Informational Retrieval on the Web

Mei Kobayashi, Koichi Takeda IBM Research Japan (2000)

Presenter: Vahid Karimi

Table of Contents

- Historical backgrounds
- Classical information retrieval and search engines
- Evaluation of search engines
- Tools for web-based retrieval and ranking
- Classification of ranking techniques
- Ranking techniques
- Text based models
 - Vector space model
 - Latent semantic index model
- Link based models
 - Query independent models
 - Query dependent models
- Comments
- References

Historical Background

- Historical background [Schatz 1997]
- Grand visions
 - □ Vannevar Bush (1945)
 - o Memex
 - o Systems for information manipulation

Licklider (1961, 1962)

- o Libraries of the future
- o Procognitive systems

Historical background (Continued)

- Text search (syntax search)
 - Roughly mid 1960s to mid 1980s
 - Bibliographical search
 - o Pioneered by medicine
 - Abstract databases
 - Full text
 - o Pioneered by law
- Techniques for text search
 - Fundamentally the same as 30 years ago
 - Scope expanded
 - EX: Inverted index file, stemming
 - From words to phrases (from biblio to full documents)
 - o Proximities on inverted index file

Historical Background (Continued)

Document search (structure search)

- Roughly mid 1980s to 2000
- Mainframe to distributed workstations
- Multimedia retrieval
- Telesophy (wisdom at a distance)
 - o At Bell 1985-1986
- Search on the Internet
- Concept search (Vocabulary Switching)
 - Roughly from 2000

Historical Background (Continued)

The following courtesy of [Schatz 1997]

Classical Information retrieval and Search Engines

Similarity a lot

- One major difference
 - Collections are not given to search engines
 - Search engines have to find them (Crawling)

Challenges

- Dynamic
- Open and closed web
- Spamming

Evaluation of Search Engines

- One measure speed, precision, recall Precision = number of relevant documents/ total number of documents retrieved
 Recall = number of relevant documents retrieved / total number of relevant documents
- Ideally precision, and recall must be equal to 1
 - Add disjunctive terms
 - o Recall goes up
 - o Precision suffers
- Another measure
 - Same as above, but on the first few pages
- Indexing by inverted file (quantity, quality)

Tools for web-based retrieval and ranking

- Indexing
 - Automatic
 - Manual or human based
 - Using of metadata
- Hyperlink analysis [Henzinger 2001]
 - Mirrored Hosts
 - Web Page Categorization
 - Geographical scope
- Crawling
 - Next week presentations
- Clustering
 - Organizing large databases

Classification of Ranking Techniques

- Text based models [Dhillon, Fan, Guan 2001][Lee, Chuang, Seamons 1997][Berry 1996]
 - Premise
 - Boolean models
 - Similarity models
 - o Vector space model
 - o Latent semantic index model
- Link based models
 - Query independent ranking
 - Query dependent ranking

Text Based Models

- Similarity models
 - Measures the similarity between a document and a query
 - Hence the naming
- Vector space model by Salton
 - A similarity model
 - Represents each document as a vector space
 - □ Its dimension depends on the document terms (vocabularies)
 - Terms have associated weights
 - To represent the value of the terms

Vector Space Model

- How it works?
 - Extract all terms ignoring cases
 - Get rid of stop words (a, an, the)
 - Count the number of terms in each document
 - Use heuristics or other algorithms to eliminate low and high frequency words
 - After the above operations, we identified 1 to w terms (words) and 1 to d documents

Vector Space Model (Continued)

- Then, we need to weigh terms
- Different weighing measures
 - Term frequency weighing

$$\square$$
 w_{ij} = tf_{i,j} * idf_j

- □ Tf_{i,i} captures how often a term (j) occurs in a document (i)
- □ idf_i captures how often j occurs in the entire collection

Vector Space Model (Continued)

Similarity between a query (q) and a document (i):

 $\Box \text{ Sim } (Q,Di) = \sum_{j=1}^{v} w_{q,i} \cdot w_{i,j} / (\sum_{j=1}^{v} w_{q,i}^2 \cdot \sum_{j=1}^{v} w_{i,j}^2)^{1/2}$

Values between 0 and 1

• The closer the document and the query, the closer to 1

o Clustering (document and document)

- The denomination is for normalization so that
- Two documents one containing (x,x,y,y,z,z)
- Another containing (x,y,z) gets the same weighing
- Good or not!

Vector Space Model (Continued)

- Vector Space model
 - Conceptual
 - o Since a document vector is sparse and long
 - Inverted index file

Latent Semantic Index Model (Continued)

- Choosing k is difficult
- Topic of factor analysis
- But by choosing k, the matrix A (term document)
- Transforms to A_k
- Dimensions are reduced using SVD
- Same operation on matrix B (term query)
- Using SVD, B transforms to B_q
- Then the similarity of A_K to B_q is measured
- An example refer to:
- [Deerwester, Dumais, Furnas, Landauer, Harshman 1990]

Linked Based Models

- Link based models [Henzinger 2001]
 - Premise (one or both)
 - o Recommendation
 - o Same topic
 - □ All major search engines
 - o claim to use some form of hyperlink analysis
 - o No details
- Query independent models
 - 1) Carriere, Kazman model (1997)
 - 2) PageRank (by Brin and Page 1998)
 - 3) WLRank (Weighted Link Rank] [Baeza, Davis 2004]
 - 4) Absorbing model by Amati et al. 2003 [Baeza 2005]
 - 5) Network flow model by Tomlin 2003 [Baeza 2005]

Query Independent Models

- Query independent models
- Concept
- 1) Carriere, Kazman model (1997)
- 2) PageRank (by Brin and Page, 1998)
 o R(A) = € / n + (1 €) * Σ R(B) / outdegree (B)
 - Α,Β ε G
 - € is a constant, usually between 0.1 and 0.2
 - n is the number of nodes (web pages) in G
 - Outdegree B = number of hyperlinks on page B

Query Independent Models (Continued)

- PageRank model (continued)
 - Hugh set of linear equations
 - Google
 - Based on random surfer model
 - General State Content in the page of t
- 3) WLRank (Weighted Link Rank) model [Baeza, Davis 2004]
 - A variant of PageRank
 - Introduced some attributes to give more weights to some links
 - Claimed that precision improved
- 4) Absorbing model by Amati et al.2003 [Baeza 2005]
- 5) Network flow model by Tomlin 2003 [Baeza 2005]

Query Dependent Models

- Query dependent models
- Concept

1) Carriere and Kazman (1997) neighbourhood graph

2) HITS (hyper-linked induced topic search) (by Kleinberg 1998)

3) Topic Sensitive PageRank (by Haveliwala 2002) [Baeza 2005]

Query Dependent Models (Continued)

1) Carrier and Kazman model (1997)

- Builds a query-specific graph (neighbourhood graph) as follows:

• Step 1: Uses a search engine to retrieve results for a query

These are root nodes (every document is a node)
 Step 2: Adds nodes that linked to root nodes in the neighbourhood graph

Adds nodes that root nodes are linked to in this neighbourhood graph

 Step 3: Uses either indegree technique to rank neighbourhood graph or PageRank to rank neighbourhood nodes

Query Dependent Models (Continued)

2) HITS (hyper-linked induced topic search) by Kleinberg 1998

- Based on identifying authority and hub pages
- Using a neighbourhood graph
- An iterative algorithm
- Authorities and hubs converge
- No bound on that
- □ In practice, converge quickly
- Not used by any search engine
- Topic drifting

Query Dependent Models

- 3) Topic Sensitive PageRank by Haveliwala 2002 [Baeza 2005]
 - Use PageRank to rank pages based on ranking at index time
 - At the query time, assign new ranking to pre-ranked topic sensitive

Comments

. . .

References

- [Baeza, Davis 2004] R. Baeza, E. Davis, Web Page Ranking Using Link Attributes, 13th international World Wide Web conference, 2004.
- [Baeza 2005] R. Baeza-Yates and C. Castillo, <u>Web Search</u>, *Encyclopedia of Language and Linguistics*, to appear in 2005.
- [Berry 1996] Large Scale Information Retrieval with Latent Semantic Indexing, <u>http://www.cs.utk.edu/~berry/lsi++/node3.html</u>.
- [Deerwester, Dumais, Furnas, Landauer, Harshman 1990] S. Deerwester, S.Dumais, T. Furnas, T. Landauer, R. Harshman, Indexing by Latent Semantic Analysis, Journal of the American Society of Information Science, 1990.
- [Dhillon, Fan, Guan 2001] I.S. Dhillon, J. Fan and Y. Guan, Efficient Clustering of Very Large Document Collections. [ps.gz, pdf] invited book chapter in <u>Data</u> <u>Mining for Scientific and Engineering Applications</u>, pages 357-381, Kluwer, 2001.
- [Henzinger 2001] M. Henzinger, Hyperlink analysis for the web, IEEE 2001.

References (Continued)

- [Kobayashi, Takeda 2000] M. Kobayashi, K. Takeda, Information Retrieval on the Web, ACM Computing Surveys, 32(2), 2000.
- [Lee, Chuang, Seamons 1997] D. Lee, H. Chuang, K. Seamons, Document Ranking and the Vector-Space Model, IEEE, 1997.
- [Schatz 1997] Schatz, Bruce R., Information retrieval in digital libraries: Bringing search to the net, Science, Vol. 275, 1997.