeeds (n+2k-1)mod2m

finger 5

Scalable Lookup Scheme
N1

N8

N14

N21N32

N38

N42

N51

N56

N48

lookup(54)

What about Churn?

 Churn: Term used for dynamic membership
changes

 Problems related to Churn:
 Re-delegation of key-storage responsibility
 Updation of finger tables for routing

 Need to support:
 Concurrent Node Joins/Leaves (Stabilization)
 Fault-tolerance and Replication (Robustness)

Node Joins
 New node B learns of at least one existing node A

via external means
 B asks A to lookup its finger-table information

 Given B’s hash-id b, A does lookup for B.finger[i] =
successor (b + 2i-1) if interval not already included in
finger[i-1]

 B stores all finger information and sets up pred/succ
pointers

 Updation of finger table required at certain existing
nodes

 Key movement is done from successor(b) to b

Concurrent Joins/Leaves
 Problem: Join operation difficult to run for

concurrent joins/leaves in large networks
 Solution: Use a stabilization protocol that runs

periodically to guard against inconsistency
 Each node periodically runs stabilization protocol

 Check consistency of succ. pointer <basic stabilization>
 Check consistency of finger pointers <fix_fingers>
 Check consistency of pred. pointer <check_predecessor>

 Note:
 Stabilization protocol guarantees to add nodes in a fashion

to preserve reachability
 Incorrect finger pointers may only increase latency, but

incorrect successor pointers may cause lookup failure!

Modified Node Join

Fault-tolerance and
Replication

 Fault-tolerance:
 Maintain successor invariant
 Each node keeps track of r successors
 If r = O(log(N)), then lookups succeed with high

probability despite a failure probability of ½
 Replication:

 Supports replication by storing each item at some
k of these r successor nodes

Voluntary Node Departures

 Can be treated as node failures
 Two possible enhancements

 Leaving node may transfers all its keys to its
successor

 Leaving node may notify its predecessor and
successor about each other so that they can
update their links

Simulation Results

 Iterative implementation
 10,000 nodes
 No. of keys range from 105 to 106

 Presented results:
 Load Balance
 Path Length
 Lookups during stabilization

 Comparative discussion on DHTs

Load Balance

Drastic Variation
in Key

Allocation:
Poor Load
Balance

Path Length

Lookups during Stabilization

Comparative Discussion on
DHTs
 Comparison metrics: (degree of flexibility) Gummadi et. al [6]

 Static Resilience: Ability to route successfully w/out recovery
 Path Latency: Average end-to-end latency for a lookup
 Local Convergence: Property that 2 messages for same location

converge at a node near the two sources
 From study, [6] conclude ring-structure performs the best!

Current Status
 Is actively being investigated as project IRIS:

 Infrastructure for Resilient Internet Systems (http://project-
iris.com/)

 Government funded project active since 2002 ($12M)
 Goal: “develop novel decentralized infrastructure based on

distributed hash-tables that enable a new generation of
large-scale distributed applications”.

 Has been used in:
 General-purpose DHASH layer for various applications
 DDNS (Distributed DNS)
 CFS (Wide-area Co-operative File System for distributed

read-only storage)
 Ivy (peer-to-peer read/write file-system)
 Internet Indirection Infrastructure (I3)

Still many issues…
 Security considerations: (many possible attacks beyond data integrity)

 Routing attacks: incorrect lookups/updates/partitions
 Storage & Retrieval attacks: denial-of-service/data
 Other misc. attacks: inconsistent behavior, overload, etc.

 Performance considerations:
 No consideration of underlying routing topology (locality properties)
 No consideration of underlying network traffic/congestion condition
 Bound on lookups still not good enough for some applications

 E.g. Failure of DDNS since 8-orders of magnitude worse than conv. DNS

 Application-Specific considerations:
 Each application requires its own set of access functions in the DHT
 Lack of sophisticated API for supporting such applications

 E.g DHASH API is too basic to support sophisticated functionality
 Support only for DHT as library vs. as a service

 And many more…

Extensions of Chord

 Hierarchical Chord
(Crescendo)
 “Canon” generic

transformation applied to
create hierarchy structure
on any flat DHT.

 Each domain/sub-domain
in hierarchy is represented
by a ring

 Larger domains consist of
merged ring of smaller
domains

 Is this adequate for locality
properties?

Hierarchy of Domains

Merging two Chord Rings

Extensions of Chord (Contd..)

 Internet Indirection
Infrastructure (i3)
 Combines Chord’s lookup with

forwarding
 Receiver inserts trigger (Id, R)

into ring
 Sender sends data to

receiver’s Id
 Supports:

 Mobility with location privacy
(ROAM)

 Multicast/ Anycast
 Service-composition

References
[1] E. Sit and R. Morris, Security Considerations for Peer-to-Peer Distributed Hash Tables, In the proceedings

of the First International Workshop on Peer-to-Peer Systems (IPTPS '02), March, 2002; Cambridge, MA

[2] F. Dabek, E. Brunskill, F. Kaashoek, D. Karger, R. Morris, I. Stoica, and H. Balakrishnan, Building Peer-to-
Peer Systems With Chord, a Distributed Lookup Service, Proceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS-VIII), May 2001

[3] R. Cox, A. Muthitacharoen, R. Morris, Serving DNS using a Peer-to-Peer Lookup Service, In the
proceedings of the First International Workshop on Peer-to-Peer Systems (IPTPS '02), March, 2002;
Cambridge, MA

[4] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring Adoption of DHTs with OpenHash, a Public
DHT Service, In Proceedings of the 3nd International Workshop on Peer-to-Peer Systems (IPTPS '04),
February 2004

[5] Ganesan, Prasanna; Gummadi, Krishna; Garcia-Molina, Hector. Canon in G Major: Designing DHTs with
Hierarchical Structure, Proc. International Conference on Distributed Computing Systems (ICDCS) 2004 .

[6] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, I. Stoica, The Impact of DHT Routing
Geometry on Resilience Proximity, In Proceedings of ACM SIGCOMM 2003

[7] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, S. Surana, "Internet Indirection Infrastructure," Proceedings
of ACM SIGCOMM, August, 2002

[8] Host Mobility using an Internet Indirection Infrastructure, First International Conference on Mobile
Systems, Applications, and Services (ACM/USENIX Mobisys), May, 2003

Discussion
 Chord could still suffer from potential network partitioning problems

 How to enforce stricter guarantees on robustness with minimal
additional overhead?

 How scalable is the stabilization protocol?
 Is there a stabilization rate that is suitable for all deployments?
 How do we balance consistency and network overhead?

 Utilize caching on search path for performance?
 Improve performance for popular DHT lookups (hay)
 Cache coherency problems?

 Performance and Security seem to be at direct odds with each
other
 Can we provide a solution that supports both?

 What is a better approach, DHTs as a library? Or as a service?
 How can we incorporate query models beyond exact-matches?
 What adoption incentives do DHTs need to provide?

