
Integrating Document and
Data Retrieval Based on XML

By Jan Marco Bremer
Michael Gertz

Presented by E. Cem Sozgen

Outline

 Introduction
 Foundations of IIR
 XQuery/IR
 Efficient Data Retrieval
 Adding Support for Document Retrieval
 References
 Comments

Outline

 Introduction
 Foundations of IIR
 XQuery/IR
 Efficient Data Retrieval
 Adding Support for Document Retrieval
 References
 Comments

 Two types of query techniques:
 Data retrieval:

 Exact queries that allow a user to specify a subset of a data source
 e.g. XQuery, SQL

 Document Retrieval:
 Ranking documents by relevance to a query of typically only a few terms
 Relevance is based on term distribution statistics
 A standard approach for weighting terms is the term frequency-inverse

document frequency (tf-idf) approach
 The standard index format for storing term frequencies is the inverted file

format
 They are complementary. Also it is expensive to maintain two

types of systems. So the idea is to integrate them into a single
framework.

Dynamic Ranking

 Only term distribution statistics local to
the current, intermediate document
fragment sequences are used to derive
relevance weights in an embedded
document retrieval sub-query.

e.g. certain tree growth patterns that have
applications in bridge construction

FOR $fragment IN document(‘‘library.xml’’)//article[contains(./abstract, ‘‘bridge construction’’)]
RANK BY ‘‘tree’’, ‘‘growth’’ LIMIT 100
RETURN $fragment/author

Summary of Contributions

A conceptually new approach to integrated data and document
retrieval in general, and relevance-based document retrieval in
particular

Syntax and semantics of XQuery/IR, a language that, based on
XML and XQuery, implements the new approach

A new node identification scheme for tree-structured, node-
labeled data sources with applications in many existing indexing
approaches

Storage-efficient index structures that are based on the new
node identification scheme, support data and document retrieval
on XML, and also incorporate a mapping from logical node
identifiers to their physical counterparts

Detailed statistics for structure and content of many large, real-
world XML sources

Outline

 Introduction
 Foundations of IIR
 XQuery/IR
 Efficient Data Retrieval
 Adding Support for Document Retrieval
 References
 Comments

Data Model

 Just a single, ordered, node labeled tree structure (an
artificial root node is added to obtain a single tree
view)

 Document Fragment (DF) F (corresponds to
document)
 L: set of node labels
 T: set of text string values
 F is (V, root, children, parent, label, text)

 Documents or data sources or sources (all three are
used in the same meaning) represent whole semi-
structured database

 A document Fragment Sequence (DFS) is a
sequence of document fragments

Data Model

 Employee/Addresses/Address/Street
rooted label path

 /Employee/Addresses/Address[1]/Street[2]
rooted data path

What is a DataGuide?

 Lore is a DBMS for semistructured data developed at Stanford
University

 DataGuides are introduced for the Lore project
 Concise and accurate structural summaries of semistructured

databases
 Enumerates all rooted label paths
 Eases query formulation and optimization

Schema

 A schema
 defines the structure of the data
 enables users to understand the structure of the database and

form meaningful queries over it.
 A query processor relies on the schema to devise efficient plans

for computing query results.
 Extended DataGuides (XDG) are used in this paper
 Let D = (V, root, children, parent, label, text) be a data

source. XDG for D is a triple (F, maxpos, nodeno) where
 F is a document representing the DataGuide
 maxpos is a function that returns the max number of siblings
 nodeno is a function that assigns a unique node number to each

node in F

Data Retrieval

 XQuery is the
standard XML query
language

 XQuery is widely
regarded as the future
to access data on the
web

 //Location/Books//Title (left)
 //Location[./Id/text() =

“Zurich”]/Books //Title (right)

Query Processing Through
Structural Joins

 Interval node identification
scheme is used in present SJ
approaches.

 Interval node ids (Ival ids) is a
triple (id, maxid, depth) of
integers.

 Relationships can be
determined based on [id, maxid]
intervals

 Path and tree pattern queries
are at the core of XML query
languages. Structural joins are
the most prominent approach to
process such queries.

 A logical node id is assigned to
every node in the data source.
Every id of a node encodes
enough information to determine
the node’s basic relationship to
other nodes.

 Index structures that store lists
of such node ids build the most
important component of SJs.

 e.g. Books//Title (compare pairs
of node ids in both lists)

 In existing approaches, multiple
joins, one for each pairwise
relationships, are required.

Outline

 Introduction
 Foundations of IIR
 XQuery/IR
 Efficient Data Retrieval
 Adding Support for Document Retrieval
 References
 Comments

Requirements

 Total order
 Local context
 Closure
 Transparency
 Exchangeability
 Visibility

Syntax and Semantics

 RankByClause ::= (<“rank” “by”> | <“stable” “rank” “by”>) QuerySpecList
(<“based” “on“> TargetSpecList)?
 (“limit” n (“%”)?)?
 (“ascending" | “descending")?
 (“using" MethodFunctCall)?

QuerySpecList ::= Expr ("," QuerySpecList)?
TargetSpecList ::= PathExpr ("," TargetSpecList)?

 Weighting algorithm:
 Let F be the set of all document fragments and seq(F) be the set of sequences of all document

fragments.
 Let weight be a special node name in the label set L.
 Then W: seq(F) × Q → seq(F),

W(S,Q) = S‘
such that S‘ is equal to S except that each DF in S‘ has an
additional node labeled weight at the root.

 Rank operator:
 rank: seq(F) × P × N × Q × W → seq(F)

rank(S,π,k,q,W) = firstk(sortweight(W(π(S),q)))
where P is a set of path expressions.

 N is the set of natural numbers.
 Sortweight refers to the sorting of DFs within S based on the weight element.
 Firstk eliminates all but the first k elements from S.

Examples

1. Retrieve a maximum of 100 paragraphs
with relevant information about New York
from a news source.

FOR $d IN
document(‘‘news.xml’’)//article//paragraph

RANK BY ‘‘new’’, ‘‘york’’ LIMIT 100
RETURN $d

<paragraph weight=0.96>
New York fire fighters. . .

</paragraph>
<paragraph weight=0.81>

In New York, Wall Street
closed at a record. . .

</paragraph>
<paragraph weight=0.79>
…

Examples
2. List the company’s ten most experienced sales person in sw im w ear and pool accessory. The experience of a

sales person is assumed to be higher the more sales transactions involving respective products the person w as
involved in.

LET $input:=
 {FOR $emp IN document(‘‘humanresources.xml’’)//employee

RETURN
<employee>

<empid> $emp/@id < /empid>
{$emp/name}
<products_sold>

{FOR $prod IN document(‘‘sales.xml’’)//transaction[./sellerid = $emp/@id]/product
RETURN
<product>

{$prod/name}
{$prod/description}

</product>
}

</products_sold>
</employee>
}

RETURN
<sw im_w ear_experts>

FOR $emp IN $input/employee
RANK BY ‘‘sw im’’, ‘‘pool’’, ‘‘w ater’’, ‘‘aquatic’’, ‘‘suit’’, ‘‘accessory’’
BASED ON $emp/products_sold LIMIT 10

</sw im_w ear_experts>

Outline

 Introduction
 Foundations of IIR
 XQuery/IR
 Efficient Data Retrieval
 Adding Support for Document Retrieval
 References
 Comments

Which approach?

 Tree pattern queries are assumed to be the query
models underlying data retrieval in XQuery.
Therefore, the focus is how tree pattern queries can
be efficiently processed based on suitable index
structures.

 The choice of an index structure for processing
pattern queries highly depends on how suitable the
structure is for a document retrieval extension.

 Structural joins provide a unified framework to index
structure and values of a data source based on
inverted files. Structural joins are a well-known and
efficient approach to process tree pattern queries.
Inverted files are the core index structures for
classical document retrieval. Therefore, structural
joins are an obvious choice to implement IIR.

Modifications and Extensions to
Basic Structural Join Approach

1. A new logical node identification scheme that encodes complete
rooted data paths is used. The encoding is context-independent,
space efficient, and fast to decode. No decoding is required to
determine parent-child and ancestor-descendant relationships
between node ids.

2. In all index structures, node ids are grouped by common, rooted
label path. In combination with an Extended DataGuide (XDG), this
provides for efficient index access and storage space utilization.

3. The main path index structure employs a sparse storage of node
ids that has no negative impact on reconstructing index lists, but
further reduces the index size.

4. We extend the standard set of index structures for structural joins
by a physical address index. This index maps logical node ids to
their physical addresses at no overhead beyond storing just the
addresses.

minPID and µPID

 Rooted label path l = /DigitalLibrary/Loc/Books/Bk/A
Rooted data path d = /DigitalLibrary/Loc[5]/Books/Bk[4]/A[3]

 Given l, what further information do I need to identify d? <5,4,3>
 Hence, the above rooted data path d can be represented as a pair

(/DigitalLibrary/Loc/Books/Bk/A, <5,4,3>).
 Formally:

Let S be a data source and D the Extended DataGuide of S. A minimal path identifier
(minPID) for S is a pair (p,s), where p is a rooted label path in D and s is a sequence of
natural numbers. The numbers in s are sibling positions for all nodes n in p, for which
maxpos(n) > 1. The numbers are ordered by their distance from the root node.

minPID and µPID

 µPID node identifiers consist of a pair of integers, which encode each of
the two parts of a minPID. The first integer is the node number that is
assigned to each node in the XDG and represents the minPID’s rooted
label path. Each node in the XDG corresponds to a rooted label path as
found in a source. The second number in a µPID is called position
number and contains the encoded sibling position sequence.

 Position numbers are constructed by appending bits related to single
sibling positions within a rooted data path. Therefore, all position
numbers related to a certain node number (rooted label path) have the
same bit length. Hence, they can be interpreted as k-bit integers.

 Node relationships:
 Node b = (n2,N2) is a child node of node a = (n1,N1) iff

 n2 children(n1) in XDG ∧ N1 = prefixnumlen(n1)(N2)
 Node b is a descendant of node a iff

 n2 descendant(n1) in XDG ∧ N1 = prefixnumlen(n1)(N2)

!

!

Index Structures

 µPIDs are grouped by their XDG node
numbers. So
 Only position numbers need to be stored

repeatedly.
 Within each group, the number of bits of position

numbers is constant.
 Furthermore, the grouping provides for a more

efficient processing of pattern queries.
 Sparse Storage:

 72, 73, <gap>, 76, 77, 78 will be stored as
 (72,0), (76,2)
 In real world data, gaps are relatively rare.

Index Structures

Query Processing

 Processing path pattern queries
 Simple path patterns

e.g. //Location/Books//Title
 Find all matches of the pattern in the XDG.
 For each node number ni, retrieve the index lists a-seq(ni) from the A-index.
 For each physical address in these lists, obtain the DF from the source.

 General path patterns
e.g. //Location/Books[.//Title]

 p-seq(nodeno(LP1)) p-seq(nodeno(LP2))
LP1 is /DigitalLibrary/Location/Books
LP2 is /DigitalLibrary/Location/Books/Bk/Title

 Path patterns with term condition
e.g. //Location/Books//Title[contains(text(), “XML”)]

 for all terms t1, . . . , tm in the containment condition, node id lists for all matching node
numbers n1, . . . , nr are iteratively accessed.

 If there are multiple terms involved
 If the term condition is with respect to an inner node within a source

 p-seq(nodeno(LP1)) t-seq(t, nodeno(LP1))

U
mj

ij ntseqt
,...,1

),(
=

!

U U
mj ndesd

ij

i

ntseqt
,...,1)(

),(
= !

"

Query Processing

 Processing tree pattern queries

Evaluation

Evaluation

Outline

 Introduction
 Foundations of IIR
 XQuery/IR
 Efficient Data Retrieval
 Adding Support for Document Retrieval
 References
 Comments

Options to Incorporate parameters

 Three parameters
 tf: the number of times a certain term occurs in a document fragment
 df: the number of fragments in a document fragment sequence that contain

the term, and
 dlen: the total number of non-unique terms found in a document fragment.

 The df parameter is a by-product of data retrieval or can be obtained
through an additional structural join.

 Options for placing tf and dlen counters into the core index framework,
counters can be

1. repeatedly stored or accumulated at runtime,
2. stored directly within the existing core indexes, or in additional

indexes, or in both,
3. variable-length or fixed-length as approximations. Variable-

length storage within core indexes is not advisable, but an option when
using an additional (split) index.

Resulting Index Framework

Evaluation

Outline

 Introduction
 Foundations of IIR
 XQuery/IR
 Efficient Data Retrieval
 Adding Support for Document Retrieval
 References
 Comments

References

 Next-Generation Information Retrieval: Integrating Document and
Data Retrieval Based on XML
Jan-Marco Bremer. Ph.D. Thesis, Technical Report CSE-2003-16.
Department of COmputer Science, University of California at Davis,
September 2003.

 R. Goldman and J. Widom. DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. Proceedings of the
Twenty-Third International Conference on Very Large Data Bases,
pages 436-445, Athens, Greece, August 1997.

 Amer-Yahi, S., Botev, C., Shanmugasundaram, J.: TeXQuery: A full-
text search extension to XQuery. In: Proceedings of the

 13th World Wide Web Conference. (2004) 583–594
 Fuhr, N., Grossjohann, K.: XIRQL: A query language for information

retrieval in XML documents. In: Proceedings of 24th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval. (2001) 172–180

Outline

 Introduction
 Foundations of IIR
 XQuery/IR
 Efficient Data Retrieval
 Adding Support for Document Retrieval
 References
 Comments

Comments…

