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Abstract

The World Wide Web has become in a few years into the largest cultural endeavour of all

times. The Web is a distributed repository of information without a central point of control,

and thus can be seen as a vast, diverse, rapidly changing and unstructured database.

The low cost of publishing information on the Web is a key part of its success, but implies

that searching information on the Web will always be inherently more difficult that searching

information in traditional, closed repositories.
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1 Introduction

A Web search engine takes a user need, usually stated in the form of a few keywords, and returns

a list of Web pages that can be considered relevant for the given keywords. These Web pages are a

short list of usually few hundred items selected from a vast repository of thousands of millions of

pages.

The “easy” part of Web search is to find which documents in the Web are related to a given

query, because most queries are very broad, and there are thousands of pages relevant to most basic

concepts. The hard part of Web search is to rank those documents by relevance and select the, say,

top 10, to show the first result page to the user.

Although there was an important body of information retrieval algorithms and techniques pub-

lished before the invention of the World Wide Web, there are unique characteristics of this new

medium that made those techniques unsuitable or insufficient for Web search.

“Information retrieval algorithms were developed for relatively small and coherent col-

lections such as newspaper articles or book catalogs in a (physical) library. The Web,

on the other hand, is massive, much less coherent, changes more rapidly, and is spread

over geographically distributed computers ...” (Arasu et al., 2001)

The Web can be considered as divided into two parts, the “closed Web” and the “open Web”

(Brooks, 2003). The “closed Web” comprises a few high-quality controlled collections on which a

search engine can fully trust. The “open Web” includes the vast majority of Web pages, which lack

an authority asserting their quality. In the open Web, traditional information retrieval techniques,

concepts and methods are challenged.

To partly overcome this problem, hyperlinks between pages can be used in the same way as
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citations can be used in academic literature to find the most important papers in an area. Link

analysis techniques can be used to exploit hyperlinks and extract useful information from them.

However, one of the main challenges that the open Web poses to search engines is “search engine

spamming”, i.e.: malicious attempts to get an undeserved high ranking in the list of results. This

has created a whole branch of research called “adversarial information retrieval” that deals

with retrieving information from collections in which a subset of the collection has been manipulated

to influence the outcome of ranking algorithms.

In the next sections we present the main issues related to indexing, searching, ranking, and

crawling the Web. We end with a section about the characteristics with the Web and another

about research issues. Because of space restrictions our coverage of details and bibliography is

by no means complete. For further details about Web retrieval we recommend (Baeza-Yates and

Ribeiro-Neto, 1999).

2 Indexing and querying Web pages

The Web search process has two main parts: off-line and on-line.

The off-line part is executed periodically by the search engine, and consists in downloading a

sub-set of the Web to build a collection of pages, which is then transformed into a searchable index.

The on-line part is executed every time a user query is executed, and uses the index to select

some candidate documents that are sorted according to an estimation on how relevant they are for

the user’s need. This process is depicted in Figure 1.

Web pages come in many different formats such as plain text, HTML pages, PDF documents,

and other proprietary formats. The first stage for indexing Web pages is to extract a standard

logical view from the documents. The most used logical view for documents in search engines is
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Figure 1: A Web search engine periodically downloads and indexes a sub-set of Web pages. This

index is used for searching and ranking in response to user queries.

the “bag of words” model, in which each document is seen only as an unordered set of words.

In modern Web search engines, this view is extended with extra information concerning word

frequencies and text formatting attributes, as well as meta-information about Web pages including

embedded descriptions and explicit keywords in the HTML markup.

There are several text normalization operations (Baeza-Yates, 2004) that are executed for

extracting keywords, the most used ones are: tokenization, stopword removal and stemming .

Tokenization involves dividing the stream of text into words. While in some languages like

English this is very straighforward and involves just splitting the text using spaces and punctuation,

in other languages like Chinese finding words can be very difficult.

Stopwords are words that carry little semantic information, usually functional words that appear

in a large fraction of the documents and therefore have little discriminating power for asserting

relevance. In information retrieval stopwords are usually discarded also for efficiency reasons, as

storing stopwords in an index takes considerable space because of their high frequency.
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Stemming extracts the morphological root of every word. In global search engines, the first

problem with stemming is that it is language dependent, and while an English rule-based stemming

works well, in some cases like Spanish, a dictionary-based stemmer has to be used, while in other

languages as German and Arabic stemming is quite difficult.

Other, more complex operations such as synonim translation, detecting multiword expressions,

phrase identification, named entity recognition, word sense disambiguation, etc. are used in some

application domains. However, some of these operations can be computationally expensive and if

they have large error rates, then they can be useless and even harm retrieval precision.

2.1 Inverted index

An inverted index is composed of two parts: a vocabulary and a list of occurrences. The vocabulary

is a sorted list of all the keywords, and for each term in the vocabulary, a list of all the “places”

in which the keyword appears in the collection is kept. Figure 2 shows a small inverted index,

considering all words including stopwords. When querying, the lists are extracted from the inverted

index and then merged. Queries are very fast because usually hashing in memory is used for the

vocabulary, and the lists of occurrences are pre-sorted by some global relevance criteria.

Figure 2: A sample inverted index.
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The granularity of the choice of the items in the list of occurrences determines the size of the

index, and a small size can be obtained by storing only the document identifiers of the corresponding

documents. If the search engine also stores the position where the term appears on each page the

index is larger, but can be used for solving more complex queries such as queries for exact phrases,

or proximity queries.

While the vocabulary grows sub-linearly with the collection size, the list of occurrences can be

very large. The complete inverted index can occupy from 10% to 20% of the space occupied by the

actual collection. An inverted index does not fit in main memory for a Web collection, so several

partial indices are built. Each partial index represents only a subset of the collection and are later

merged into the full inverted index.

In Figure 3 the main stages of the indexation process are depicted. During parsing, links are

extracted to build a Web graph, and they can be analyzed later to generate link-based scores that

can be stored along withe the rest of the metadata.

2.2 Distributing query load

Query response time in today’s search engines requires to be very fast, and should be done in a

parallel way involving several machines. For parallelization, the inverted index is usually distributed

among several physical computers. To partition the inverted index, two techniques are used: global

inverted file and local inverted file (Tomasic and Garcia-Molina, 1993).

When using a global inverted file, the vocabulary is divided into several parts containing roughly

the same amount of occurrences. Each computer is assigned a part of the vocabulary and all of its

occurrences. Whenever a query is received, the query is sent to the computers holding the query

terms, and the results are merged afterwards. Hence, load balancing is not easy.
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Figure 3: Indexing for Web search. (1) Pages are parsed and links and extracted. (2) Partial indices

are written on disk when main memory is exhausted. (3) Indices are merged into a complete text

index. (4) Off-line link analysis can be used to calculate static link-based scores.

When using a local inverted file, the document identifiers are divided, but each computer gets

the full vocabulary. That is, step 3 in figure 3 is ommitted. A query is then broadcasted to all

computers, obtaining good load balance. This is the architecture used in main search engines today,

as building and maintaining a global index is hard.

Query processing involves a central “broker” that is assigned the task of distributing incoming

queries and merging the results. As the results are usually shown in groups of 10 or 20 documents

per page, the broker does not need to request or merge full lists, only the top most results from

each partial list.
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Search engines exploit the fact that users seldom go past the first or second page of results.

Search engines provide approximate result counts because they never perform a full merge of the

partial result lists, so the total number of documents in the intersection can only be estimated. For

this reason, when a user asks for the second or third page of results for a query, it is common that

the full query is executed again.

3 Ranking

3.1 Text-based ranking

The vector space model (Salton, 1971) is the standard technique for ranking documents according

to a query. Under this model, both a document and a query are seen as a pair of vectors in a space

with as many dimensions as terms as the vocabulary. In a space defined in this way, the similarity

of a query to a document is given by a formula that transforms each vector using certain weights

and then calculates the cosine of the angle between the two weighted vectors:

sim(q,d) =

∑

t wt,q × wt,d
√

∑

t w2
t,q ×

√

∑

t w2
t,d

In a text-based information retrieval systems, documents are shown to the user in decreasing

order using this similarity measure.

A weighting scheme uses statistical properties from the text and the query to give certain words

more importance when doing the similarity calculation. The most used scheme is the TF-IDF

weighting scheme (Salton and Buckley, 1988), that uses the frequency of the terms in both

queries and documents to compute the similarity.

TF stands for term frequency, and the idea is that a that if a term appears several times

8



in a document it is better as for describing the contents of that document. The TF is usually

normalized with respect to document length, that is, the parameter used is the frequency of term

t divided by the frequency of the most frequent term in document d:

tf t,d =
freqt,d

max` freq`,d

IDF stands for inverse document frequency and reflects how frequent a term is in the whole

collection. The rationale is that a term that appears in a few documents gives more information

that a term that appears in many documents. If N is the number of documents and nt if the

number of documents containing the query term t, then idf t = log N
nt

.

Using these measures, the weight of each term in given by:

wt,q =

(

1

2
+

1

2
tf t,q

)

idf t , wt,d = tf t,d

The 0.5 added is added to avoid a query term having 0 weight. Several alternative weighting

schemes have been proposed, but this weighting scheme is one of the most used and gives good

results in practice.

3.2 Connectivity-based ranking

Web pages sharing a link are more likely to be topically related that unconnected Web pages

(Davison, 2000). The key hypothesis of connectivity-based ranking goes one step further, and

asserts that a hyperlink from a page p′ to a page p, means, in a certain way, that the content of

page p is endorsed by the author of page p′.

By the same reasons why self-citations in academic literature should not confer authority, link

analysis techniques must be aware of the fact that thousands of links can be created automatically

by the same user:
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“Unlike academic papers which are scrupulously reviewed, web pages proliferate free of

quality control or publishing costs. With a simple program, huge numbers of pages can

be created easily, artificially inflating citation counts. Because the Web environment

contains profit seeking ventures, attention getting strategies evolve in response to search

engine algorithms. For this reason, any evaluation strategy which counts replicable

features of Web pages is prone to manipulation” (Page et al., 1998).

The algorithms for connectivity-based ranking based on this assumption can be partitioned into

(Henzinger, 2001):

• Query-independent ranking, that assign a fixed score to each page in the collection.

• Query-dependent ranking, or topic-sensitive ranking, that assign a score to each page in the

collection in the context of a specific query.

3.2.1 Query-independent ranking

The Pagerank algorithm (Page et al., 1998) is currently an important part of the ranking function

used by the Google search engine. The definition of Pagerank is recursive, stating in simple terms

that “a page with high Pagerank is a page referenced by many pages with high Pagerank”.

To calculate the Pagerank, each page on the Web is modeled as a state in a system, and each

hyperlink as a transition between two states. The Pagerank value of a page is the probability of

being in a given page when this system reaches its stationary state.

A good metaphor for understanding this is to imagine a “random surfer”, a person who visits

pages at random, and upon arrival to each page, chooses an outgoing link uniformly at random

from the links in that page. The Pagerank of a page is the fraction of time the random surfer
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spends at each page.

This simple system can be modeled by the following equation of a “simplified Pagerank”. In

this and the following equations, p is a Web page, Γ−(p) is the set of pages pointing to p, and Γ+(p)

is the set of pages p points to.

Pagerank′(p) =
∑

x∈Γ−(p)

Pagerank′(x)

|Γ+(x)|

However, actual Web graphs include many pages with no out-links, which act as “rank sinks”

as they accumulate rank but never distribute it to other pages. In stationary state, only they

would have Pagerank > 0. This pages can be removed from the system and their rank computed

later. Also, we would like pages not to accumulate ranking by using indirect self-references (self-

links are easy to remove), not passing all of their score to other pages. For these reasons, most

of the implementations of Pagerank add “random jumps” to each page. These random jumps are

hyperlinks from every page to all pages in the collection, including itself, which provide a minimal

rank to all the pages as well as a damping effect for self-reference schemes.

In terms of the random surfer model, we can state that when choosing the next step, the random

surfer either chooses a page at random from the collection with probability ε, or chooses to follow a

link from the current page with probability 1− ε. This is the model used for calculating Pagerank

in practice, and it is described by the following equation:

Pagerank(p) =
ε

N
+ (1 − ε)

∑

x∈Γ−(p)

Pagerank(x)

|Γ+(x)|

where N is the number of pages in the collection, and the parameter ε is typically between 0.1 and

0.2, based on empirical evidence. Pagerank is a global, static measure of quality of a Web page,

very efficient in terms of computation time, as it only has to be calculated once at indexing time

and is later used repeatedly at query time.
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Note that Pagerank can also be manipulated and in fact there are thousands or millions of Web

pages created specifically for the objective of deceiving the ranking function:

“Among the top 20 URLs in our 100 million page Pagerank calculation using teleporta-

tion to random pages, 11 were pornographic, and they appear to have all been achieved

using the same form of link manipulation. The specific technique that was used was to

create many URLs that all link to a single page, thereby accumulating the Pagerank

that every page receives from random teleportation, and concentrating it into a single

page of interest.” (Eiron et al., 2004)

Another paradigm for ranking pages based on a Markov chain is the absorbing model (Amati

et al., 2003). In this model, the original Web graph is transformed adding, for each node, a “clone

node” with no out-links. Each clone node p′ is only linked from one node in the original graph p.

When this system reaches stationary state, only the clone nodes have probabilities greater than

zero. The probability of the clone node p′ is interpreted as the score of the original node p.

A different paradigm for static ranking on the Web is the network flow model (Tomlin, 2003)

for ranking pages. A (sub)graph of the Web is considered as carrying a finite amount of fluid, and

edges between nodes are pipes for this fluid. The ranking of a page is related to the maximum

amount of flow through a node in this network.

Query-independent ranking summarizes each page on the Web with a single number, or a pair

of numbers, but as the creators of Pagerank note, “the importance of a Web page is an inherently

subjective matter that depends on readers interests, knowledge and attitudes” (Page et al., 1998);

this is why query-dependent ranking is introduced to create ranking functions that are sensitive to

user’s needs.
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3.2.2 Query-dependent ranking

In query-dependent ranking, the starting point is a “neighborhood graph”: a set of pages that is

expected to be relevant to the given query. This graph is built by starting with a set of k pages

containing the query terms; this set can be built using the list of results given by a full-text search

engine. This root set is augmented by its “neighborhood”, that comprises all (or a large sample)

of the pages directly pointing to, or directly pointed by, pages in the root set.

Figure 4 depicts the process of creation of the neighborhood set. The idea of limiting the number

of pages added to the neighborhood set by following back links to at most a parameter d, that was

not part of the original unbounded d proposal, but was introduced later (Bharat and Henzinger,

1998).

Figure 4: Expansion of the root set with k = 5 and d = 2. k is the number of pages in the root set,

and d is the maximum number of back-links to include in the neighborhood set.

It is customary that when considering links in the neighborhood set, only links in different Web

sites are included, as links between pages in the same Web site are usually created by the same

authors as the pages themselves, and do not reflect the relative importance of a page for the general
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community.

The most linked pages in the neighborhood set are usually not the best candidates (Yuwono

and Lee, 1996). Ordering pages by number of in-links performed poorly when compared with pure

content-based analysis.

The HITS algorithm (Kleinberg, 1999) is based on considering that relevant pages can be either

“authority pages” or “hub pages”. An authority page is expected to have relevant content for a

subject, and a hub page is expected to have many links to authority pages. These two characteristics

have a mutually-reinforcing relationship: a page with high authority is pointed to by many pages

with a high “hubness” and vice-versa, as shown in Figure 5.

Figure 5: Hubs and authorities in a small graph. Node 4 is the best hub page, as it points to many

authorities, and nodes b and g are the best authority pages.

HITS produces two scores for each page, called “authority score” and “hub score”, using an

iterative method of computation. The algorithm suffers from several drawbacks in its pure form

(Bharat and Henzinger, 1998):

(a) Not all the documents in the neighborhood set are about the original topic (“topic drifting”).

(b) There are nepotistic, mutually-reinforcing relationships between hosts.

(c) There are many automatically generated links.
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Problem (a) is the most important, as while expanding the root set, it is common to include

popular pages that are highly-linked, but unrelated to the query topic. The solution is to use

analysis of the contents of the documents and/or anchor texts and pruning the neighborhood

graph by removing the documents that are too different from the query.

Problems (b) and (c) can be avoided using the following heuristic: if there are k edges from

documents on a host to documents in another host, then each edge is given a weight of 1/k. This

gives each document the same amount of influence on the final score, regardless of the number of

links in that specific document.

A different approach to query-dependent ranking is topic-sensitive Pagerank (Haveliwala, 2002).

In this ranking scheme, scores for each page are pre-computed at indexing time, using an algorithm

similar to Pagerank. Each score represents the importance of a page for each topic from a set of

pre-defined topics. At query time, the ranking is done using the query to assign weights to the

different topic-sensitive Pagerank scores of each page.

4 Crawling the Web

The large volume of the Web implies that any Web crawler can only download a fraction of the

existent Web pages within a given time, so it needs to prioritize its downloads. The high rate of

change of the Web implies that by the time the crawler is downloading the last pages from a site,

it is very likely that new pages have been added to the site, or that pages that have already been

updated or even deleted.

Crawling the Web, in a certain way, resembles watching the sky in a clear night: what we see

reflects the state of the stars at different times, as the light travels different distances. What a Web

crawler gets is not a “snapshot” of the Web, because it does not represents the Web at any given
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instant of time (Baeza-Yates and Ribeiro-Neto, 1999). The last pages being crawled are probably

very accurately represented, but the first pages that were downloaded have a high probability of

have been changed. This idea is depicted in Figure 6.

Figure 6: The search engine’s view of the Web represents the state of Web pages at different times,

as the view of the sky at night presents the state of stars at different times.

A crawler requires a smart scheduling policy for downloading Web pages, and this may become

a harder problem in the future, as the amount of information on the Web can potentially grow

faster than the available bandwidth for Web crawlers.

“Given that the bandwidth for conducting crawls is neither infinite nor free it is becom-

ing essential to crawl the Web in a not only scalable, but efficient way if some reasonable

measure of quality or freshness is to be maintained.” (Edwards et al., 2001)

The behavior of a Web crawler is the outcome of a scheduling policy that is mostly concerned

with which pages to download and in which order (selection policy) and how to re-visit pages
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(re-visit policy) without overloading Web sites (politeness policy).

4.1 Selection policy

There are several types of Web crawlers. A Web search engine concerned with only one country

or one region is called a “vertical search engine” and uses a crawler specifically designed for this

purpose. In the case of a vertical crawler or an intranet crawler the problem is easy as the selection

policy of pages is mostly related to selecting by a domain name.

On the other end, on a global Web search engine, the selection policy deals mostly with when

to stop crawling, as the space of Web pages is infinite. In this regard, a usual criteria is link depth,

i.e., starting from the home page, follow links up to a certain level (Baeza-Yates and Castillo, 2004).

There is a third kind of selection policy that is used by topical crawlers (for instance: the crawler

of a search engine specialized in real estate). In this case, the importance of a page for a crawler

can be expressed as a function of the similarity of a page to a given query. This is called “focused

crawling” (Chakrabarti et al., 1999). The main problem in focused crawling is that in the context

of a Web crawler, we would like to be able to predict the similarity of the text of a given page to

the query before actually downloading the page. The performance of a focused crawling depends

mostly on the richness of links in the specific topic being searched, and a focused crawling usually

relies on a general Web search engine for providing starting points.

4.2 Re-visit policy

The Web has a very dynamic nature, and crawling a fraction of the Web can take a long time,

usually measured in weeks or months. By the time a Web crawler has finished its crawl, many

events could have happened.
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¿From the search engine’s point of view, there is a cost associated with not detecting an event,

and thus having an outdated copy of a resource. The most used cost functions are freshness and

age (Cho and Garcia-Molina, 2000).

Freshness This is a binary measure that indicates whether the local copy is accurate or not. The

freshness of a page p in the repository at time t is defined as:

Fp(t) =























1 if p is equal to the local copy at time t

0 otherwise

Age This is a measure that indicates how outdated the local copy is. The age of a page p in the

repository, at time t is defined as:

Ap(t) =























0 if p is not modified at time t

t − modification time of p otherwise

The objective of the crawler is to keep the average freshness of pages in its collection as high as

possibly, or to keep the average age of pages as low as possible. These objectives are not equivalent:

in the first case, the crawler is just concerned with how many pages are out-dated, while in the

second case, the crawler is concerned with how old the local copies of pages are.

Cho and Garcia-Molina (Cho and Garcia-Molina, 2003a) proved the surprising result that, in

terms of average freshness, it is better to re-visit pages with a uniform frequency than to re-visit

pages with a frequency proportional to their rate of change. The explanation for this result comes

from the fact that, when a page changes too often, the crawler will waste time by trying to re-crawl

it too fast and still will not be able to keep its copy of the page fresh.
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4.3 Politeness policy

The use of Web crawlers is useful for a number of tasks, but comes with a price for the general

community. Web crawlers use a lot of network resources and can potentially overload servers with

more requests than they can handle.

A partial solution to these problems is the robots exclusion protocol (Koster, 1996), that is a

standard for administrators to indicate which parts of their Web servers should not be accessed by

robots. As for the interval between accesses to the same Web site, they vary between 20 seconds and

3–4 minutes. It is worth noticing that even when being very polite, and taking all the safeguards

to avoid overloading Web servers, some complaints from Web server administrators are received.

Brin and Page note that: “... running a crawler which connects to more than half a million servers

(...) generates a fair amount of email and phone calls” (Brin and Page, 1998).

4.4 Web crawler architecture

A crawler must have a good crawling strategy, as noted in the previous sections, but it also needs

a highly optimized architecture. Building a high-performance crawling system presents a number

of challenges related to network efficiency and robustness (Shkapenyuk and Suel, 2002).

Web crawlers are a central part of search engines, and details on their algorithms and architec-

ture are kept as business secrets. When crawler designs are published, there is often an important

lack of detail that prevents other from reproducing the work. There are also emerging concerns

about “search engine spamming” that prevent major search engines from publishing their ranking

algorithms. The typical high-level architecture of Web crawlers is shown in Figure 7.

Some important general-purpose crawlers include the WebCrawler (Pinkerton, 1994), which was

used to build the first publicly-available full-text index of the Web, the Internet Archive Crawler
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Figure 7: Typical high-level architecture of a Web crawler.

(Burner, 1997), which is used to archive periodic snapshots of a large portion of the Web and the

Google Crawler (Brin and Page, 1998) which is described in some detail, but the reference is only

about an early version. In addition to these specific crawler architectures, there are general crawler

architectures described in (Chakrabarti, 2003; ?).

5 Web Characterization

5.1 Web size

During the last three years, about 10 million Web sites have appeared yearly, and in November 2004

over 56 million Web sites have been found by Netcraft’s Web server survey1. As for the number

of Web pages, the leading search engine today, Google (http://www.google.com, indexed over 8

billion (109) pages in November 2004.. This figure can be taken just as a lower bound. Even large

1
See http://news.netcraft.com/
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search engines cover only a portion of the publicly available content (Lawrence and Giles, 2000) it

is shown that no search engine indexed more than 16% of the Web on 1999.

Currently, most of the content on the Web cannot be found by following links, but is only

accessible through query forms. This is called the “Hidden Web” (Raghavan and Garcia-Molina,

2001) and it is believed to hold one or two orders of magnitude more information than the public

pages. And, although the amount of information on the Web is certainly finite, Web applications

can generate arbitrarily many pages and it can be argued that the number of pages on the Web is

potentially infinite (Baeza-Yates and Castillo, 2004).

5.2 Web dynamics

When studying document updates, the data is obtained by repeated access to a subset of pages.

In all cases, the results are only an estimation of the actual values because they are obtained by

polling for events (changes), not by the resource notifying events, so it is possible that between two

crawler accesses a Web page changes more than once.

If changes to a given page occur at independent intervals –if page change is a memory-less

process– then it can be modeled as a Poisson process (Brewington et al., 2000). The probability

that a search engine’s copy of a page is up-to-date at a certain time decreases exponentially if the

page is not re-visited. Under this model of page changes, the rate of change of a given page can be

estimated based on previous observations (Cho and Garcia-Molina, 2003b), especially if the Web

server provides the last modification date of the page every time it is visited.

However, it is worth noticing that most Web page changes exhibit certain periodicity –because

most of the updates occur during business hours in the relevant time zone for the studied sample–

so the estimators that do not account for this periodicity are more valid in the scales of weeks or
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months than on smaller scales.

The methodologies and goals for studies about Web page changes vary widely. Some researchers

focus on the lifespan of pages –the time is takes for a page to disappear from the Web– as they are

concerned with the availability of Web content. For instance, in the case of scholarly publications,

in 4 years about 50% of the links are no longer valid (Spinellis, 2003).

Other studies focus in Web page changes: in a large-scale study of 150 million pages during 10

weeks (Fetterly et al., 2003), 65% of the pages did not change at all, while 30% of the pages had

only minor changes and 5% changed substantially. It is also known than the .com domain is more

dynamic than .edu and .gov (Cho, 2000) and that highly linked pages change more frequently

(Douglis et al., 1997).

5.3 Link structure

The link structure on the Web emerges as the result of collective actions, and as such, it has

properties that diverge from a pure random network. “While entirely of human design, the emerging

network appears to have more in common with a cell or an ecological system than with a Swiss

watch.” (Barabási, 2001)

Scale-free networks, as opposed to random networks, are characterized by an uneven distribution

of links. These networks are characterized as networks in which the distribution of the number of

links Γ(p) to a page p follows a power law:

Pr(Γ(p) = k) ∝ k−θ

A scale-free network can be interpreted as a graph in which a few highly-linked nodes that act

as “hubs” keeping most of the nodes in the network together, as depicted in Figure 8.
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Figure 8: Examples of a random network and a scale-free network, with the major hubs highlighted

in the scale-free network. Each graph has the same number of nodes and links. Note that both

graphs were chosen to be connected and to look nice on the plane, so they are not entirely random.

On the Internet, the geographical and physical connectivity of nodes form a scale-free network,

as well as the network of links between Web pages and of e-mail exchanges. Outside the realm

of computer science, scale-free networks appear in several contexts, for inscante: the network

of acquaintances, friends and social popularity in human interactions, the graph of citations in

scientific publications and the networks of protein interaction in cellular metabolism.

There are certain models of the growth of scale-free networks. The preferential attachment

model (Barabási and Albert, 1999), is a “rich get richer” model in which each new Web page creates

link to existent Web pages with a probability distribution that is not uniform, but proportional

to the current in-degree of existent Web pages. This generates a power-law but the resulting

graph differs from the actual Web graph in other properties such as the presence of small, tightly

connected communities.

Another generative model is the “copy” model (Kumar et al., 2000), in which new nodes choose

an existent node at random and copy a fraction of the links of the existent node. This also generates
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a power law. These two models can be combined into a generative model that mixes preferential

attachment with a baseline probability of gaining a link (Pennock et al., 2002).

One of the characteristics of the Web that is more difficult to reproduce using generative models

is its macroscopic structure. The most complete study of this subject (Broder et al., 2000) focuses

on the connectivity of a subset of 200 million Web pages from the Altavista search engine.

The study starts by identifying in the Web graph a single large strongly connected component

–all of the pages in this component can reach one another along directed links. They call the larger

strongly connected component “MAIN”. Starting in MAIN, if we follow links forward we find OUT,

and if we follow links backwards we find IN. All of the Web pages with are part of the graph but do

not fit neither MAIN, IN, nor OUT are part of a fourth component called TENTACLES. Figure 9

shows all these components.

Figure 9: Macroscopic structure of the Web.

Components MAIN, IN, OUT and TENTACLES are roughly the same size, and as components

in IN cannot be reached starting from MAIN, it is clear that for Web crawling, a good set of starting

URLs is required. There is also a significant fraction of pages that can only be reached if the exact
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domain name is known, this is the ISLANDS part of the Web, and many Web sites start by being

isolated and later join one of the other components (Baeza-Yates and Poblete, 2004).

6 Research issues

There are plenty of research issues in Web search. They can be divided roughly into two classes:

data problems and user problems (?).

Among the data problems we have the volume, the fast change, the adversarial nature of the

Web (spamming of metadata, content, and links), the diversity of languages (e.g. cross-lingual

retrieval), diversity of content (ranging from information and e-commerce sites to blogs and other

new forms of Web publishing), web server cooperation schemes for search engines, multimedia

retrieval, to name a few.

On the user side, better query languages, user interfaces and result visualizations are needed

to cope with the information overload on the client side. The main open problem is to assess the

quality of the results. They are usually relevant, but we will never know if we have all the relevants

results, or if we have the best ones.
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