
1

Locating Data Sources in Large Distributed
Systems

Leonidas Galanis, Yuan Wang, Shawn R. Jeffrey, David J. DeWitt
Proceedings of the 29th VLDB Conference, 2003

Rolando Blanco
CS856 – Winter 2005

2

Outline

• Background and problem definition
• Catalogue service and implementation
• Simulation results
• Summary and observations

3

Background

• DB Research at Wisconsin
– Niagara:

- Centralised XML query engine (with crawler)
- Finds xml files relevant to a query

– Niagara distributed
– Replication of catalogue within an horizon
– Poor performance

4

Problem Definition

• Location of data sources relevant to a given query
• Assumption: thousand of nodes
• Options:

– Flooding
– Catalogue service

- Centralised: expensive/single point of failure
- Replicated: maintenance issues, scalability
- Fully distributed
- Variations (e.g. supernodes)

5

Catalogue Service

• Catalogue describes data for all nodes
• Assuming XML data sources
• Entry for node Ni: (kj, Sij)

– Associates and element/attribute (kj) in Ni to its
summary Sij

– Summary can be structural (unique paths to kj in Ni) or
describe value (e.g. Histogram, bloom vector)

– Structural paths should include ascendant/descendant
information

– Summary updates only by node providing initial
summary

• Example:
{ (price,

{ '/store/book/price', '/store/dvd/price', '/store/cd/price', ... },
{(10...200), (5 ... 45), (5 ... 25)}

}

6

Catalogue Service

• Catalogue implements two main functions:
1. query_parts: extracts set of elements/attributes for a

query
2. map: decides what nodes are relevant to a query based

on results from query_parts and summary data
• Goals:

– Result of executing query in nodes identified by function
map should be non-empty

– Data on identified nodes should be required to produce
final result

• map implementation
– B+ trees to implement summaries

7

Summary Implementation / B+ Trees

• B+ tree:
– keys: (kj, Ni)
– values:

- Structural summary: all paths to kj in peer Ni

- Value summary: histogram, bloom vector, etc
• Given a query /a1/a2/.../an/k op x

– Retrieve summaries
– Use structural summary to decide if /a1/a2/.../an/k
– Use value summary to decide if k op x

• Given query involving several k's:
– /a1/a2/.../an/k1 op x
– /b1/b2/.../bm/k2 op y
– Note Ni in B+ tree key

8

Summary Implementation / B+ Trees

• Issues if k in many nodes
• Solutions:

1. Use (k, cluster of nodes) as B+ tree keys; compound
summaries for paths of nodes in cluster, or

2. Use k/an/an-1/.../a1 as B+ tree keys, Ni's as values
- Allows range scan (useful when query looks like

//.../an/k)
- Attribute names can be hashed to integers to keep

size of index small
- If a node provides n paths to k, there will be n keys

in B+ tree
- If path is present in n nodes there will be n nodes in

B+ tree value

9

Summary Implementation / B+ Trees

“Our study assumes that scalable, efficient and reasonably
sized index is available on each participating node”

10

Catalogue Implementation

• DHT (Chord)
• DHT Hash keys: kj's
• DHT Value: Node where summary for kj is stored
• Both DHT keys and summaries stored on same node

11

Catalogue Implementation

Query: Q2: //book[author = “J Smith”]/price on N3
N3: query_parts(Q2) = Q21: //book/price

Q22: //book/author = “J Smith”
N3: dht::lookup(price) = {N4}

Q2 and Q21 sent to N4
N4: map(price, //book/price) = { N2, N3, N4 } (B+ tree)

dht::lookup(author) = { N1}
Q2, Q22, {N2, N3, N4} sent to N1 (why N4 and not N3 ?)

N1: (map(author, /book/author) and author = “J. Smith”) = {N2}
{N2, N3, N4} ∩ {N2} = {N2}
{N2} sent to N3

N3: sends Q2 to N2
N2: executes Q2 and returns results to N3

12

Catalogue Implementation

• General query processing:
– Q = /a1[b1]/a2[b2]/.../an[bn] op value
1. Rewrite as multiple simple paths
2. Result N = {}
3. For each simple path /ai1/ai2/.../aimj

op value
- Visit node responsible for aimj

summary
- Retrieve set of Ni's that match path and condition
- If N is empty then N = Ni's, else N = Ni's ∩ N

– N is the set of nodes where Q should be run

13

System Evolution

• Assumption: low volatility (churn rate)
– Data providers leave system for schedule maintenance

• Node joining: Chord + catalogue entries hosted on same
node holding DHT key.

• Node leaving: Chord + inform nodes holding catalogue, or
do nothing (“they will find out overtime” -- when trying to
use data or as part of Chord maintenance?)

• Note high volatility would cause a lot of traffic (catalogue
entries must be moved with keys)

14

Scalability

• Popular queries increase load in nodes that hold related
keys (node holding the data would get loaded as well but
data is not moved)

• Solution:
– Key splitting
– Key replication

15

Key Splitting

• Request for k exceeds threshold (20 in simulations)
• Split key into p1/k, p2/k, ..., pn/k

– book/price, dvd/price, cd/price, ...
– Node N defines metakey map

(price → {book/price, dvd/price, cd/price, ... })
– Summaries need to be split as well
– New keys and summaries inserted in DHT

- Old key still in DHT
– Node N handling k can:

- Keep summaries (split – replicate)
- Delete summaries (split-toss)

16

Key Splitting

• Issues
– Queries still refer to k
– Node N needs to remember split and inform nodes

querying (what if N dies?)
– Some queries still need to be propagated to all nodes or

be handled by N (//store[name=”...”]//price < 1000)
– If split-replicate, node with subkeys can discard subkey

if # queries below threshold (so nodes with split keys
need to know N's decision). If split-toss coordination is
required to merge.

– When split no longer possible (n-1 splits in a n path):
- Replicate

17

Key Replication

• When request for k exceeds threshold (i.e. by itself as load
balancing strategy) or splitting not possible

• Replication in one or more sites (configurable)
• Summary goes along with keys

– Node querying informed of replication
- Round robin

– Updates need to be propagated to all replicas
• Updates need to be propagated to all replicas
• If need to replicate again who makes the decision? original

site or copy sites (or both?)

18

Simulations

• Goal: Measure catalogue
lookup scalability

• 3,500 keys
• 16,000 paths
• No updates
• Structural summaries 100%

accurate
• Value summaries 100%

inaccurate
• Some schemas more popular

than others. Query credits
assigned based on schema
popularity

• Queries biased toward leafs
• Query pool: 1’000,000

queries

• Users: 10 x #nodes
• Queries: 800 x #nodes
• User submits query, waits for

response, thinks 5 secs, types
for 3 secs, submits query
from query pool

• Split after 20 requests and
queuing (why not
requests/interval)

• Latency avg 50 ms between
nodes

• No volatility, NW stabilises
before running queries

• Queue size at each node: 500

19

Simulations / Performance

Chord (C), Split-Replicate (SR), Split-Toss (ST), Replication one-at-a-time (R)

SR: best scalability
ST: effect of toss is substantial
R: better than ST, it does not adapt as fast
as SR to load

SR: still best
ST: now better than R. More keys are generated
per split

20

Simulations / Load Distribution
-Some keys are more popular. If Chord-only
some sites may get overwhelmed
- First (more loaded) 50 nodes:

500 nodes: handling 27% of query load
5000 nodes: handling 7% of query load
34% query load if no load balancing

- ST: 1.5 to 2.5 more catalogue requests than SR

At 2000 nodes: SR 111 splits, 1793 new keys;
R 149 replicas, 149 new keys

Cascading effect noticed: nodes become
overwhelmed by accepting popular keys

21

Summary

• Catalogue framework over structured P2P to locate XML
data sources

• Application (catalogue service) running on Chord
• Distributed design, allows providers to join and make data

query-able
• Techniques to adapt to query workload (adaptive key

management and summary redistribution)
• Experimental evaluation

22

Related Work

• Data location:
– Unstructured P2P routing indices

- Bloom filters [koloniari04] / Qiang Wang’s work
- Histograms [Petrakis04]

• Load balancing [Triantafillou03]
– Fair load distribution

- Cluster based on semantic similarity
- Goal: all clusters have similar load
- Replication within cluster
- Choose randomly node in cluster (when querying)
- Not all clusters have same number of nodes

[koloniari04] Koloniari et al. Content-Based Routing of Path Queries in Peer-to-Peer Systems. EDBT, 2004.
[Petrakis04] Petrakis et al. On Using Histograms as Routing Indices in Peer-to-Peer Systmes, DBISP2P 2004.
[Triantafillou03] Triamtafillow et al.Towards High Performance Peer-to-Peer Content and Resource Sharing Systems. CIDR 2003

23

Observations / Comments

• Only structural summaries in simulations.
• Issues if voluminous value summaries
• Queries that may require joining data from multiple data

sources, located on different nodes.
• Adaptive key management:

– Routing by DHT and catalogue
– Reliability implications
– Multiple DHTs to avoid catalogue routing?

• Identification of redundant data sources (in map?)
• Example / Algorithm

24

References

• Leonidas Galanis, et al. Processing Queries in a Large Peer-
to-Peer System. CAiSE 2003

• Shawn R. Jeffrey. Peer-to-Peer Research at Wisconsin,
Presentation at www.cs.berkeley.edu/~jeffrey/p2patuw.ppt

• G. Koloniari and E. Pitoura. Content-Based Routing of Path
Queries in Peer-to-Peer Systems. In Proc. of EDBT
(International Conference on Extending Database
Technology), 2004.

• Y. Petrakis, G. Koloniari, E. Pitoura. On Using Histograms as
Routing Indexes in Peer-to-Peer Systems. In DBISP2P
2004, August 29-30

• P. Triantafillou et al. Towards High Performance Peer-to-
Peer Content and Resource Sharing Systems. CIDR 2003

• J. Naughthon et al. The Niagara Internet Query System.
VLDB 2000

