Representing Web Graphs S. Raghaven & H. Garcia-Molina Computer Science Dept., Stanford University

Amr El-Helw CS856 University of Waterloo aelhelw@cs.uwaterloo.ca

Outline

- Motivation
- Contribution
- Introduction
- S-Node Representation
- Experimental Results
- Summary

Motivation

- Efficient traversal of huge Web graphs is a challenging problem.
- The lack of a schema to describe the structure of Web graphs.
- Naive graph representation schemes can increase query execution time.

Contribution

- Proposing a new representation for Web graphs, the "S-Node" representation.
- Demonstrating that S-Node representations are highly space-efficient.
- Showing, by experiment, that S-Node representations can significantly reduce query execution times.

- Web Repositories:
 - Large special-purpose collections of Web pages and associated indexes.
- Examples:
 - Research repositories (e.g. Stanford WebBase, the Internet Archive)
 - Commercial search engines (e.g. Google, Altavista)

Access to Web Repositories

	Commercial Search Engines	Research Repositories
Target Audience	Non-expert users	Expert users
Type of Access	 Access is controlled by a public search interface. 	 Perform complex analysis, mining and indexing over huge data sets.
	 No internal interface (API) is publicly available. 	Provide "Bulk" access interface to their content

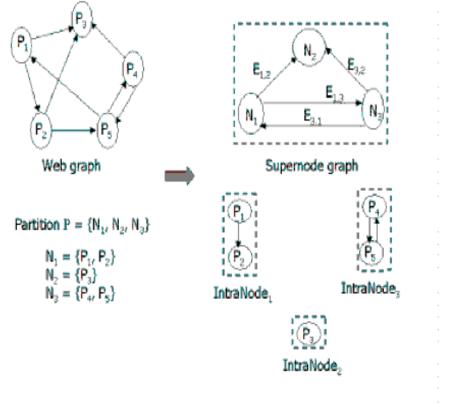
There are kinds of analysis for which both either access mode is unsuitable. They have the following features:

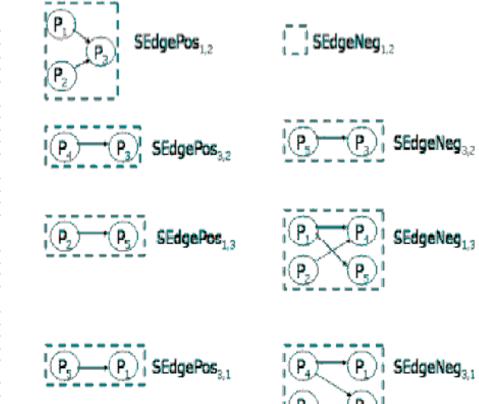
Focused Access

 It focuses on a small set of pages and associated links (in contrast to a typical mining or analysis task using bulk access).

Complex Expressive Queries

 It uses predicates on several different properties of pages (e.g. domain, text content), and navigational operations (e.g. pages pointing to other pages).

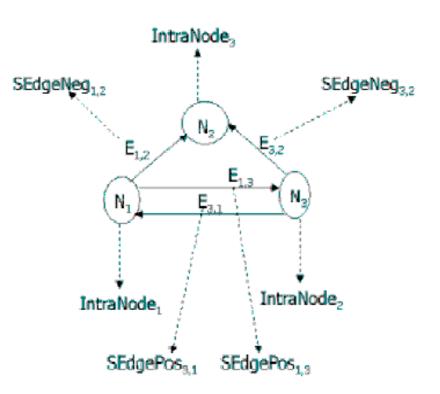

This kind of analysis provides 3 views of the repository:


- A collection of text documents that can be searched and ranked using keywords and/or phrases.
- A navigable directed graph.
- A set of relational tables storing properties (rank, title, domain, ...) on which selection, projection and predicates can be applied.

S-Node Representation

- W_G represents the directed Web graph
- Let P = {N₁, N₂, ..., N_n} be a partition on the nodes (pages) of W_G.
- Some terms of S-Node representation:
 - Supernode graph
 - Intranode graph
 - Positive superedge graph
 - Negative superedge graph

S-Node Representation


SEdgeNeg_{3.1}

SEdgeNeg_{3,2}

S-Node Representation

An S-Node representation of W_G , SNode(W_G , P) can be constructed using all of the following:

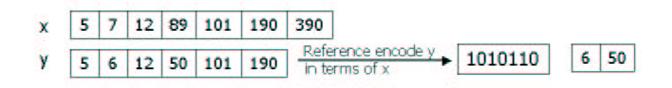
- A supernode graph
- A set of intranode graphs
- A set of positive and negative subedge graphs

Building an S-Node Representation

Requirements for the partition P:

- It must produce highly compressible intranode and superedge graphs, to achieve a compact representation.
- □ For local access queries, the set of pages and links involved must be distributed within a small number of intranode and superedge graphs → Efficient execution by loading only the relevant graphs into main memory.

Building an S-Node Representation


- Observations about Web graphs:
 - <u>Link copying</u>. There are clusters of pages on the Web that have very similar adjacency lists.
 - <u>Domain and URL Locality</u>. Many links from a page point to other pages on the same domain, and possibly with lexicographically close URLs.
 - <u>Page similarity</u>. Pages that have very similar adjacency lists (i.e., pages which point to almost the same set of pages) are likely to be related.

Building an S-Node Representation

Desired partition properties:

- Pages with similar adjacency lists are grouped together, as much as possible.
- All the pages assigned to a given element of a partition belong to the same domain.
- Among pages belonging to the same host, those with lexicographically similar URLs are more likely to be grouped together.

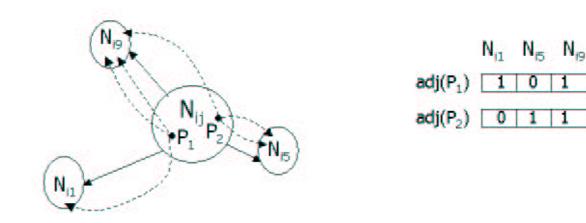
Reference Encoding

- It is a graph compression technique.
- We can compress the adjacency list of y by representing it in terms of the adjacency list of x
- For each page x in a graph G, we decide whether the adjacency list for x is represented as is or in terms of a reference page, and in that case, the page that will act as reference.
- An affinity graph G_{aff} can be used to encode the intranode and superedge graphs.

Iterative Partition Refinement

- We begin with an initial coarse-grained partition P₀ = {N₀₁, N₀₂, ..., N_{0n}}.
- This partition is *refined* during successive iterations, generating a sequence of partitions P₁, P₂, ..., P_f.
- P₀ groups pages based on their domain.
- During every iteration, one of the elements of the existing partition is further broken into smaller pieces.

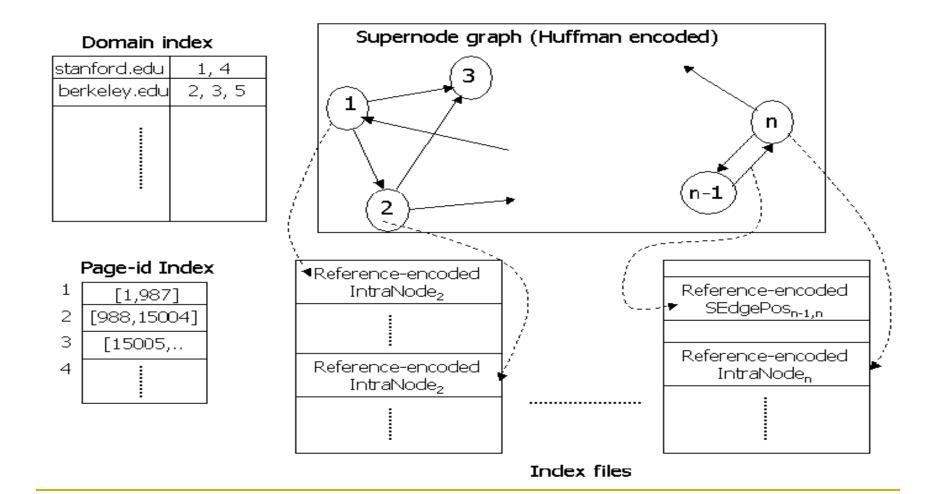
Iterative Partition Refinement


URL Split:

- Partitions the pages in N_{ij} based on their URL patterns.
- Pages that share the same URL prefix are grouped together
- Every application of URL split on a partition uses a URL prefix, one level/directory longer than the prefix used to generate that partition

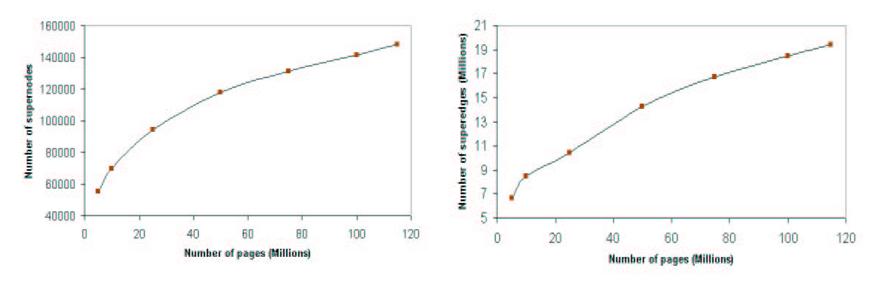
Iterative Partition Refinement

Clustered Split:


 Partitions the pages in N_{ij} by using a clustering algorithm (e.g. k-means), to identify groups of pages with similar adjacency lists.

Physical Organization

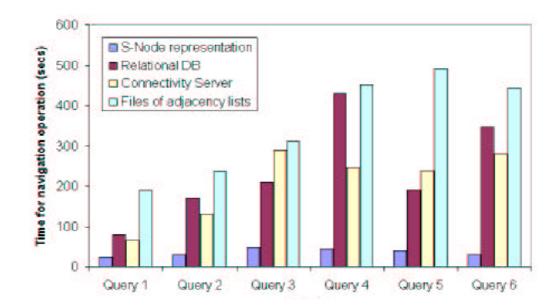
- The supernode graph is encoded using standard adjacency lists.
- A simple Huffman-based compression scheme (based on supernode in-degree)
- Intranode and superedge graphs are encoded using the reference encoding scheme.
- Supernodes are numbered from 1 to n.
- All pages belonging to same supernode are numbered and placed consecutively, in lexicographic order of URLs.


Physical Organization

- <u>Source data</u>: about 120 million pages (approximately 900 GB of uncompressed HTML text) from the Stanford WebBase repository, using 5 different-sized data sets.
- The S-Node representation was compared to the following Web graph representation schemes:
 - Connectivity Server Link3 scheme
 - Huffman-encoded representation (Huffman codes are assigned to each page based on in-degree).
 - Relational database. (using the PostgreSQL object relational database to store the adjacency lists as rows of a database table).
 - Uncompressed files.

Scalability Experiments:

- □ From 50 million to 75 million pages (50% increase) \rightarrow 11% increase in supernodes, and 15% increase in superedges.
- □ From 5 million to 100 million pages (20-fold increase) → almost a 3-fold increase in supernodes and superedges.


Amr El-Helw CS856

Compression Experiments:

Representation scheme	Numb bits/e		Max. repository size using 8GB		Seq. access	Random access
	W _G	$\mathbf{W}_{\mathbf{G}}^{T}$	W _G	W _G T	(ns/edge)	(ns/edge)
Plain Huffman	15. 2	15.4	323 million	318 million	112	98
Connectivity Server (Link3)	5.8 1	5.92	845 million	829 million	309	689
S-Node	5.0 7	5.63	968 million	872 million	298	702

• **Complex Queries:** for example:

No.	Description	Main graph operation
1	Generate a list of universities that Stanford researchers working on <i>Mobile networking</i> refer to and collaborate with. (Analysis 1 in Section 1).	Subset of the out-neighborhood of a set of pages
2	Compute the relative popularity of three different comic strips among students at Stanford University. (Analysis 2 in Section 1).	Count number of links between 3 different pairs of sets of pages
3	Compute the Kleinberg base set [10] for S , where S is the set of top 100 pages (in order of PageRank) that contain the phrase 'Internet censorship'.	Union of out-neighborhood and in- neighborhood of a set of pages
4	Identify the 10 most popular pages on <i>Quantum cryptography</i> at each of the following four universities - Stanford, MIT, Caltech, and Berkeley. Popularity of a page is measured by the number of incoming links from pages located outside the domain to which the page belongs.	In-neighborhood for four different sets of pages
5	Suppose S is the set of pages in the repository that contain the phrase <i>Computer music synthesis</i> . Rank each page in S by the number of incoming links from other pages in S . Output the top ranked 10 <i>.edu</i> pages in S .	Computation of graph induced by a set of pages
6	Suppose $S1$ is the set of Stanford pages (i.e., pages in stanford.edu) that contain the phrase <i>Optical Interferometry</i> and $S2$ is the set of Berkeley pages (i.e., pages in berkeley.edu) that contain the same phrase. Let R be the set of pages (not in stanford.edu and berkeley.edu) that are pointed to by at least one page in $S1$ and one page in $S2$. Rank each page in R by the number of incoming links from $S1$ and $S2$ and output R in descending order by rank.	Intersection of out-neighborhoods of two different sets of pages

Query	Navigation time reduction by using S-Node			
1	73.5%			
2	76.9%			
3	77.7%			
4	82.2%			
5	79.2%			
6	89.2%			

Summary

- The paper addresses the problem of efficiently representing massive Web graphs.
- It proposes a novel two-level representation of Web graphs, called an S-Node representation.
- It is based on partitioning the set of pages in the repository.
- S-Node representation can provide impressive compression characteristics (just over 5 bits per edge to represent Web graphs).
- It can also achieve a significant reduction in query execution time (10 to 15 times faster than other schemes for representing Web graphs).