Chord: A Scalable Peer-to-
Peer Lookup Service for
Internet Applications

lon Stoica Robert Morris

David Liben-Nowell David R. Karger

M. Frans Kaashoek Frank Dabek
Hari Balakrishnan

CS856
Nabeel Ahmed

Outline

e P2Ps as Lookup Services

e Related Work

e Chord System Model

e Chord Protocol Description
e Simulation Results

e Current Status and Issues

e Extensions of Chord

e References

e Discussion

A P2P Lookup Service?

o P2P system:

Data items spread over a large number of nodes
Which node stores which data item?
A lookup mechanism needed

e Solution: Chord (a distributed lookup protocol)

e Chord supports only one operation: given key,
maps key on to a hode

Related Work

e Unstructured Peer-to-Peer Systems
Freenet
KaZaa/Napster
Gnutella

e Structured Peer-to-Peer Systems
CAN
OceanStore (Tapestry)

Pastry
Kademlia, Viceroy efc..

e To many routing structures? How to compare?

Related Work (Contd..)

e Routing Geometry: “Manner in which neighbors and routes are
chosen” Gummadi et al.[6]

e Classify Routing Geometries:
Tree 2 PRR, Tapestry, Globe system, TOPLUS
Hypercube - CAN,
Butterfly = Viceroy
Ring = Chord
XOR - Kademlia
Hybrid = Pastry (Tree/Ring)
Maybe more....
e Compare degree of flexibility in routing geometries
Neighbor Selection
Route Selection

e Comparative discussion later.....

Chord System Model

e Design Objectives:

Load Balance: Distributed hash function spreads keys
evenly over the nodes

Decentralization: Fully distributed
Scalability: Lookup grows as a log of number of nodes

Avalilability: Automatically adjusts internal tables to reflect
changes.

Flexible Naming: No constraints on key structure.

e Example Applications:
Co-operative Mirroring
Time-shared storage
Distributed indexes
Large-Scale combinatorial search

Chord Protocol

e Assumption: Communication in underlying
network is both symmetric and transitive.

e Assigns keys to nodes using consistent
hashing

e Uses logical ring geometry to manage
identifier space (identifier circle)

e Utilizes (sequential) successor/predecessor
pointers to connect nodes on ring

e Distributes routing table among nodes
(Finger pointers)

Consistent Hashing

e Properties:

require minimal key
movement on node joins/leaves

distribute keys equally across
over nodes

Theorem: For any set of N nodes and K keys, with high
probability:.

1) Each node is responsible for at most (1+e)K/N keys.

2) When an (N+1)st node joins or leaves the network,
responsibility for O(K/N) keys changes hands.

e = O(log N)

Consistent Hashing (Contd..)

e Consistent hashing function assigns each
node and key an m-bit identifier using SHA-1
base hash function (160-bits truncated to m).

e Node’s IP address is hashed.

e |ldentifiers are ordered on a identifier circle
modulo 2™ called a chord ring.

e succesor(k) = first node whose identifier is
>= |dentifier of k in identifier space

Example Chord Ring

N1

m =06
10 nodes

Lookups in Chord

e [Two techniques:

Simple-Key Location scheme:
State-maintenance O(1) [no finger table]

Lookup-time O(N) [follow successor
pointers]

Scalable-Key Location scheme:
State-maintenance O(log N) [finger table]
Lookup-time O(log N) [follow finger pointers]

Simple Key Location Scheme

K45

N| «—— lookup(45)

N8

N48

N14

N42

N38

N32 N21

Scalable Key Lookup Scheme

e Finger Pointers
n.finger[i] = successor (n + 2 1)

Each node knows more about portion of circle
close to it!

e Query the finger-node that is nearest
predecessor of key

e Recursive querying till immediate
predecessor p of key found

e Return p.successor

Scalable Lookup Scheme: H:
Finger Table
AL Finger Table for N8
N51 N8+1 N14
N8+2 N14
N48
N8+4 N14
N14
N8+8 N21
finger 5
N4D N8+16 |N32
N8+32 | N42

N21 finger [k] = first node that succeeds (n+2%")mod2™

N32

Scalable Lookup Scheme

N1
N56 A/Iookup(54)
N8
N51
N48
N14
N42
N38

N32 N21

What about Churn?

o . Term used for dynamic membership
changes
e Problems related to Churn:
Re-delegation of key-storage responsibility
Updation of finger tables for routing
e Need to support:

Concurrent Node Joins/Leaves (Stabilization)
Fault-tolerance and Replication (Robustness)

Node Joins

e New node B learns of at least one existing node A
via external means

e B asks A to lookup its finger-table information

Given B'’s hash-id b, A does lookup for B.finger[i] =
successor (b + 2) if interval not already included in
finger]i-1]
B stores all finger information and sets up pred/succ
pointers

e Updation of finger table required at certain existing

nodes
e Key movement is done from successor(b) to b

Concurrent Joins/Leaves

e Problem: Join operation difficult to run for
concurrent joins/leaves in large networks

e Solution: Use a protocol that runs
periodically to guard against inconsistency

e Each node periodically runs stabilization protocol
Check consistency of succ. pointer <basic stabilization>
Check consistency of finger pointers <fix_fingers>
Check consistency of pred. pointer <check predecessor>

e Note:

Stabilization protocol guarantees to add nodes in a fashion
to preserve reachability

Incorrect finger pointers may only increase latency, but
incorrect successor pointers may cause lookup failure!

Modified Node Join

@ (b)

. 926

(©) (d)

Fault-tolerance and oo
Replication

e Fault-tolerance:
Maintain successor invariant
Each node keeps track of
If r = O(log(N)), then lookups succeed with high
probability despite a failure probability of %
e Replication:

Supports replication by storing each item at some
k of these r successor nodes

Voluntary Node Departures

e Can be treated as node failures

e Two possible enhancements

Leaving node may transfers all its keys to its
successor

Leaving node may notify its predecessor and
successor about each other so that they can
update their links

Simulation Results

e |terative implementation
e 10,000 nodes
e No. of keys range from 10° to 106

e Presented results:

Load Balance
Path Length
Lookups during stabilization

e Comparative discussion on DHTs

Number of keys per node

000
L X
500 T T T T T 500 T T
1st and 99th percentiles ro— 1st and 99th percentiles ~o—
450 1 450
400 T e 400 F
350 b @ 350
2
300 7 5 300
= Q
250 + 4 2
2 250
200 S
I) T 2 200t
£
150 | - > 150 L
100) , -
b 100 4 3 b
<
50 | { ’ -
l 50 |-
0 ANN
0 20 0 1

Number of virtual nodes
Drastic Variation
in Key
Allocation:
Poor Load
Balance

Path length

Path Length

12

10

1st and 99th percentiles +o—

10

100 1000
Number of nodes

10000

100000

PDF

0.25

0.2

0.15

0.1

0.05

6
Path length

12

Lookups during Stabilization

Failed Lookups (Fraction of Total)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

-
-
-
-
-
-
-
-

95% o&nfidence interval —e—i

0.04 0.06
Node Fail/Join Rate (Per Second)

0.08

0.1

Comparative Discussion on T
DHTs

e Comparison metrics: (degree of flexibility) Gummadi et. al [6]
Static Resilience: Ability to route successfully w/out recovery
Path Latency: Average end-to-end latency for a lookup

Local Convergence: Property that 2 messages for same location
converge at a node near the two sources

e From study, [6] conclude ring-structure performs the best!

property tree | hypercube | ring | butterfly | xor hybrid
Neighbor Selection n°8"/2] p o8n/2 | no8n/2 n%8"/2
Route Selection (optimal paths) I cr(logn) | ey(logn) | I |
Route Selection (non-optimal paths) | - . 2ea(log n) . cz(logn) e(logn)
Natural support for no no yes no no Default routing: no
sequential neighbors? Fallback routing; yes

Current Status

e Is actively being investigated as project IRIS:
Infrastructure for Resilient Internet Systems (

)

Government funded project active since 2002 ($12M)

Goal: “develop novel decentralized infrastructure based on
distributed hash-tables that enable a new generation of
large-scale distributed applications”.

e Has been used in:
General-purpose DHASH layer for various applications
DDNS (Distributed DNS)

CFS (Wide-area Co-operative File System for distributed
read-only storage)

lvy (peer-to-peer read/write file-system)
Internet Indirection Infrastructure (13)

Still many issues...

e Security considerations: (many possible attacks beyond data integrity)
Routing attacks: incorrect lookups/updates/partitions
Storage & Retrieval attacks: denial-of-service/data
Other misc. attacks: inconsistent behavior, overload, etc.

e Performance considerations:
No consideration of underlying routing topology (locality properties)
No consideration of underlying network traffic/congestion condition
Bound on lookups still not good enough for some applications
E.g. Failure of DDNS since 8-orders of magnitude worse than conv. DNS

e Application-Specific considerations:
Each application requires its own set of access functions in the DHT
Lack of sophisticated API for supporting such applications
E.g DHASH API is too basic to support sophisticated functionality
Support only for DHT as library vs. as a service

e And many more...

Extensions of Chord

e Hierarchical Chord Stanford
(Crescendo)

C EE
“Canon” generic /}\

transformation applied to
create hierarchy structure
on any flat DHT.

Each domain/sub-domain

in hierarchy is represented

by a ring

Larger domains consist of 0

merged ring of smaller
domains

Is this adequate for locality Ring A Ring B
properties?

The Merged Ring

Merging two Chord Rings

Extensions of Chord (Contd..)

e Internet Indirection
Infrastructure (i3)

Combines Chord’s lookup with
forwarding

Receiver inserts trigger (Id, R)
into ring

Sender sends data to
receiver’s Id

e Supports:

Mobility with location privacy B
(ROAM)

Multicast/ Anycast
Service-composition

id Re-""""

References

[1] E. Sit and R. Morris, Security Considerations for Peer-to-Peer Distributed Hash Tables, In the proceedings
of the First International Workshop on Peer-to-Peer Systems (IPTPS '02), March, 2002; Cambridge, MA

[2] F. Dabek, E. Brunskill, F. Kaashoek, D. Karger, R. Morris, |. Stoica, and H. Balakrishnan, Building Peer-to-
Peer Systems With Chord, a Distributed Lookup Service, Proceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS-VIIl), May 2001

[3] R. Cox, A. Muthitacharoen, R. Morris, Serving DNS using a Peer-to-Peer Lookup Service, In the
proceedings of the First International Workshop on Peer-to-Peer Systems (IPTPS '02), March, 2002;
Cambridge, MA

[4] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring Adoption of DHTs with OpenHash, a Public
DHT Service, In Proceedings of the 3nd International Workshop on Peer-to-Peer Systems (IPTPS '04),
February 2004

[5] Ganesan, Prasanna; Gummadi, Krishna; Garcia-Molina, Hector. Canon in G Major: Designing DHTs with
Hierarchical Structure, Proc. International Conference on Distributed Computing Systems (ICDCS) 2004 .

[6] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, |. Stoica, The Impact of DHT Routing
Geometry on Resilience Proximity, In Proceedings of ACM SIGCOMM 2003

[7] 1. Stoica, D. Adkins, S. Zhuang, S. Shenker, S. Surana, "Internet Indirection Infrastructure," Proceedings
of ACM SIGCOMM, August, 2002

[8] Host Mobility using an Internet Indirection Infrastructure, First International Conference on Mobile
Systems, Applications, and Services (ACM/USENIX Mobisys), May, 2003

Discussion

e Chord could still suffer from potential network partitioning problems

How to enforce stricter guarantees on robustness with minimal
additional overhead?

e How scalable is the stabilization protocol?
Is there a stabilization rate that is suitable for all deployments?
How do we balance consistency and network overhead?

e Ultilize caching on search path for performance?
Improve performance for popular DHT lookups (hay)
Cache coherency problems?

e Performance and Security seem to be at direct odds with each
other

Can we provide a solution that supports both?
e What is a better approach, DHTs as a library? Or as a service?
e How can we incorporate query models beyond exact-matches?
e \What adoption incentives do DHTs need to provide?

