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CAN Basics

• Virtual d-dimensional coordinate space
• Each node holds a zone
• Key is hashed to a point P located in a zone 

hold by a node
– Insertion
– Lookup
– Deletion
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Finding the key

• Location of Key K Hash(K) Point P
• By looking at the routing table of neighbours’

– IP addresses
– virtual coordinate zones

• Determine the neighbour with the closest 
coordinate to P

• Greedily forward the msg[P(K),
dst_coordinates] through that neighbour 
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Routing illustrated

• Routing the request until it reaches the 
node in which zone P lies

P
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Joining CAN

• Find a node currently in the system (by DNS)
– Ask for IPs of some other CAN nodes

• Randomly choose a point P in the space
• Send a JOIN request to the CAN node at 

point P through any CAN node
• Current occupant of point P splits its zone
• Being handed over 

– the key-value pairs of that zone
– IP addresses and coordinates of neighbours

• Inform all old node’s neighbours
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Joining illustrated 

• Randomly find a point; split that zone; 
get the keys and inform the neighbours

P
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Leaving CAN

• Departure
– Goal: give the keys to a neighbour
– Combine the zone with a neighbour to form a valid 

single zone
– OR temporarily hand over to the neighbour with 

the smallest zone
• Node Failure

– Identified by prolonged absence of update 
message

– The zone will be take over by the neighbour with 
the smallest zone volume
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Improving the basic CAN 

• Goal: reduce lookup latency
– Nodes can be physically far away

The tradeoff
• (+) higher routing performance
• (+) system more robust
• (–) higher per-node states 
• (–) higher system complexity
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Multiple independent 
coordinate spaces (Realities)

• Allocation of multiple zones per node 
each zone in a different reality

(Hash tables are replicated on every reality)
• Route to the neighbor closest to destination in 

all realities. 
• (+) lower path length and path latency 
• (+) higher data availability 
• (+) routing fault tolerance
• (–) more states per node
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Multi-dimensioned 
coordinate spaces

More dimensions more neighbours per node 
• (+) routing fault tolerance 

more paths can be chosen
• (–) more states per node 

routing table

Multi-dimension is better.



12

Refinement of 
CAN routing metrics

• Goal: reduction of per-hop latency
• When selecting the next hop

– take into account the RTT
– and not just closer coordinate 

• Simulation results: 24-40% 
improvement
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Overloading coordinate zones
• When joining, zone sharing (if < MAXPEERS) instead 

of splitting 
• More state info: neighbour list + peer list
• Neighbour selection by lowest measured RTT
• Hash tables: replication vs. partitioning 

• (+) higher data availability
• (–) need consistency mechanism
• (–) larger size of data stored

• (+) lower path latency
• (+) higher fault tolerance
• (–) higher system complexity
• (–) additional control traffic 
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Multiple hash functions

• Mapping a single key to multiple nodes 
(replication) parallel queries 

• (+) lower query latency
• (+) higher data availability
• (–) larger size of the <key, value> 

database
• (–) higher query traffic
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Topologically-sensitive
CAN construction

• Node insertion based on RTT from 
landmarks (instead of random insertion)

• (+) lower path latency
• (–) uneven load distribution 

load balancing needed
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Uniform partitioning

• Volume-based zone splitting 
• (+) some form of load balancing

each zone holding similar # of keys
• (–)  “Hot spot” problem: some <key, 

value> pairs are more popular
network congestion
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Caching & Replication 
for “hot spot” management

• Caching recently accessed keys (which 
belongs to other nodes)

• Replication: actively pushing popular 
keys to neighbours 

• (+) higher data availability
• (+) lower query latency
• (+) load balancing
• (–) cache management
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Evaluation

• Critical factors: 
• 1. increase in # of dimensions d 

reduction of path length
• 2. Use of RTT-weighted routing 

optimization of next-hop forwarding 
reduction of path latency 
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Evaluation (2)
• Effect of link delay distribution on CAN latency 
• latency stretch = CAN latency/IP latency
1. Increase in # of nodes 

slow increase in latency 
stretch

2. Random delay 
the largest latency stretch

3. Larger backbone 
lower density of CAN nodes 
less effect of RTT-weighted 
routing 
degraded gains



20

CAN vs other DHTs

• RDP = Overlay network latency / IP latency
• CAN seems to be better than Full SkipNet

Source: the SkipNet paper
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CAN Extensions

• Application level multicasting [3]
• Spatial Data Query Support [2]
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Summary
• CAN

– an Internet-scale hash table
– potential building block in Internet applications

• Scalability (basic CAN)
– O(d) per-node state
– O(n1/d) average path length

• Low-latency routing
– simple heuristics help a lot

• Robust
– decentralized, can route around trouble
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Comment
Strength
• Pioneer work in DHT (same as Chord)
• Intuitive presentation of formal concepts
• Taken into account the RTT in neighbour 

selection
Weakness
• High computational and memory requirement 

(it’s a trade-off)
– The CPU and memory usage statistics are not 

given
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Discussion
• Network capacity is not taken into account 

when assigning keys. (hot-spot problem) 
– Can we divide the zone based on networking 

capacity (rather than zone size only)? 
– Can we predict the probability of congestion?
– How many levels of replication is reasonable? 

• Many optimizations involve replicating the 
(K,V) pairs (and require more CPU cycles)
– Replication limit under reasonable assumptions?
– How about CPU limit? 
– Which is cheaper: network delay or CPU/Memory?



25

Discussion - DHTs

• Internet users are heterogeneous. Memory and CPU 
power are relatively cheaper than routing cost.
– Would it be better to build CAN as a service to lower the 

heterogeneity and select the best balance point for 
optimizations vs CPU power & memory requirement?

– What can other DHT schemes do to reduce path latency? 
Which CAN optimization can be applied?

• Shall we give priority to maintenance or routing?
• What does O(log N) really mean? Would the average 

IP network latency be more important? What 
metrics shall we use to compare DHTs?
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