

Data Management in Large-scale P2P Systems1

Patrick Valduriez, Esther Pacitti

Atlas group, INRIA and LINA, University of Nantes – France
Patrick.Valduriez@inria.fr

Esther.Pacitti@lina.univ-nantes.fr

Abstract. Peer-to-peer (P2P) computing offers new opportunities for building
highly distributed data systems. Unlike client-server computing, P2P can
operate without central coordination and offer important advantages such as a
very dynamic environment where peers can join and leave the network at any
time; direct and fast communication between peers, and scale up to large
number of peers. However, most deployed P2P systems have severe limitations:
file-level sharing, read-only access, simple search and poor scaling. In this
paper, we discuss the issues of providing high-level data management services
(schema, queries, replication, availability, etc.) in a P2P system. This implies
revisiting distributed database technology in major ways. We illustrate how we
address some of these issues in the APPA data management system under
development in the Atlas group.

1 Introduction

Data management in distributed systems has been traditionally achieved by
distributed database systems [19] which enable users to transparently access and
update several databases in a network using a high-level query language (e.g. SQL).
Transparency is achieved through a global schema which hides the local databases’
heterogeneity. In its simplest form, a distributed database system is a centralized
server that supports a global schema and implements distributed database techniques
(query processing, transaction management, consistency management, etc.). This
approach has proved effective for applications that can benefit from centralized
control and full-fledge database capabilities, e.g. information systems. However, it
cannot scale up to more than tens of databases. Data integration systems [30] extend
the distributed database approach to access data sources on the Internet with a simpler
query language in read-only mode. Parallel database systems [31] also extend the
distributed database approach to improve performance (transaction throughput or
query response time) by exploiting database partitioning using a multiprocessor or
cluster system. Although data integration systems and parallel database systems can
scale up to hundreds of data sources or database partitions, they still rely on a
centralized global schema and strong assumptions about the network.

1 Work partially funded by project MDP2P (Massive Data in P2P) [15] of the ACI “Masses de

Données” of the French ministry of research.

In contrast, peer-to-peer (P2P) systems adopt a completely decentralized approach
to data sharing. By distributing data storage and processing across autonomous peers
in the network, they can scale without the need for powerful servers. Popular
examples of P2P systems such as Gnutella [8] and Kaaza [13] have millions of users
sharing petabytes of data over the Internet. Although very useful, these systems are
quite simple (e.g. file sharing), support limited functions (e.g. keyword search) and
use simple techniques (e.g. resource location by flooding) which have performance
problems. To deal with the dynamic behavior of peers that can join and leave the
system at any time, they rely on the fact that popular data get massively duplicated.

Initial research on P2P systems has focused on improving the performance of
query routing in the unstructured systems which rely on flooding. This work led to
structured solutions based on distributed hash tables (DHT), e.g. CAN [24] and
CHORD [27], or hybrid solutions with super-peers that index subsets of peers [32].
Although these designs can give better performance guarantees, more research is
needed to understand their trade-offs between fault-tolerance, scalability, self-
organization, etc.

Recently, other work has concentrated on supporting advanced applications which
must deal with semantically rich data (e.g., XML documents, relational tables, etc.)
using a high-level SQL-like query language, e.g. ActiveXML [2], Edutella [17],
Piazza [29], PIER [9]. As a potential example of advanced application that can benefit
from a P2P system, consider the cooperation of scientists who are willing to share
their private data (and programs) for the duration of a given experiment. For instance,
medical doctors in a hospital may want to share some patient data for an
epidemiological study. Medical doctors may have their own, independent data
descriptions for patients and should be able to ask queries like “age and last weight of
the male patients diagnosed with disease X between day1 and day2” over their own
descriptions.

Such data management in P2P systems is quite challenging because of the scale of
the network and the autonomy and unreliable nature of peers. Most techniques
designed for distributed database systems which statically exploit schema and
network information no longer apply. New techniques are needed which should be
decentralized, dynamic and self-adaptive.

In this paper, we discuss the main issues related to data management in large-scale
P2P systems. we first recall the main principles behind data management in
distributed systems and the basic techniques needed for supporting advanced
functionality (schema management, access control, query processing, transaction
management, consistency management, reliability and replication). Then we review
P2P systems and compare the various architectures along several dimensions
important for data management. we also discuss the state-of-the-art on data
management in P2P systems. Finally, we illustrate how some of these issues (schema
management, replication and query processing) are addressed in the context of APPA

(Atlas Peer-to-Peer Architecture), a P2P data management system which we are
building.

The rest of the paper is organized as follows. Section 2 recalls the main capabilities
of distributed database systems. Section 3 discusses and compares P2P systems from
the perspective of data sharing. Section 4 discusses data management in P2P systems.
Section 5 introduces data management in the APPA system. Section 6 concludes.

2 Data Management in Distributed Systems

The fundamental principle behind data management is data independence, which
enables applications and users to share data at a high conceptual level while ignoring
implementation details. This principle has been achieved by database systems which
provide advanced capabilities such as schema management, high-level query
languages, access control, automatic query processing and optimization, transactions,
data structures for supporting complex objects, etc.

A distributed database is a collection of multiple, logically interrelated databases
distributed over a computer network. A distributed database system is defined as the
software system that permits the management of the distributed database and makes
the distribution transparent to the users [19]. Distribution transparency extends the
principle of data independence so that distribution is not visible to users.

These definitions assume that each site logically consists of a single, independent
computer. Therefore, each site has the capability to execute applications on its own.
The sites are interconnected by a computer network with loose connection between
sites which operate independently. Applications can then issue queries and
transactions to the distributed database system which transforms them into local
queries and local transactions (see Figure 1) and integrates the results. The distributed
database system can run at any site s, not necessarily distinct from the data (i.e. it can
be site 1 or 2 in Figure 1).

Figure 1. A distributed database system with two data sites

The database is physically distributed across the data sites by fragmenting and
replicating the data. Given a relational database schema, for instance, fragmentation
subdivides each relation into partitions based on some function applied to some

Distributed
Database System

Queries Transactions

DB2 DBMS2 DB1 DBMS1

site 1 site 2

site s

tuples’ attributes. Based on the user access patterns, each of the fragments may also
be replicated to improve locality of reference (and thus performance) and availability.

The functions provided by a distributed database system could be those of a
database system (schema management, access control, query processing, transaction
support, etc). But since they must deal with distribution, they are more complex to
implement. Therefore, many systems support only a subset of these functions.

When the data and the databases already exist, one is faced with the problem of
providing integrated access to heterogeneous data. This process is known as data
integration: it consists in defining a global schema over the existing data and
mappings between the global schema and the local database schemas. Data
integration systems have received several names such as federated database systems,
multidatabase systems and, more recently, mediators systems. In the context of the
Web, mediator systems [30] allow general access to autonomous data sources (such as
files, databases, documents, etc.) in read only mode. Thus, they typically do not
support all database functions such as transactions and replication.

When the architectural assumption of each site being a (logically) single,
independent computer is relaxed, one gets a parallel database system [31], i.e. a
database system implemented on a tightly-coupled multiprocessor or a cluster. The
main difference with a distributed database system is that there is a single operating
system which eases implementation and the network is typically faster and more
reliable. The objective of parallel database systems is high-performance and high-
availability. High-performance (i.e. improving transaction throughput or query
response time) is obtained by exploiting data partitioning and query parallelism while
high-availability is obtained by exploiting replication.

The distributed database approach has proved effective for applications that can
benefit from centralized control and full-fledge database capabilities, e.g. information
systems. For administrative reasons, the distributed database system typically runs on
a separate server and this reduces scale up to tens of databases. Data integration
systems achieve better scale up to hundreds of data sources by restricting
functionality (i.e. read-only querying). Parallel database systems can also scale up to
large configurations with hundreds of processing nodes by relying on a single
operating system. However, both data integration systems and parallel database rely
on a centralized global schema.

3 P2P Systems

Peer-to-peer (P2P) systems adopt a completely decentralized approach to resource
management. By distributing data storage, processing and bandwidth across all peers
in the network, they can scale without the need for powerful servers. P2P systems
have been successfully used for sharing computation, e.g. SETI@home [25],
communication [11] or data, e.g. Gnutella [8] and Kaaza [13]. The success of P2P
systems is due to many potential benefits: scale-up to very large numbers of peers,
dynamic self-organization, load balancing, parallel processing, and fault-tolerance
through massive replication. Furthermore, they can be very useful in the context of
mobile or pervasive computing. However, existing systems are limited to simple

applications (e.g. file sharing), support limited functions (e.g. keyword search) and
use simple techniques which have performance problems. Much active research is
currently on-going to address the challenges posed by P2P systems in terms of high-
level data sharing services, efficiency and security. When considering data
management, the main requirements of a P2P system are [7]:
• Autonomy: an autonomous peer should be able to join or leave the system at

any time without restriction. It should also be able to control the data it stores
and which other peers can store its data, e.g. some other trusted peers

• Query expressiveness: the query language should allow the user to describe
the desired data at the appropriate level of detail. The simplest form of query is
key look-up which is only appropriate for finding files. Keyword search with
ranking of results is appropriate for searching documents. But for more
structured data, an SQL-like query language is necessary.

• Efficiency: the efficient use of the P2P system resources (bandwidth,
computing power, storage) should result in lower cost and thus higher
throughput of queries, i.e. a higher number of queries can be processed by the
P2P system in a given time.

• Quality of service: refers to the user-perceived efficiency of the system, e.g.
completeness of query results, data consistency, data availability, query
response time, etc.

• Fault-tolerance: efficiency and quality of services should be provided despite
the occurrence of peers’ failures. Given the dynamic nature of peers which
may leave or fail at any time, the only solution is to rely on data replication.

• Security: the open nature of a P2P system makes security a major challenge
since one cannot rely on trusted servers. Wrt. data management, the main
security issue is access control which includes enforcing intellectual property
rights on data contents.

There are many different architectures and network topologies that are possible for

P2P systems. Depending on the architecture, the above requirements are more or less
difficult to achieve. For simplicity, we consider three main classes: unstructured,
structured and super-peer. Unstructured and structured systems are also called “pure”
P2P while super-peer systems are qualified as “hybrid”. Pure P2P systems consider all
peers equal with no peer providing special functionality.

 In unstructured systems, the simplest ones, each peer can directly communicate
with its neighbors. Figure 2 illustrates a simple unstructured system, each peer
supporting the same p2p software. Autonomy is high since a peer only needs to know
its neighbors to log in. Searching for information is simple: it proceeds by flooding
the network with queries, each peer processing and redirecting the incoming queries
to its neighbors. There is no restriction on the expressiveness of the query language
which could be high. Such query routing based on flooding is general but does not
scale up to large numbers of peers. Also, the incompleteness of the results can be high
since some peers containing relevant data or their neighbors may not be reached
because they are either off-line. However, since all peers are equal and able to
replicate data, fault-tolerance is very high.

Initial research on P2P systems has focused on improving the performance of
unstructured systems and led to structured systems based on distributed hash tables

(DHT), e.g. CAN [24] and CHORD [27]. A DHT system provides a hash table
interface with primitives put(key,value) and get(key), where key is typically a file
name and each peer is responsible for storing the values (file contents) corresponding
to a certain range of keys. There is an overlay routing scheme that delivers requests
for a given key to the peer responsible for that key. This allows one to find a peer
responsible for a key in O(log n), where n is the number of peers in the network.
Because a peer is responsible for storing the values corresponding to its range of keys,
autonomy is limited. Furthermore, DHT queries are typically limited to exact match
keyword search. Active research is on-going to extend the capabilities of DHT
systems to deal with more general queries such as range queries and join queries [9].

Figure 2. P2P unstructured network

Figure 3. DHT network

Super-peer P2P systems are hybrid between pure systems and client-server
systems. Unlike pure systems, peers are not all equal. Some peers, the super-peers, act
as dedicated servers for some other peers and can perform complex functions such as
indexing, query processing, access control and meta-data management. Using only
one super-peer reduces to client-server with all the problems associated with a single
server. For instance, Napster [16] which became famous for exchanging pirated music
files used a central super-peer which made it easier to shut it down. Super-peers can
also be organized in a P2P fashion and communicate with one another in sophisticated
ways. Thus, unlike client-server systems, global information is not necessarily
centralized and can be partitioned or replicated across all super-peers. Figure 4
illustrates a super-peer network that shows the different communication paths
peer2super-peer (p2sp) and super-peer2super-peer (sp2sp). The main advantage of

DHT overlay routing

p2p

data

p2p

data

p2p

data

p2p

data peer 1 peer 2

peer 3

peer 4

p2p

d(k1)

p2p

d(k2)

p2p

d(k4)

p2p

d(k3)

peer 1 peer 2 peer 3 peer 4

h(k1)=p1 h(k2)=p2 h(k3)=p3 h(k4)=p4

super-peer is efficiency and quality of service. A requesting peer simply sends the
request, which can be expressed in a high-level language, to its responsible super-peer
which can then find the relevant peers either directly through its index or indirectly
using its neighbor super-peers. Access control can also be better enforced since
directory and security information can be maintained at the super-peers. However,
autonomy is restricted since peers cannot log in freely to any super-peer. Fault-
tolerance is typically low since super-peers are single points of failure for their sub-
peers.

Figure 4. Super-peer network

Table 1 summarizes how the requirements for data management are possibly
attained by the three main classes of P2P systems. This is a rough comparison to
understand the respective merits of each class. For instance, “high” means it can be
high. Obviously, there is room for improvement in each class of systems. For
instance, fault-tolerance can be made higher in super-peer by relying on replication
and fail-over techniques.

Requirements Unstructured Structured Super-peer
Autonomy high low average
Query expressiveness “high” low “high”
Efficiency low high high
QoS low high high
Fault-tolerance high high low
Security low low high

Table 1. Comparison of P2P systems

4 Data Management in P2P Systems

Advanced P2P applications must deal with semantically rich data (e.g., XML
documents, relational tables, etc.). To address these applications, we need functions
similar to those of distributed database systems. In particular, users should be able to

p2sp

data

p2sp

data

p2sp

data

p2sp

data

peer 1 peer 2 peer 3 peer 4

sp2sp

sp2p

sp2sp

sp2p

sp 1 sp 2

use a high-level query language to describe the desired data. But the characteristics of
P2P systems create new issues. First, the dynamic and autonomous nature of peers
makes it hard to give guarantees about result completeness and makes static query
optimization impossible. Second, data management techniques need to scale up to
high numbers of peers. Third, the lack of centralized authority makes global schema
management and access control difficult. Finally, even when using replication, it is
hard to achieve fault-tolerance and availability in the presence of unstable peers. Most
of the work on sharing semantically rich data in P2P systems has focused on schema
management, and query processing and optimization. However, there has been very
little work on replication, transactions and access control.

Schema management and query processing are generally addressed together for a
given class of P2P system. Peers should be able to express high-level queries over
their own schema without relying on a centralized global schema. Thus the main
problem is to support decentralized schema mapping so that a query on one peer’s
schema can be reformulated in a query on another peer’s schema. In PeerDB [18],
assuming an unstructured network, schema mapping is done on the fly during query
processing using information retrieval techniques. Although flexible, this approach
limits query expressiveness to keyword search. Furthermore, query routing relies on
flooding which can be inefficient. In PIER [9], a DHT network, the focus is on
scaling up query processing to very large configurations assuming that de-facto
standard schemas exist. However, only exact-match and equijoin queries are
supported. In Edutella [17], a hybrid system, RDF-based schema descriptions are
provided by super-peers. Thus, SQL-like query processing can be done by super-peers
using distributed database techniques. Piazza [29] proposes a more general, network-
independent, solution to schema management that supports a graph of pair-wise
mappings between heterogeneous schema peers. Algorithms are proposed to
reformulate a query in Xquery on a peer’s schema into equivalent queries on the other
peers’ schemas. ActiveXML [2] is a general P2P system based on active XML
documents, i.e. XML documents with embedded Web service calls in XQuery. Query
processing in ActiveXML relies on a cost model which helps evaluating distributed
queries and deciding which data and services to replicate.

Data replication in the presence of updates and transactions remains an open issue.
The data sharing P2P systems like Gnutella and Kaaza deal with static, read-only files
(e.g. music files) for which update is not an issue. Freenet [6] partially addresses
updates which are propagated from the updating peer downward to close peers that
are connected. However, peers that are disconnected do not get updated. ActiveXML
[2] supports the definition of replicated XML fragments as Web service calls but does
not address update propagation. Update is addressed in P-Grid [1], a structured
network that supports self-organization. The update algorithm uses rumor spreading
to scale and provides probabilistic guarantees for replica consistency. However, it
only considers updates at the file level in a mono-master mode, i.e. only one (master)
peer can update a file and changes are propagated to other (read-only) replicas.

Advanced applications are likely to need more general replication capabilities such
as various levels of replication granularity and multi-master mode, i.e. whereby the
same replica may be updated by several (master) peers. For instance, a patient record
may be replicated at several medical doctors and updated by any of them during a
visit of the patient, e.g. to reflect the patient’s new weight. The advantage of multi-

master replication is high-availability and high-performance since replicas can be
updated in parallel at different peers. However, conflicting updates of the same data at
different peers can introduce replica divergence. Then the main problem is to assure
replica consistency. In distributed database systems [19], synchronous replication
(e.g. Read-Once-Write-All) which updates all replicas within the same transaction
enforces mutual consistency of replicas. However, it does not scale up because it
makes use of distributed transactions, typically implemented by 2 phase commit.
Preventive replication [22] can yield strong consistency, without the constraints of
synchronous replication, and scale up to large configurations. However, it requires
support for advanced distributed services and a high speed network with guaranteed
maximum time for message reception as is the case in cluster systems. This
assumption does not hold for P2P systems. A more practical solution is optimistic
replication [20] which allows the independent updating of replicas and divergence
until reconciliation. However, existing optimistic replication solutions do not address
important properties of P2P systems such as self-organization.

5 Data Management in the APPA system

To illustrate data management in large-scale P2P systems, we introduce the design of
the APPA system [3]. The main objectives of APPA are scalability, availability and
performance for advanced applications. APPA has a layered service-based
architecture. Besides the traditional advantages of using services (encapsulation,
reuse, portability, etc.), APPA is network-independent so it can be implemented over
different P2P networks (unstructured, DHT, super-peer, etc.). The main reason for
this choice is to be able to exploit rapid and continuing progress in P2P networks.
Another reason is that it is unlikely that a single P2P network design will be able to
address the specific requirements of many different applications. Furthermore,
different P2P networks could be combined in order to exploit their relative
advantages, e.g. DHT for key-based search and super-peer for more complex
searching.

There are three layers of services in APPA: P2P network, basic services and
advanced services. The P2P network layer provides network independence with
services that are common to all P2P networks : peer id assignment, peer linking and
key-based storage and retrieval. The basic services layer provides services for peer
management and communication over the network layer:
• P2P data management: stores and retrieves P2P data (e.g. meta-data, index

data) by key in the P2P network.
• Peer management: provides support for peer joining (and rejoining) and for

storage, retrieval and removal of peer ids.
• Peer communication: enables peers to exchange messages (i.e. service calls)

even with disconnected peers using a persistent message queue.
• Group membership management: allows peers to join an abstract group,

become members of the group and send and receive membership notifications.
This is similar but much weaker than group communication [5].

• Consensus module: allows a given set of peers to reach agreement on a common
value despite failures.

The advanced services layer provides services for semantically rich data sharing
including schema management, replication, query processing, caching, security, etc.
using the basic services. To capitalize on Web service standards, the shared data are
in XML format (which may be interfaced with many data management systems) and
the query language is XQuery. In addition, we assume each peer has data
management capabilities (e.g. a DBMS) for managing its local XML data, possibly
through a traditional wrapper interface.

The APPA services are organized differently depending on the underlying P2P
network. For instance, in the case of a DHT network, the three service layers are
completely distributed over all peers. Thus, each peer needs to manage P2P data in
addition to its local data. In the case of a super-peer network, super-peers provide P2P
network services and basic services while peers provide only the advanced services.
APPA is being implemented using the JXTA framework [12] which provides a
number of abstractions to P2P networks. In particular, JXTA provides global
information sharing and group management on top of unstructured and DHT
networks. Furthermore, it allows to organize some peers as super-peers.

To deal with semantically rich data, APPA supports decentralized schema
management. Our solution takes advantage of the collaborative nature of the
applications we target. We assume that peers that wish to cooperate, e.g. for the
duration of an experiment, are likely to agree on a Common Schema Description
(CSD). Our experience with scientific applications taught us this assumption is
realistic [28]. Given a CSD, a peer schema can be specified using views. This is
similar to the local-as-view approach in data integration [14] except that, in APPA,
queries at a peer are expressed against the views, not the CSD. The peer schemas are
stored as P2P data using the key-based storage and retrieval module, where the key is
a combination of attribute and relation.

To focus on collaborative applications, we follow the small world assumption [10]
which allows us to deal with groups of peers of manageable size. In this context, we
can assume that the P2P system is self-organized [4] which yields fast communication
between peers of the same group. Our replication model is based on the lazy multi-
master scheme of distributed databases [21] which we transpose here to P2P. Multi-
master replication allows a group of peers to update the same replicas, thus
improving availability and performance. However, conflicting updates of the same
data at different peers can introduce replica divergence. To solve this problem, we
adapt log-based reconciliation [23] to address the properties of P2P systems. The
original solution works as follows. Assuming each peer in the group holds a replica r,
users locally execute tentative actions on r which respect some constraints and, record
these actions in a local replication log. Periodically, all the logs are merged together
by some peer in a global log L. Then the reconcile algorithm can be executed by that
peer using L in order to produce a best schedule (an interleaved order of actions from
different peers) which respects all the defined constraints. The best schedule is then
applied at each peer to update r, possibly undoing some local tentative actions. This
solution assures eventual consistency among replicas: if all users stop submitting
actions then mutual consistency is achieved among all peers holding r [25]. However,
this centralized solution is not well suited for P2P systems because decisions must be

taken in a distributed way in order to preserve peers' autonomy and eventual
consistency must be assured. Furthermore, it does not consider the case of peers
joining or leaving a group which may impact the scheduling of actions.

In our solution, we use the P2P data management service (henceforth common
storage) to log the tentative actions executed by each peer that updates r. The
reconcile algorithm works as follows. Whenever a peer p updates r, the effects of the
tentative action is immediately reflected locally and the corresponding tentative action
(henceforth action) is logged in the common storage in the action log (see Figure 5).
Thus, all actions may be eventually seen by the other peers of the group, even those
that may be disconnected.

Figure 5. Distributed Reconciliation in APPA

 To manage the action log, the peers of the involved group agree (using the
consensus module) on a time interval Δt in which the log actions must be grouped
together to form a log unit. Hence, a log unit l holds an unordered set of actions
performed by any peer of the group to update r during a time interval Δt. Thus, the
action log keeps a set of log units that are reconciled on demand (a peer reconciles
the log unit he is involved) and, whenever log units do not conflict (for instance
updates on different objects), they may be reconciled in parallel. Thus, whenever a
peer p wishes to reconcile its actions wrt. the other peers’ actions, it locally executes
the reconcile algorithm using a complete log unit (stored in the action log) as input
and produces the corresponding best schedule unit.

Our replication solution guarantees eventual consistency among replicas [26,25]. It
is completely distributed and respects the autonomy of peers. Furthermore,
information about replicas is systematically captured and can be exploited for other
services, e.g. query processing.

Query processing in APPA deals with schema-based queries and considers data
replication. Given a user query Q on a peer schema, the objective is to find the
minimum set of relevant peers (query matching), route Q to these peers (query
routing), collect the answers and return a (ranked) list of answers to the user. Since
the relevant peers may be disconnected, the returned answers may be incomplete.
Depending on the QoS required by the user, we can trade completeness for response
time, e.g. by waiting for peers to get connected to get more results.

Common storage

peer 2

Reconcile

r

peer 1

Reconcile

r

peer 3

Reconcile

r

Action log

Best schedules

Query processing proceeds in four main phases: (1) query reformulation, (2) query
matching, (3) query optimization and (4) query decomposition and execution. Phases
1, 2 can be done using techniques found in other P2P systems. However, phases 3 and
4 are new because of data replication. The optimization objective is to minimize the
amount of redundant work (on replicas) while maximizing load balancing and query
parallelism. This is done by statically selecting an optimal set of relevant replicas
from which on-line peers are dynamically selected at run time based on load. Query
decomposition and execution exploits parallelism using intermediate peers. Since
some relevant peers may have only subsets of relations in Q, query decomposition
produces a number of subqueries (not necessarily different), one for each peer,
together with a composition query to integrate, e.g. through join and union operations,
the intermediate results [30]. Finally, Q is sent to each peer which (if connected)
reformulates it on its local schema (using the peer mappings), executes it and sends
back the results to the sending peer which integrates the results. Result composition
can also exploit parallelism using intermediate peers. For instance, let us consider
relations r1 and r2 defined over CSD r and relations s1 and s2 defined over CSD r, each
stored at a different peer, and the query select * from r, s where r.a=s.a and r.b=2
and s.c=5 issued a peer q. A parallel execution strategy for Q is shown in Figure 6.

Figure 6. Example of parallel execution using intermediate peers

This strategy exhibits independent parallelism between peers 1-4 (the select (σ)
operations can all be done in parallel) and peers 5-6 (the union operations can be done
in parallel). It can also yield pipelined parallelism. For instance, if the left-hand
operand of an intermediate peer is smaller than the right-hand operand, then it would
be entirely transferred first so the other operand could be pipelined thus yielding
parallelism between peers 2-5-q and peers 4-6-q. Parallel execution strategies improve
both the query response time and the global efficiency of the P2P system.

6 Conclusion

P2P systems adopt a completely decentralized approach to data sharing. By
distributing data storage and processing across autonomous peers in the network, they

s
r

r

s'1 s'2 r'2 r'1

peer 1 peer 2 peer 3 peer 4

σb=2(r1) σb=2(r2) σc=5(s1) σc=5(s2)

r'1 ∪ r'2 s'1 ∪ s'2

r |><|a s

peer 5 peer 6

peer q

can scale without the need for powerful servers. Although very useful, these systems
are too simple and limited for advanced applications.

Advanced P2P applications such as scientific cooperation must deal with
semantically rich data (e.g., XML documents, relational tables, etc.). Supporting such
applications requires significant revisiting of distributed database techniques (schema
management, access control, query processing, transaction management, consistency
management, reliability and replication). When considering data management, the
main requirements of a P2P system are autonomy, query expressiveness, efficiency,
quality of service, and fault-tolerance. Depending on the P2P network architecture
(unstructured, structured DHT, or hybrid super-peer), these requirements are more or
less difficult to achieve. Unstructured networks have better fault-tolerance but can be
quite inefficient because they rely on flooding for query routing. Hybrid systems have
better potential to satisfy high-level data management requirements. However, DHT
systems are best for key-based search and could be combined with super-peer
networks for more complex searching.

Most of the work on sharing semantically rich data in P2P systems has focused on
schema management, and query processing. However, there has been very little work
on replication, transactions and access control. To illustrate some of these issues we
introduced the APPA data management system which we are building. APPA has a
P2P network independent architecture and supports decentralized schema
management, optimistic replication based on log reconciliation and query processing
that exploits replication for parallelism and load balancing.

Research on data management in P2P systems is only beginning. Much more work
is needed to revisit distributed database techniques for large-scale P2P systems. The
main issues have to deal with schema management, high-level query processing,
transaction support and replication, and security. Furthermore, it is unlikely that all
kinds of data management applications are suited for P2P systems. Typical
applications which can take advantage of P2P systems are probably light-weight and
involve some sort of cooperation. Characterizing carefully these applications is
important and will be useful to produce performance benchmarks.

Acknowledgements

We wish to thank R. Akbarinia, V. Martins for their many inputs and fruitful
discussions in the context of the APPA project, and S. Abiteboul and I. Manolescu for
fruitful discussions in the context of the MDP2P project.

References

1. K. Aberer et al. P-Grid: a self-organizing structured P2P system. SIGMOD Record, 32(3),
2003.

2. S. Abiteboul et al. Dynamic XML documents with distribution and replication. SIGMOD
Conf., 2003.

3. R. Akbarinia, V. Martins, E. Pacitti, P. Valduriez. Replication and query processing in the
APPA data management system. Submitted for publication, 2004.

4. E. Anceaume, M. Gradinariu, M. Roy. Self-organizing systems case study : peer-to-peer
systems. DISC Conf., 2003.

5. G. Chockler, I. Keidar, R. Vitenberg. Group communication specifications: a
comprehensive study. ACM Computing Surveys, 33(427-469), 2001.

6. I. Clarke et al. Protecting Free Expression Online with Freenet. IEEE Internet Computing,
6(1), 2002.

7. N. Daswani, H. Garcia-Molina, B. Yang. Open problems in data-sharing peer-to-peer
systems. Int. Conf. on Database Theory, 2003.

8. Gnutella. http://www.gnutelliums.com/.
9. R. Huebsch et al. Querying the Internet with PIER. VLDB Conf., 2003.
10. A. Iamnitchi, M. Ripeanu, I. Foster. Locating data in (small world?) peer-to-peer scientific

collaborations. Int. workshop on P2P Systems (IPTPS), 2002.
11. ICQ. http://www.icq.com/.
12. JXTA. http://www.jxta.org/.
13. Kazaa. http://www.kazaa.com/.
14. A. Levy, A. Rajaraman, J. Ordille. Querying heterogeneous information sources using

source descriptions. VLDB Conf., 1996.
15. MDP2P. http://www.sciences.univ-nantes.fr/info/recherche/ATLAS/MDP2P/.
16. Naspter. http://www.napster.com/.
17. W. Nejdl, W. Siberski, M. Sintek. Design issues and challenges for RDF- and schema-

based peer-to-peer systems. SIGMOD Record, 32(3), 2003.
18. B. Ooi, Y. Shu, K-L. Tan. Relational data sharing in peer-based data management

systems. SIGMOD Record, 32(3), 2003.
19. T. Özsu, P. Valduriez. Principles of Distributed Database Systems. 2nd Edition, Prentice

Hall, 1999.
20. E. Pacitti, O. Dedieu. Algorithms for optimistic replication on the Web. Journal of the

Brazilian Computing Society, 8(2), 2002.
21. E. Pacitti, E. Simon: Update propagation strategies to improve freshness in lazy master

replicated databases. The VLDB Journal, 8(3-4), 2000.
22. E. Pacitti, T. Özsu, C. Coulon. Preventive multi-master replication in a cluster of

autonomous databases, Euro-Par Conf., 2003), 2003.
23. N. Preguiça, M. Shapiro, C. Matheson. Semantics-based reconciliation for collaborative

and mobile environments. CoopIS Conf., 2003.
24. S. Ratnasamy et al. A scalable content-addressable network. Proc. of SIGCOMM, 2001.
25. SETI@home. http://www.setiathome.ssl.berkeley.edu/.
26. M. Shapiro. A simple framework for understanding consistency with partial replication.

Technical Report, Microsoft Research, 2004.
27. I. Stoica et al. Chord: A scalable peer-to-peer lookup service for internet applications.

Proc. of SIGCOMM, 2001.
28. A. Tanaka, P. Valduriez. The Ecobase environmental information system: applications,

architecture and open issues. ACM SIGMOD Record, 3(5-6), 2000.
29. I. Tatarinov et al. The Piazza peer data management project. SIGMOD Record 32(3),

2003.
30. A. Tomasic, L. Raschid, P. Valduriez. Scaling access to heterogeneous data sources with

DISCO. IEEE Trans. on Knowledge and Data Engineering, 10(5), 1998.
31. P. Valduriez: Parallel Database Systems: open problems and new issues. Int. Journal on

Distributed and Parallel Databases, 1(2), 1993.
32. B. Yang, H. Garcia-Molina. Designing a super-peer network. Int. Conf. on Data

Engineering, 2003.

