
1

A Scalable Content-
Addressable Network
In Proceedings of ACM SIGCOMM 2001
S. Ratnasamy, P. Francis, M. Handley, R.

Karp, S. Shenker

Presented by L.G. Alex Sung
9th March 2005 for CS856

2

Outline

• CAN basics
• Improving the basic CAN
• Evaluations
• Extensions
• Comment
• Discussion

3

CAN Basics

• Virtual d-dimensional coordinate space
• Each node holds a zone
• Key is hashed to a point P located in a zone

hold by a node
– Insertion
– Lookup
– Deletion

4

Finding the key

• Location of Key K Hash(K) Point P
• By looking at the routing table of neighbours’

– IP addresses
– virtual coordinate zones

• Determine the neighbour with the closest
coordinate to P

• Greedily forward the msg[P(K),
dst_coordinates] through that neighbour

5

Routing illustrated

• Routing the request until it reaches the
node in which zone P lies

P

6

Joining CAN

• Find a node currently in the system (by DNS)
– Ask for IPs of some other CAN nodes

• Randomly choose a point P in the space
• Send a JOIN request to the CAN node at

point P through any CAN node
• Current occupant of point P splits its zone
• Being handed over

– the key-value pairs of that zone
– IP addresses and coordinates of neighbours

• Inform all old node’s neighbours

7

Joining illustrated

• Randomly find a point; split that zone;
get the keys and inform the neighbours

P

8

Leaving CAN

• Departure
– Goal: give the keys to a neighbour
– Combine the zone with a neighbour to form a valid

single zone
– OR temporarily hand over to the neighbour with

the smallest zone
• Node Failure

– Identified by prolonged absence of update
message

– The zone will be take over by the neighbour with
the smallest zone volume

9

Improving the basic CAN

• Goal: reduce lookup latency
– Nodes can be physically far away

The tradeoff
• (+) higher routing performance
• (+) system more robust
• (–) higher per-node states
• (–) higher system complexity

10

Multiple independent
coordinate spaces (Realities)

• Allocation of multiple zones per node
each zone in a different reality

(Hash tables are replicated on every reality)
• Route to the neighbor closest to destination in

all realities.
• (+) lower path length and path latency
• (+) higher data availability
• (+) routing fault tolerance
• (–) more states per node

11

Multi-dimensioned
coordinate spaces

More dimensions more neighbours per node
• (+) routing fault tolerance

more paths can be chosen
• (–) more states per node

routing table

Multi-dimension is better.

12

Refinement of
CAN routing metrics

• Goal: reduction of per-hop latency
• When selecting the next hop

– take into account the RTT
– and not just closer coordinate

• Simulation results: 24-40%
improvement

13

Overloading coordinate zones
• When joining, zone sharing (if < MAXPEERS) instead

of splitting
• More state info: neighbour list + peer list
• Neighbour selection by lowest measured RTT
• Hash tables: replication vs. partitioning

• (+) higher data availability
• (–) need consistency mechanism
• (–) larger size of data stored

• (+) lower path latency
• (+) higher fault tolerance
• (–) higher system complexity
• (–) additional control traffic

14

Multiple hash functions

• Mapping a single key to multiple nodes
(replication) parallel queries

• (+) lower query latency
• (+) higher data availability
• (–) larger size of the <key, value>

database
• (–) higher query traffic

15

Topologically-sensitive
CAN construction

• Node insertion based on RTT from
landmarks (instead of random insertion)

• (+) lower path latency
• (–) uneven load distribution

load balancing needed

16

Uniform partitioning

• Volume-based zone splitting
• (+) some form of load balancing

each zone holding similar # of keys
• (–) “Hot spot” problem: some <key,

value> pairs are more popular
network congestion

17

Caching & Replication
for “hot spot” management

• Caching recently accessed keys (which
belongs to other nodes)

• Replication: actively pushing popular
keys to neighbours

• (+) higher data availability
• (+) lower query latency
• (+) load balancing
• (–) cache management

18

Evaluation

• Critical factors:
• 1. increase in # of dimensions d

reduction of path length
• 2. Use of RTT-weighted routing

optimization of next-hop forwarding
reduction of path latency

19

Evaluation (2)
• Effect of link delay distribution on CAN latency
• latency stretch = CAN latency/IP latency
1. Increase in # of nodes

slow increase in latency
stretch

2. Random delay
the largest latency stretch

3. Larger backbone
lower density of CAN nodes
less effect of RTT-weighted
routing
degraded gains

20

CAN vs other DHTs

• RDP = Overlay network latency / IP latency
• CAN seems to be better than Full SkipNet

Source: the SkipNet paper

21

CAN Extensions

• Application level multicasting [3]
• Spatial Data Query Support [2]

22

Summary
• CAN

– an Internet-scale hash table
– potential building block in Internet applications

• Scalability (basic CAN)
– O(d) per-node state
– O(n1/d) average path length

• Low-latency routing
– simple heuristics help a lot

• Robust
– decentralized, can route around trouble

23

Comment
Strength
• Pioneer work in DHT (same as Chord)
• Intuitive presentation of formal concepts
• Taken into account the RTT in neighbour

selection
Weakness
• High computational and memory requirement

(it’s a trade-off)
– The CPU and memory usage statistics are not

given

24

Discussion
• Network capacity is not taken into account

when assigning keys. (hot-spot problem)
– Can we divide the zone based on networking

capacity (rather than zone size only)?
– Can we predict the probability of congestion?
– How many levels of replication is reasonable?

• Many optimizations involve replicating the
(K,V) pairs (and require more CPU cycles)
– Replication limit under reasonable assumptions?
– How about CPU limit?
– Which is cheaper: network delay or CPU/Memory?

25

Discussion - DHTs

• Internet users are heterogeneous. Memory and CPU
power are relatively cheaper than routing cost.
– Would it be better to build CAN as a service to lower the

heterogeneity and select the best balance point for
optimizations vs CPU power & memory requirement?

– What can other DHT schemes do to reduce path latency?
Which CAN optimization can be applied?

• Shall we give priority to maintenance or routing?
• What does O(log N) really mean? Would the average

IP network latency be more important? What
metrics shall we use to compare DHTs?

26

References

1. N.J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, and A.
Wolman, SkipNet: A Scalable Overlay Network with Practical
Locality Properties, In Proc. 4th USENIX Symp. on Internet
Tech. and Syst. (USITS), 2003.

2. Roger Zimmermann, Wei-Shinn Ku, and Haojun Wang.
Spatial Data Query Support in Peer-to-Peer Systems.
COMPSAC 2004.

3. Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott
Shenker. Application-Level Multicast Using Content-
Addressable Networks.

4. Zacharias Boufidis.
http://www.srdc.metu.edu.tr/webpage/seminars/p2p/CAN.ppt

	A Scalable Content-Addressable Network
	Outline
	CAN Basics
	Finding the key
	Routing illustrated
	Joining CAN
	Joining illustrated
	Leaving CAN
	Improving the basic CAN
	Multiple independent coordinate spaces (Realities)
	Multi-dimensioned coordinate spaces
	Refinement of CAN routing metrics
	Overloading coordinate zones
	Multiple hash functions
	Topologically-sensitiveCAN construction
	Uniform partitioning
	Caching & Replication for “hot spot” management
	Evaluation
	Evaluation (2)
	CAN vs other DHTs
	CAN Extensions
	Summary
	Comment
	Discussion
	Discussion - DHTs
	References

