Efficient Crawling
Through URL
Ordering

Junghoo Cho Hector Gracia-Molina Lawrence Page

Presented By: Issam Al-Azzoni




Outline

Crawlers and Search Engines
“Importance” Metrics

Crawler Performance

Crawler Models

Experiments and Observations
Conclusion

Discussion

2/8/05




Search Engine Architecture

2/8/05




2/8/05

Crawling Web Pages

What pages should the crawler download?
How should the crawler refresh pages?

How should the load on the visited Web
sites be minimized?

How should the crawling process be
parallelized?



What Pages Should the Crawler
Visit First?

‘Important” pages
Different importance metrics:
& Similarity to a Driving query

¢ Backlink Count

¢ PageRank

¢ Location

¢ Forward Link Count

2/8/05




The Similarity Metric

Given a query q, the importance of a page
p is defined to be the “textual similarity”
between p and g [Arasu et al.]

I(p) =1S(p, q)

2/8/05




The Backlink Count Metric

The importance of a page p is defined to be
the number of links to p that appear over
the entire Web

I(p) = 1B(p)
IB’(p) denotes the estimated value of IB(p)

2/8/05




The PageRank Metric

The importance of a page p is defined to be
the weighted sum of the importance of the
pages that have backlinks to p

I(p) = IR(p)
IR(p) denotes the estimated value of IR(p)

IR(p)= (1-d) + d [IR(t.)/c, + ... + IR(t.)/c, ]

2/8/05




Other Importance Metrics

Forward Link Count
Location Metric
Combinations of metrics

I(p) = ky. IS(p, q) + k, . IB(p)

2/8/05




2/8/05

The Question is

How to design a crawler that if possible
visits high /(p) pages before lower ranked
ones, for some definition of I(p)

Crawler performance

Crawler models

¢ Crawl and Stop

¢ Crawl and Stop with Threshold
o Limited Buffer Crawl

CS 856




Crawl and Stop

The crawler starts at an initial page and
stops after visiting K pages

Fiy ooy Dy ey Ik

I(r) = I(rk)

Psr(C)= M/ K
Pst (ideal crawler) = 1

Pst (random crawler) = K/ T , where T is the
total number of pages in the Web

2/8/05 CS 856




Crawl and Stop with Threshold

The crawler starts at an initial page and

stops after visiting K pages

Any page p with I(p) = G (where G is a

given importance target) is considered hot

Ps+(C) = Total number of visited hot pages
Total number of hot pages (H)

{ K/H ifK<H
1 otherwise

Psr (ideal crawler) =

{ K/T,ifK<T
1 otherwise

P (random crawler) =

2/8/05 CS 856




Limited Buffer Crawl

The crawler can keep at most B pages in
its buffer

Total number of hot pages in the
buffer

Pac
B

2/8/05




2/8/05

Ordering Metrics

A crawler keeps a queue of URLs it has
seen during a crawl

The crawler must select from this queue
the next URL to visit

An ordering metric O is used for this
selection

The chosen O metric should be suitable for
the importance metric in mind



Experiments

Define the entire Web to be a portion of the
Stanford University Web pages (179,000

pages)
Measure the performance of various
ordering metrics for the importance metric

IB(p)

Measure the performance of various
ordering metrics for the importance metric

IS(p, Q)

2/8/05




2/8/05

Backlink-based Crawlers

Algorithm 5.1 Crawling algorithm (backlink based)
Input: starting url: seed URL
Procedure:
[1] enqueue (url_queue, starting url)
while (not empty(url_gqueue))
url = dequeue (url _queue)
page = crawl _page(url)
enqueue (crawled pages, (url, page))
url _list = extract_urls(page)
foreach u in url_list
enqueue (links, (url, u))
if (ué#url_queue and (u,-)<¢crawled pages)
enqueue (url_queue, u)
reorder_queue (url_queue)

Function description:
enqueue (queue, element): append element at the end of queue
dequeue (queue) : remove the element at the beginning
of queue and return it
reorder_queue (queue) : reorder queue using information in
links (refer to Figure 2)



2/8/05

Backlink-based Crawlers

(1) breadth first
do nothing (null operation)

(2) backlink count, IB'(p)
foreach u in url_queue
backlink_count[u#] = number of terms (-,u) in links
sort url_queue by backlink count [u]

(3) PageRank IR'(p)
solve the following set of equations:
I R[u] ::(1——(L9)-+()£]§:i£€%91,Vvhere
(v;,u) € 1links and ¢; is the number of links in the page v;
sort url_queue by /R(u)



Backlink-based Crawlers

experiment

0.2 04 0.6 0.8
Fraction of Stanford Web crawled

2/8/05




Backlink-based Crawlers

Ordermg metric O(u)

—o— PageRank
—— Backlink
—a— Breadth
--8--- [deal
-~ Random

0.2 0.4 0.6 0.8
Fraction of Stanford Web crawled

2/8/05




Observations

Using an ordering metric outperforms
random (or breadth) ordering

The ordering metric IR’(p) outperforms the
IB’(p) one, even when the importance
metric is IB(p)

2/8/05




IR'(p) vs IB’(p)

2/8/05




2/8/05

Similarity-based Crawlers

Algorithm 5.2 Crawling algorithm (modified similarity based)
Input: starting url: seed URL
Procedure:

[1] enqueue (url_queue, starting url)

url = dequeue2(hot _queue, url _queue)
page = crawl _page(url)
enqueue (crawled pages, (url, page))
url list = extract urls(page)
foreach u in url_list
enqueue (links, (url, u))
if (ué#url_queue and u¢ hot queue and (u,-)<#crawled pages)
if (u contains computer in anchor or url)
enqueue (hot_queue, u)
else
enqueue (url_queue, u)
reorder_queue (url_queue)
reorder_queue (hot_queue)

Function description:
dequeue2 (queuel, queue2): if (not empty(queuel)) dequeue(queuel)
else dequeue (queue2)



Similarity-based Crawlers

Ordermg metric O(u)

—— PageRank
—— Backlink
—— Breadth
--8-- [deal
Random

q.r_,_'“L:’_ | S———— Ea_' .

'
'
-
’,
’
"
,
"
. -
’,
i ’
-
’,
’,
-
’,
’
-
-l ’
L
-
4
' ]
r
‘
‘
’
.
‘4
L
.
‘
4 I I I I I I

o
-2

2/8/05




Similarity-based Crawlers

Algorithm 5.3 Crawling algorithm (similarity based)
Input: starting url: seed URL
Procedure:
[1] enqueue(url_queue, starting url)
while (not empty(hot_queue) and not empty(url _queue))
url = dequeue2(hot _queue, url _queue)
page = crawl_page(url)
if (page contains 10 or more computer in body
or one computer in title)
hot [url] = True
enqueue (crawled pages, (url, page))
url_list = extract_urls(page)
foreach u in url_list
enqueue (links, (url, u))
if (u#url queue and u< hot queue and (u,-)¢crawled pages)
if (u contains computer in anchor or url)
enqueue (hot_queue, u)
else if (distance from_ hotpage(u) < 3)
enqueue (hot_queue, u)
else
enqueue (url _queue, u)
reorder_queue (url_queue)
reorder_queue (hot_queue)

-1 O U = W

ll\

| W [y WSS [y SUNSSSS y SUSSS—y SUSSS— hy SUSSS— iy SUSSS— iy SUSS— SUS—— SS—

f
-’

2/8/05




Similarity-based Crawlers

Ordering metric O(u)

—o— PageRank
—*— Backlink
—— Breadth
--g-- Ideal

== TH- - — -~ - — &

-~ Random

0.4 0.6 0.8
Fraction of Stanford Web crawled

2/8/05




2/8/05

Observations

When similarity is important, it is effective
to use an ordering metric that considers 1)
the contents of anchors and URLs and 2)
the distance to the hot pages that have

been discovered




Conclusion

With a good ordering strategy, we can build
crawlers that can obtain a significant
portion of the hot pages relatively early

2/8/05




Limitations

Experiments run only over a portion of the
Stanford pages

Is the definition of crawler performance
adequate?

What about other ordering metrics or
combinations of metrics

What about other types of crawlers e.g.
focused crawlers

2/8/05




2/8/05

References

A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S.
Raghavan, Searching the Web, ACM Trans. Internet Tech.,
1(1), 2001.

Yuan Wang, David J. DeWitt: Computing PageRank in a

Distributed Internet Search Engine System. VLDB 2004: 420-
431

Marc Najork and Janet L. Wiener. Breadth-first search
crawling vields high-quality pages. In Proc. 10th World Wide

Web Conference, pages 114-118, 2001.

Junghoo Cho. Crawling the Web: Discovery and
Maintenance of a Large-Scale Web Data. Ph.D. thesis,

Stanford University.



