
Noname manuscript No.
(will be inserted by the editor)

Integrating Document and Data Retrieval Based on XML

Jan-Marco Bremer, Michael Gertz

University of California at Davis, Department of Computer Science, One Shields Avenue, Davis, CA 95616, U.S.A.
e-mail:bremer@computer.org , gertz@cs.ucdavis.edu

The date of receipt and acceptance will be inserted by the editor

Abstract For querying structured and semistructured data,
data retrieval and document retrieval are two valuable and
complementary techniques that have not been fully integrated
yet. In this paper, we introduce Integrated Information Re-
trieval (IIR), an XML-based retrieval approach that closes
this gap. We introduce the syntax and semantics of an ex-
tension of the XQuery language called XQuery/IR. The ex-
tended language realizes IIR and thereby allows users to for-
mulate new kinds of queries by nesting ranked document re-
trieval and precise data retrieval queries. Furthermore, we de-
tail index structures and efficient query processing approaches
for implementing XQuery/IR. Based on a new identification
scheme for nodes in node-labeled tree structures, the extended
index structures require only a fraction of the space of com-
parable index structures that only support data retrieval.

1 Introduction

Data retrieval and document retrieval are two complementary
techniques to query data sources. Data retrieval comprises ex-
act queries that allow a user to specify a precisely defined sub-
set of a data source. Document retrieval arranges elements of
a given document collection according to their relevance to a
set of query terms. Relevance is defined based on statistical
variances in term distributions throughout documents.

For a long time, users and application developers have
been looking for an integration of both retrieval approaches
[27], because it is awkward and expensive to maintain two
types of systems, each supporting only one of the retrieval ap-
proaches while potentially duplicating content. Furthermore,
both retrieval approaches are largely applied to text-rich data
sources. Therefore, it seems natural to integrate both of them
into a single framework for arbitrary textual data. However,
the integration of data and document retrieval for arbitrary
data sources is not straightforward.

Most of today’s document data has at least a partial struc-
ture (semi-structure). Therefore, data retrieval principles can

be easily applied to document data that is, for instance, repre-
sented through the Extensible Markup Language (XML [12]).
Query languages such as XPath [9] and XQuery [10] prove
this. Document retrieval, however, is not as easy to apply to
arbitrary semistructured data for the following reasons.

Relevance-based ranking employed by document retrieval
requires a collection of documents as input. But, in an arbi-
trary data source, no such single collection can be identified.
Moreover, in the case of structured data, the data is often de-
composed and mapped to, for instance, different relations in a
relational database to avoid redundancies and update anoma-
lies. Applying such a decomposition to marked-up text causes
logical units of text that are essential for document retrieval
to be split up. Each resulting piece of text might contribute
to multiple higher-level concepts, which can only be put to-
gether dynamically. Therefore, existing document retrieval
extensions that rely on a single static document view over,
e.g., relational data [5], have only limited use.

Another open question for an integration of data and doc-
ument retrieval is the composition of respective operations.
Document retrieval as a strictly Boolean keyword search [33]
is easy to integrate into data retrieval, yet lags the impor-
tant relevance-based ranking. Fuzzy text similarity operations
[22] employ some principles of document retrieval, but no
ranking.

Models for semistructured data like XML already employ
a principle that is important for ranked document retrieval:
order. Query languages like XPath [9] or XQuery [10] that
recognize this order can be extended by a document retrieval
operator to rearrange the order of data fragments based on
their relevance to a term sub-query [34,35,50]. However, all
existing extensions in this direction are operators that are only
applicable to the final sequence of data fragments selected by
a data retrieval query. The role of an operator for ranked doc-
ument retrievalwithin arbitrary sub-queries remains unclear.

In this paper, we introduce an operator that closes this
gap and leads to a generalIntegrated Information Retrieval
approach with more expressive power than data and docu-
ment retrieval alone. The approach relies on a single, tree-
structured data source as input. In Integrated Information Re-

2 Jan-Marco Bremer, Michael Gertz

trieval (IIR), document retrieval isembeddedinto data re-
trieval and provides for an arbitrary nesting of data and doc-
ument retrieval operations as illustrated in Fig. 1.

2 3 1

...

Rearranged DFS

DFS with 3 elements
2 31

Text used for ranking

...

1 2

3

Sub−document fragment
whose text is to be
used for ranking

Step 3

...

Sub−query
Data retrieval

Ranking

Further
data retrieval or
ranking sub−query

data source/view
Original XML
Step 1

Step 2

by tree pattern query

Document Fragement
Sequence (DFS) selected

Fig. 1 Integrated Information Retrieval: Document retrieval, based
on document fragment sequences (DFSs) instead of whole docu-
ments, and thereby embedded into data retrieval

From a tree-structured source, a sequence of document
fragments, which are sub-trees of the source, is selected by
means of a data retrieval (sub-)query in step 1. In step 2, based
on a document retrieval query in the form of a set of terms,
a relevance ranking weight is determined for each fragment
in the sequence, or only parts of each fragment (the boxes
in Fig. 1). In step 3, the intermediate sequence is then rear-
ranged according to these weights. Subsequent data retrieval
or document retrieval queries can be applied to the rearranged
sequence or only its topk elements.

Embedded document retrieval supports standard docu-
ment retrieval techniques on sources that do not provide for a
natural view as document collection. Furthermore, it provides
for any number of dynamically created document collection
views. As a key factor to enhanced query capabilities in IIR,
we introducedynamic ranking. Dynamic ranking demands
that only term statistics local to the current, intermediate doc-
ument fragment sequence be used to derive relevance weights
in an embedded document retrieval sub-query. The dynamic
ranking principle thus extends the statistical techniques un-
derlying document retrieval to arbitrary local contexts.

The principles of IIR can be applied to arbitrary semistruc-
tured data. As one example, we give the syntax and semantics
of XQuery/IR, which we introduced earlier [14]. XQuery/IR
extends XQuery by a single operator calledrank. We provide
syntax and semantics of therank operator and illustrate the
functionality of the extended query language by means of a
number of examples.

Compared to existing query approaches, there are some
obvious expenses associated with embedded document re-

trieval. As we will show in this paper, the term distribution
statistics required for a dynamic ranking of an intermedi-
ate fragment sequence can be incorporated into existing set-
based (XML) query processing approaches [3,46,71]. How-
ever, the additional word statistics significantly enlarge known
index structures, which commonly already far exceed the size
of the indexed source. To address this concern, we present a
new node identification scheme and improved index struc-
tures based on these new node identifiers. Beyond IIR, the
node identification and indexing scheme has widespread ap-
plications in comparable approaches to query processing for
semistructured data.

We show that our index structures can efficiently sup-
port embedded document retrieval and tree pattern queries,
which build the foundation for querying semistructured data.
The indexing overhead usually remains at less than half of
the size of a text-rich, real-world XML source, as our exper-
iments clearly demonstrate. This is about 50% below the in-
dexing overhead of the simplest, most storage-efficient com-
parable approach [71], and even more efficient compared to
approaches that utilize a database system to store the index
structures [65,71]. This is despite the fact that these imple-
mentations do not support document retrieval. Furthermore,
our node identification scheme can be used as alternative to
the interval node identification scheme [2], which most cur-
rent approaches to XML indexing rely on.

For a number of different XML sources, we provide de-
tailed structure and term statistics. These statistics can guide
future research on index structures for data and document re-
trieval on XML. In summary, this paper presents the follow-
ing main contributions:

1. A conceptually new approach to integrated data and
document retrieval in general, and relevance-based doc-
ument retrieval in particular. This approach is illustrated
by XQuery/IR, which realizes the new approach based on
XML and XQuery.

2. A new node identification schemethat has applications
in many existing indexing approaches.

3. Storage-efficient index structuresthat support tree pat-
tern queries and incorporate a mapping from logical node
identifiers to their physical counterparts.

The rest of the paper is organized as follows. In Sect. 2,
we discuss the data model underlying our approach and the
principles of data and document retrieval adopted in the rest
of this paper. The discussion includes examples of the XQuery
language. The extension of XQuery by arankoperator is pre-
sented in Sect. 3. In Sect. 4, we introduce a complete indexing
approach to support Integrated Information Retrieval. In par-
ticular, we introduce a new node identification scheme under-
lying the index structures. Query processing for integrated in-
formation retrieval is discussed in Sect. 5. In Sect. 6, we ana-
lyze various properties of the index structures, as well as their
effectiveness in supporting query processing. We present re-
lated work in Sect. 7 and conclude the paper in Sect. 8.

We assume that the reader is familiar with the very basic
concepts and notions underlying XML, XPath, and XQuery.

Integrating Document and Data Retrieval Based on XML 3

2 Foundations

In this section, we establish the foundations of our integrated
document and data retrieval approach based on XML. We in-
troduce a data model, a basic schema structure, and core ele-
ments of data and document retrieval models and approaches
that we assume in the rest of this paper.

2.1 Data Model

As customary, we model semistructured data, such as XML
data, as ordered, node-labeled trees. We assume just a single
tree structure. This is a more general model than relying on a
collection of documents. In common XML terminology, the
tree structure represents a single document, which consists of
a hierarchy of sub-trees representing document fragments.

In our model, we leave out some details about XML, such
as comments, processing instructions, references, and the dis-
tinction between elements and attributes. The model follows
the spirit of XML information set [26] and XQuery data model
[31]. It can also be thought of as an order-preserving variant
of earlier models such as the object exchange model (OEM)
[52][1, p. 19]. In the following, we first formally introduce
the data model. Then, we introduce additional terminology
used in the rest of the paper.

Assume a setL of node labels and a setT of text string
values including the empty stringε. Given a setX, letseq(X)
denote the set of all sequences that can be built over elements
from X. Let ∅ denote the empty sequence.

Definition 1 (Document Fragment and Document)
A document fragment (DF)is a node-labeled tree(V, root,
children, parent, label, text) with nodesV and root node
root ∈ V such that

• children : V → seq(V) is a function that represents
parent-child relationships,

• parent : V → V is the inverse function ofchildren, i.e.,
if v ∈ children(v′) thenparent(v) = v′,

• label : V → L is a function that assigns a name (label)
to each node, and

• text : V → T is a function that assigns text to nodes.

A documentis a document fragment.F denotes the set of all
document fragments (DFs) overL andT . 2

To emphasize the fact that in this paper a single document
represents a complete (semi)structured database, we also re-
fer to a document asdata sourceor justsource.

For a DFF ∈ F , we adopt the common notions of rooted
label path as sequence of labels starting with the root label
label(root), and analogously, rooted data path as sequence
of nodes with pairwise parent-child relationships inF .

Based on the definition of document fragment we can
now formally specify document fragment sequences:

Definition 2 (Document Fragment Sequence)
A document fragment sequenceS is a sequence of elements
ofF , i.e.,S ∈ seq(F).

Let |S| denote the number of elements inS. firstk(S),
k ∈ N ∪ {∞}, denotes the sub-sequence ofS consisting of
the firstk elements ofS or all elements, ifk > |S|. 2

2.2 Schema

As schema, we assume a slightly extended (tree-structured)
DataGuide [36], which we callExtended DataGuide(XDG).
Schema information stronger than a DataGuide, e.g., a DTD
or XML Schema for XML, may be available, but we do not
require such information.

Analogous to a DataGuide, an XDG enumerates all rooted
label paths in a data source. In addition, we assume that for
each node in the XDG the maximum number of its instances
under a single parent node in the source is known, for exam-
ple, the maximum number of/library/book/author-nodes un-
der any single parent node of type/library/book. In Sect. 4,
we discuss implications of this assumption and how this in-
formation can be obtained. The following specifies an XDG
more formally.

Definition 3 (Extended DataGuide)
Let D = (V, root, children, parent, label, text) be a data

source. TheExtended DataGuide (XDG)for D is a triple (F,
maxpos, nodeno), where

• F is a document representing the tree-structured Data-
Guide forD,

• nodeno is a function,nodeno : VF → M , whereVF

are the nodes inF , andM ⊆ N is the set ofnode num-
bers1, . . . , |VF |. nodeno assigns a unique node number
to each node inF in a pre-left order traversal, and

• maxpos : VF → N is the function that returns the max-
imum number of siblings of a certain node type (node in
F) under any related single parent node inD. 2

Rooted label paths in a documentD and nodes in the related
XDG G are equivalent. Furthermore, every node in a source
has a unique rooted label path. Therefore, we also informally
apply the functionsmaxpos() andnodeno() to nodes inD,
and use node numbers fromG in the place of rooted label
paths and vice versa.

2.3 Data Retrieval

In the following, we illustrate some basic concepts of XQuery
[10] as a representative of typical XML data retrieval lan-
guages and as the language we will extend in Sect. 3. Then,
we outline structural joins as the main technique to process
tree pattern queries, which build the core of XQuery queries.
The structural join approach is especially suitable for extend-
ing standard query processing by the document retrieval func-
tionality proposed in this paper.

2.3.1 XQuery. We illustrate some basic concepts of XQuery
as they are relevant in this paper by means of some examples.
For a more detailed discussion of XQuery, we refer the reader

4 Jan-Marco Bremer, Michael Gertz

to the XQuery working drafts [10,31]. We will extend some
of the following examples in Sect. 3.4 to illustrate a new doc-
ument retrieval operator for XQuery.

Example 1Select paragraphs of articles published on Feb.
15th, 2002 from anewsdocument database.

document(‘‘news.xml’’)
//article[./date=’’2002-02-15’’]//paragraph

The example consists of a single XPath [9] expression, which
alone is a valid XQuery query. The query extracts article DFs
at arbitrary depths (“//”) from a source namednews.xml, se-
lecting only those article nodes that have adate child node
with value2002-02-15. From the remaining article DFs, all
paragraph nodes at arbitrary depth are determined and ap-
pended to a single sequence of DFs in document order [9].

Example 2List all articles that appeared before 1996, includ-
ing and ordered by their first author and title.

FOR $a IN document(”bib.xml”)//article
WHERE $a/year < 1996
ORDER BY ($a/authors/author[1], $a/title DESCENDING)
RETURN
<result >
<fstAuth >{$a/authors/author[1]/text() }</fstAuth >
{$a/title }

</result >

Example 2 defines a single loop that iterates over article DFs
that are selected by an XPath expression. For allarticle nodes
with a year child node that has a value less than1996, the
article’s first author and title nodes are extracted. Complete
title DFs build another part of the result fragments. New tags
namedfstAuth and result are introduced for the selected au-
thor information (using a path expression on$a nodes) and
result sequence of DFs, respectively. The returned fragments
are ordered by ascending author names and descending titles.
Braces (“{}”) help to distinguish query parts that are to be
evaluated from verbatim text.

The return clause in XQuery allows toconstructdocu-
ment fragments that do not have a direct match in the queried
source. Constructed fragments can be put together from frag-
ments that are found in the source and from new nodes like
fstAuth or result as in the above example.

Example 3Convert a list of news articles classified under a
certain category to a list of categories with their related arti-
cles.

<news by category >
{FOR $c IN document(‘‘news.xml’’)//category

RETURN
<category >
<name>{$c/name/text() }</name>
{FOR $a IN document(‘‘news.xml’’)

//article[@cid = $c/@id]
RETURN
<title aid= {$a/@id}> {$a/title/text() } </title >

</category > }
</news by category >

Example 3 represents a join between category and article DFs
based on a news category identifier (cid). In XQuery, joins
have to be specified explicitly as nested loops. The node type
news by category introduces a new root node for the ele-
ments in the result.

The final Example 4 illustrates string search capabilities
as proposed for XQuery [20, 1.6]. The example is very similar
to Example 1, extending the earlier example by a boolean
search for the string “New York”.

Example 4Select articles with a paragraph that contains the
string “new york”.

document(‘‘news.xml’’)
//article//paragraph[contains(./text(), ‘‘new york’’)]

All four examples above areexactqueries. They select
exactly those document fragments from a source that exhibit
a specified path or tree pattern, or satisfy a predicate. The last
example demonstrates XQuery’s capabilities for exact key-
word search. XQuery does not support weighted keyword
search as employed by document retrieval. We will introduce
a respective extension of XQuery in Sect. 3.

2.3.2 Query processing through structural joins.At the core
of XML query languages like XQuery are path and tree pat-
tern queries. For instance, the queriesLocation/Books//Title
and Location[./Id/text() = “Zurich”]/Books//Title are examples
of a path and a tree pattern, as Fig. 2 demonstrates. Edges in

Title

Location

IdBooks

"Zurich"

Tree Pattern

ancestor−
descendant

parent−
child

Title

selection
node

Location

Books

Path Pattern

Fig. 2 A path and a tree pattern query with matches in the form of
book titles in the data source shown at the center of Fig. 4

such patterns represent parent-child and ancestor-descendant
relationships. Node labels or text values under certain nodes
further constrain the patterns. A distinguished node calledse-
lection nodedetermines the root of fragments to be returned
as query result.

One of the most common approaches to process path and
tree pattern queries arestructural joins[3,46,71]. Structural
joins (SJs) are based on index structures that consist of lists
of logical identifiers for nodes in a source. Each list is related
to a certain node predicate, i.e., a common node label or la-
bel path, or a word occurrence. Node identifiers used in SJ
approaches allow a query engine to determine parent-child
and ancestor-descendant relationships between nodes. This
allows for reassembling instances of the full pattern as they
occur in a source by joining node id lists [3].

For example, to assemble theId–”Zurich” sub-pattern from
Fig. 2, the node id lists corresponding to labelId and term
“Zurich” are accessed. Node ids from these lists are matched

Integrating Document and Data Retrieval Based on XML 5

to find pairs that have a parent-child relationship and thus,
resemble the pattern. Keeping both lists in document order
allows for executing this kind of join operation in at most
linear time with respect to the number of matching pairs of
node ids [3].

The most significant query capabilities other than tree
pattern queries in a language such as XQuery are construction
clauses. Structural joins do not support such clauses directly.
However, the same logical node identifiers as described above
can serve as the basis for an extended SJ approach that allows
for constructing new DFs and keeping track of the origin of
parts of DFs constructed in an intermediate query step [28].

Therefore, for discussing the implementation of the ap-
proach introduced in this paper, we assume path and tree pat-
tern queries as underlying query model for data retrieval. We
rely on a SJ approach, because index structures for SJs are
very similar to inverted file index structures in document re-
trieval, which is discussed next. SJ index structures are es-
pecially suitable for an extension of XML data retrieval by
embedded document retrieval as we will show in Sect. 4.

2.4 Document Retrieval

Document retrieval is concerned with ordering documents
from a usually flat collection of documents byrelevanceto a
simple query of typically only a few terms [8,55,59]. Doc-
ument retrieval is also known as information retrieval, al-
though the result of a document retrieval query arepointersto
relevant documents rather than information, i.e., meaningful,
user-interpreted data [41].In this paper, we use the term (in-
tegrated)information retrievalexclusively to denote our re-
trieval approach that integrates document and data retrieval.

In document retrieval, relevance is based on term distri-
bution statistics. A term is a word, found within a document’s
text, or just the stem of a word. Stemming words and thus,
mapping multiple different words to a single stem has proven
useful to compensate for semantically equivalent but syntac-
tically different word forms.

To determine relevance, a numerical weight is assigned
to each term-document pair in a document collection. The
weight represents the term’s significance within the document
content. The relevance-based ordering of documents with re-
spect to a query, also calledranking, is obtained by sum-
ming up query term weights for every document and deter-
mining the highest sum. Because documents are represented
by terms and their multiple occurrences within a single docu-
ment, the standard model underlying most document retrieval
approaches is called bag-of-words model.

A standard approach for weighting terms is the term fre-
quency-inverse document frequency (tf-idf) approach [59].
Tf-idf assigns higher weights to terms with high in-document
and low overall document frequencies, i.e., few documents
that contain the term. Other schemes that are not based on tf-
idf still rely on the same term distribution statistics and thus,
show similar relative weights. Retrievaleffectivenessin doc-
ument retrieval commonly refers to the quality of the ranking

obtained through different weighting formulas. Recent fla-
vors of tf-idf and other document retrieval approaches are dis-
cussed, for examples, by Baeza-Yates and Ribeiro-Neto [8].

Term distributions and in particular values such as the
inverse document frequency may vary widely throughout a
document collection. Hence, the significance of a term within
a document and thus its relevance highly depend on the con-
text. Contrary to our approach, in most existing retrieval ap-
proaches, the context is always the complete document col-
lection. For example, the idf is a static value determined once
when a document collection is indexed.

Indexingis the process of parsing a document collection,
assigning an identifier to each document and keeping track
of the number of times each term is observed within a doc-
ument (tf or “term counter”). Other parameters of statistical
value like the document length or number of unique words
per document are extracted in this step as well.

The standard index format for storing term frequencies is
the inverted fileformat [68]. An inverted file is an indexed
sequential file that maps term identifiers to lists of pairs of
document identifiers and counters. These lists are also called
postingslists. Term-independent information like document
lengths is much less extensive and can easily be stored in a
sequential file of fixed-size records.

In document retrieval, the relatively simple inverted file
access structure has proven superior to more complex struc-
tures like B-trees for indexing, index storage, and query pro-
cessing, in particular for large amounts of data [68, p. 109] or
even data of Web scale [16].

3 XQuery/IR and Embedded Document Retrieval

In this section, we introduce the basic elements of XQuery/IR,
which extends XQuery [10] by a document retrieval operator
with well-defined syntax and semantics. XQuery/IR provides
an interface and framework for integrated document and data
retrieval queries. The rest of this paper will be concerned with
query processing strategies and supporting index structures
that efficiently implement the core components of this frame-
work.

3.1 Concepts

In traditional document retrieval, a query result is a relevance-
based total order of documents. Documents are the sole units
within a collection. The result of a query is directly presented
to the user. These facts raise two major questions for integrat-
ing document retrieval into an XML query language:

1. What is a suitable equivalent for document and document
collection within an arbitrary XML source?

2. What is the role of ranked document retrievalwithin a
query as opposed to its usual application as final query
operation?

6 Jan-Marco Bremer, Michael Gertz

XML queries extract document fragments (DFs) from a
source. DFs are the only available data units suitable to re-
place the notion of a document from standard document re-
trieval. In XQuery in particular, a query result is asequence
of DFs [31]. Hence, it is desirable to have an embedded docu-
ment retrieval approach thatmodifies the order of DFs within
a sequence of DFs. This can be implemented through a single
operator in the same way as the order operator works within
XQuery (s. Example 2 in Sect. 2.3.1).

In the resulting embedded document retrieval approach,
document fragment sequences (DFSs) replace the notion of
document collection. The order established by the new oper-
ator can be transparent to subsequent queries that do not rely
on any order. Yet, the order can be exploited by other sub-
queries or shown as end result to the user. Furthermore, an
embedded document retrieval provides for query capabilities
that cannot be realized by either document or data retrieval
alone: retrieval based on a local context of interest.

Data retrieval applied to an intermediate, ranked result
allows to derive information from a ranked DFS, for exam-
ple, aggregated information. Document retrieval applied to
an intermediate DFS provides for localized rankings,if term
statistics that are used for the ranking are specific to the in-
put DFS. Relying on the same term statistics that standard
document retrieval uses, but in anarbitrary local context is
an important new concept, which we calldynamic ranking
principle. The dynamic ranking principle generalizes earlier
approaches to localized ranking such as passage retrieval [45,
58] and other approaches whose local context is still limited
to a per-document basis [34,40,50,64,66].

On the one side, the dynamic ranking principle is just a re-
quirement that follows from our assumption to have a single
source (view). In such a source, there is no notion of docu-
ment collection from which a single, static set of term statis-
tics can be derived. On the other side, dynamic ranking pro-
vides for a new kind of document retrieval queries that allow
to detectlocally relevantinformation.

As a simple example, the query term “shotgun” in the
context of biological data will likely lead to information pieces
about the so-called shotgun gene sequencing approach. In a
more general context, e.g., the Web, “shotgun” will likely be
considered more related to fire arms instead of biology. In
general, term statistics vary widely throughout a source. The
notion of relevance is closely tied to these statistics. There-
fore, local context for document retrieval is a valuable tool to
gain new insights into text-rich information sources. More-
over, document retrieval based on local context subsumes stan-
dard document retrieval.

Notice that the benefit of theIntegrated Information Re-
trieval (IIR) approach is not an improvement of local retrieval
effectiveness (s. Sect. 2.4)–any existing weighting function
can be plugged into our approach. It is rather the enabling of
a weighted ranking in arbitrary contexts that provides the true
power of dynamically ranked document fragment sequences.

Furthermore, localized ranking eliminates the need to pre-
define a static document collection, potentially having to ma-
terialize different document collection views for the same

source. Therefore, IIR can also eliminate the need for special
document management systems added to a general database
system.

3.2 Requirements

The above considerations lead us to the following require-
ments for integrating a document retrieval operator into an
XML query language, in particular XQuery.

Total order . The operator should order an arbitrary sequence
of DFs based on relevance.

Local context. The operator should allow for the elimination
of less relevant elements in a ranked DFS.

Closure. The operator should be closed within XQuery and
therefore be applicable to arbitrary intermediate query re-
sults.

Transparency. The operator should not affect queries in a
way other than changing the order within or eliminating
elements from a DFS.

Exchangeability. The relevance weighting algorithm under-
lying the operator should be exchangeable. A user should
have means to influence the weighting algorithm for a
query.

Furthermore, we impose the following additional requirement
as it increases the potential utility of an embedded ranking:

Visibility . The operator should make ranking weights ex-
plicit by showing them as part of a ranked result, but with-
out causing side-effects to the embedding query.

In the following, we introduce the syntax and semantics
of an operator that meets the above requirements.

3.3 Syntax

XQuery/IR is built on a single new operator calledrank. The
operator is used within aRankBy clause, which is an exten-
sion of the XQuery FLWOR expression [10, Sect. 3.8] in the
following way:
FLWORExpr ::= (ForClause | LetClause)+ WhereClause?

(OrderByClause | RankByClause)?
“return” ExprSingle

The syntax and semantics ofRankByClause is very sim-
ilar to OrderByClause. The latter is defined in the XQuery
draft [10, Sect. 3.8] as:
OrderByClause ::= (“order” “by” | “stable” “order” “by”)

OrderSpecList
OrderSpecList ::= OrderSpec (“,” OrderSpec)*
OrderSpec ::= ExprSingle OrderModifier
OrderModifier ::= (“ascending” | “descending”)? . . .

A list of order specifications (OrderSpec) within the Or-
derBy clause determines the DFs to be sorted in ascending or
descending order. The sorting algorithm can be required to
bestable. Example 2 in Sect. 2.3.1 showed an example of an
OrderBy clause.

We define aRankBy clause that extends FLWOR expres-
sions as follows (we use the same syntactical EBNF repre-
sentation as the XQuery specification [10]).

Integrating Document and Data Retrieval Based on XML 7

Definition 4 (RankBy clause)

RankByClause ::= (“rank” “by” | “stable” “rank” “by”)
QuerySpecList
(“based” “on” TargetSpecList)?
(“limit” n (“%”)?)?
(“ascending” | “descending”)?
(“using” MethodFunctCall)?

QuerySpecList ::= ExprSingle (”,” QuerySpecList)?
TargetSpecList ::= PathExpr (”,” TargetSpecList)?

QuerySpecList is a list of strings (constant DFs) or ex-
pressions that return DFs interpreted as strings.TargetSpec-
List is a list of path expressions that determine sub-DFs of the
input DFS. The text of these sub-DFs is then used exclusively
for ranking the elements of the DFS.MethodFunctCall refers
to an XQuery function. 2

Different from OrderBy, ascending and descending is ap-
plied to the wholeQuerySpecList. QuerySpecList represents
a single document retrieval-style query rather than a list of
order criteria. In addition, there are<based on>, <limit>,
and<using> clauses. The optionalMethodFunctCall allows
for choosing a certain, internal weighting algorithm. The call
can have the style of aFunctionCall in the XQuery working
draft [10, Sect. 3.1.5], but would refer to an internal func-
tion whose implementation is hidden. Ideally, an API would
allow to plug different weighting algorithms into a system
while letting the user choose one by name.

The basic semantics of XQuery/IR is as follows. A rank-
ing query given in theQuerySpecList is used to determine a
ranking weight for every DF in the input DFS. The weight
is computed by an algorithm that may be chosen at runtime
by means of the<using> clause. A set of path expressions
within the <based on> clause allows for limiting the text
on which the weight is based to only parts of input DFs (the
boxes in Fig. 1). The<limit> clause eliminates trailing ele-
ments from the ranked result.

In the following, we illustrate the semantics of XQuery/IR
by means of some examples. In Sect. 3.5, we give a signature
and formal semantics of the weighting algorithm underlying
XQuery/IR and then formally define therank operator.

3.4 Examples

As indicated above, XQuery/IR queries are very similar to
XQuery queries that use anOrderBy clause. The following
example query, which is similar to Example 4, illustrates this
aspect. At the same time, the query shows main differences
to Boolean text searches as presented by Example 4.

Example 5Retrieve a maximum of 100 paragraphs with rel-
evant information about New York from a news data source:

FOR $d IN document(‘‘news.xml’’)//article//paragraph
RANK BY ‘‘new’’, ‘‘york’’ LIMIT 100
RETURN $d

The result of Example 5 might look as follows:

<paragraph weight=”0.96” >
New York fire fighters. . .

</paragraph >
<paragraph weight=”0.81” >

Wall Street today closed at a record. . .
</paragraph >
<paragraph weight=”0.79” >

. . .

The XML attribute “weight” is an explicit representation of
the computed relevance weight.

Example 6Select articles that appeared before 1935, and sort
them by their abstracts’ relevance to Albert Einstein:

FOR $a IN document(”bib.xml”)//article
WHERE $a/year < 1935
RANK BY ‘‘Albert’’, ‘‘Einstein’’ BASED ON $a/abstract
RETURN
<early paper >
<firstAuth >{$a/authors/author[1]/text() }</firstAuth >
{$a/title }
{$a/abstract }

</early paper >

The relevance weight in Example 6 is based only on parts
of the articles, namely the contents of abstracts. The simple
sub-query in theRANK BY clause determines these parts. In
a more advanced query, the terms “Albert” and “Einstein”
could be replaced by a sub-query as well. This sub-query
could select the text to be used as query from another doc-
ument as shown in the next example.

Example 7Use selected text, which describes Albert Einstein’s
accomplishments, from another source(authors.xml), to rank
the articles from Example 6:

FOR $a IN document(”bib.xml”)//article
WHERE $a/year < 1935
RANK BY document(‘‘authors.xml’’)

//author[./name=’’Einstein’’]/accomplishments
RETURN

<early paper >
. . .

In the next example, we assume a set of news articles that
belong to a certain news category.

Example 8Rank a given set of articles by their relevance to
the category assigned to each article, utilizing the keywords
given for each category. List only the ten most relevant arti-
cles for each category:

<news by category >
{FOR $c IN document(‘‘news.xml’’)//category

RETURN
<category >
{$c/name }
{FOR $a IN document(‘‘news.xml’’)

//article[@cid = $c/@id]
RANK BY $c/keywords LIMIT 10
RETURN
<title aid= {$a/@id}> {$a/title/text() } </title >

</category > }
</news by category >

8 Jan-Marco Bremer, Michael Gertz

In this example, the ranking is executed in an inner loop for
each category. As in Example 7, the input toRANK BY is
dynamically computed through a path query relative to the
context node$c.

The final example assumes a source namedbiology.xml
containing a set of publications in the general area of biol-
ogy. A scientist is searching for the top experts in the field of
shotgun sequencing, which is a technique utilized in genome
sequence assembly. While some publications might be clas-
sified under related keywords, in general, these keywords are
insufficient to precisely identify respective experts directly.
Because the search area is quite specific, a manual, time-
consuming search is hard to avoid with existing query ap-
proaches.

An automated approach to tackle this problem is to select
all publications and rank them by relevance to a suitable set
of biological terms. Then, by summing up the weights on a
per-author basis, the authors with the highest number of most
relevant publications can be determined. These authors are
good candidates for being experts in the field of genome se-
quencing. This is what the following query specifies.

Example 9Determine experts in the field of genome sequenc-
ing as discussed above:

LET $input :=
FOR $p IN document(‘‘biology.xml”)//publication
RANK BY ‘‘shotgun”, ‘‘genome”, ‘‘gene”, ‘‘sequencing”
RETURN $p

RETURN
<shotgunseq experts >

FOR $author IN distinct-values(
document(‘‘biology.xml”)//publication//author)

LET $pub := $input//publication[.//author = $author]
WHERE sum($pub/@weight) >= 4.0
ORDER BY $author
RETURN

<expert >
{$author/name }

<expdegree >{sum($pub/@weight) }</expdegree >
</expert >

</shotgunseq experts >

The query also serves as an example of the usefulness of an
explicitly represented weight attribute. In the example, the
weight attribute is used to eliminate authors with low over-
all relevance to the search field. Furthermore, the sum of the
weight values serves as indicator for the overall degree of ex-
pertise (expdegree). To keep the query simple, experts in the
query result are not ordered by their overall degree of exper-
tise, a step that could be added easily.

3.5 Semantics

Assume a setseq(F) of document fragment sequences (DFSs)
related to a given source as introduced in Sect. 2.1. Letweight
be a special name in the label setL underlyingF . Queries in
the XQuery/IR extension can be simple terms or, as Exam-
ple 7 shows, DFSs that are selected from the setseq(F) by

means of a sub-query. Therefore, we model queries as DFSs,
whose text can be interpreted as a set of simple query terms.
In particular, typical term queries like “XML, retrieval” can
be considered as a sequence of document fragments (DFs),
each having only a single text string node.

Definition 5 (Weighting algorithm)
Assume a set of queriesQ = seq(F). LetQ include the DFs
consisting of only a string fromT and in particular single
terms. LetW be the set of operators

W : seq(F)×Q → seq(F),
W (S, q) = S′

such thatS′ is equal toS except that each DF inS′ has an
additional node labeledweightat the root. The weight node
has a single number value representing the relative relevance
weight of the respective DF withinS. Then an operatorW ∈
W is called aweighting algorithm. 2

While the DFS that is used as query can be interpreted as
a set of query terms, Def. 5 does not impose this limitation.
The interpretation of queries and limitations to allowed query
types depend only on the weighting algorithmW.

Within a DFS to which a weighting algorithm is applied, a
standard bag-of-words or any other document retrieval model
can be assumed. Any ranking scheme, e.g., one of the nu-
merous flavors of tf-idf, can be applied as long as respective
parameters can be provided. In the weighting algorithm, the
weightnode added to DFs is an explicit representation of the
computed ranking weight. In XML, the most suitable imple-
mentation of the additional weight node is as an attribute with
a reserved name to avoid side effects.

In the following, we define the ranking operator for XQue-
ry/IR in terms of a weighting algorithmW and theorder op-
erator underlying theOrderBy clause in XQuery as discussed
earlier.

Definition 6 (Rank operator)
Therank operatoris an operator:

rank : seq(F)× P ×N×Q×W −→ seq(F)
rank(S, π, k, q,W) = firstk(orderweight(W (π(S), q))),

whereπ ∈ P is a path expression andN is the set of natu-
ral numbers.orderweight refers to the sorting of DFs within
S based on theweight attribute. Firstk was described in
Def. 2; it eliminates all but the firstk elements fromS. 2

We have already illustrated the rank operator in Fig. 1.Rank
takes a DFSS as input, applies the path expressionπ to each
of its elements, and collects the resulting DFsfor each DFS
element. When no<based on> expression is used in a query,
π is empty. In that case, all text is supplied to the weighting
algorithmW and used for rearranging the DFs.

After sorting the sequence using the computed weight,
trailing elements of the resulting DFS are eliminated through
firstk, specified in a<limit> clause. This kind of eliminat-
ing elements based on position can be improved when the
weighting algorithm supplies meaningful relative weights. In

Integrating Document and Data Retrieval Based on XML 9

this case, keeping only the first DFS elements that amount to
a certain percentage of the total weight of all elements would
provide a better means to select only the most relevant DFs.
Such an advanced cut-off requiring a special algorithm to im-
plement is another reason why we do not rely on XQuery’s
existing order by construct for re-arranging the ranked frag-
ment sequence as proposed in the recent XQuery and XPath
full-text requirements [18].

In this section, we have defined a small extension of the
XQuery language that enables an approach to integrated data
and document retrieval. The rest of this paper will be con-
cerned with an efficient implementation of the above frame-
work, in particular the processing of XQuery queries into
which the ranking is embedded.

4 Supporting Index Structures

In this section, we discuss how an Integrated Information Re-
trieval (IIR) language like XQuery/IR can be efficiently sup-
ported by suitable index structures. We focus on the most
common kinds of path and tree pattern queries and the rank-
ing of their intermediate results through embedded document
retrieval.

4.1 Overview

We rely on a modified structural join approach (s. Sect. 2.3.2)
to process the path and tree pattern queries discussed in Sect.
4.2. We modify and extend the basic structural join approach
in the following way:

1. We use a new logical node identification scheme that en-
codes complete rooted data paths. The encoding is context-
independent, space efficient, and fast to decode. No de-
coding is required to determine parent-child and ancestor-
descendant relationships between node ids (Sect. 4.3).

2. In all index structures, we group node ids by common,
rooted label path. In combination with an Extended Data-
Guide, this provides for efficient index accesses and uti-
lization of storage space (Sect. 4.4).

3. The main path index structure employs a sparse storage
of node ids that has no negative impact on reconstructing
index lists, but further reduces the index size.

4. We extend the standard set of index structures for struc-
tural joins by a physical address index. This index maps
logical node ids to their physical addresses at no overhead
beyond storing just the addresses.

The index modifications and extensions, and the new node
id scheme in particular are necessary to avoid excessive stor-
age overhead. Existing node identification and indexing ap-
proaches mainly ignore storage efficiency [3,46,65,70,71].
This is not desirable in our approach, because the additional
term statistics that are needed to support embedded document
retrieval would make the index structures unreasonably large
as discussed in Sect. 4.5.

Figure 3 gives an overview of the index structures used in
our approach. An Extended DataGuide provides access to the
structural join approach’s two core index structures, which
store groups of node ids related to a certain term or path. In
conjunction with these index structures, three further indexes
provide (a) the term statistics that are required to rank arbi-
trary document fragment sequences (DFSs) and (b) physical
addresses related to node ids. These physical addresses point
to document fragments within the indexed XML source. For
processing queries, the index structures are accessed in the
sequence indicated in the figure by arrows. Query processing
follows the procedure described in Sect. 2.3.2.

Counters
Term

Extended

Paths

Terms

Counters
Document

Physical
Addresses

XML
Source

Term Distributions for
Document Retrieval

Fragments
Document

DataGuide

Fig. 3 Overview of index structures.

Section 4.6 presents the complete index framework as in-
troduced in this section, and it also provides a more detailed
version of Fig. 3.

4.2 Queries

We aim at supporting path and tree pattern queries that con-
tain conditions on parent-child, ancestor-descendant, and pre-
ceding and following sibling relationships. In XPath termi-
nology [9], these relate to theself, parent, child, ancestor,
descendant, preceding-sibling, andfollowing-siblingaxes.

Moreover, notably different from most related work in the
structural join arena, we chose to support conditions with rel-
ative sibling positions rather than absolute node positions in
document order [31]. We did so, because typical queries like
the XPath query//book/author[2] are only concerned with the
sibling order among nodes of the same type. The example
query selects the second author, if present, of all books from
a source. Because the query is concerned only with the or-
der amongauthor siblings, the absolute position of anauthor
node among all children of abook node within a source is
neither relevant for this query, nor is it sufficient to efficiently
evaluate the query. However, absolute node positions are the
only query options supported by existing structural join ap-
proaches [3,21,46,71].

4.3 µPID Node Identifiers

At the heart of our approach is a new node identification
scheme calledµPID scheme.µPIDs are instances ofminimal

10 Jan-Marco Bremer, Michael Gertz

Bk[4]11

Books

(Max. of) 4 books
=> 2 bits

(Max. of) 3 authors
=> 2 bits

Label sufficient to
distinguish nodes

Loc[5]100

AA

LocLoc

Id Id Id

"Berlin" "Boston" "Delhi"

...
Loc[ation]

DigitalLibrary

LocLocLoc

"Zurich"
Bk Bk Bk

......
Bk

A[uthor]
... ...

Books

A

Journals

Title

Id
...

Position number

A[3]10

2

1001110 = 78

DigitalLib.

=> log 6 = 3 bits
6 locations

*Fig. 4 µPID encoding of rooted data path/DigitalLibrary/Loc[5]/Books/Bk[4]/A[3] in a digital library example source: The numbers required
to distinguish between sibling nodes (right side) are bit-accurately encoded and appended to ak-bit integer (left side). k is constant for each
rooted label path. Position number and rooted label path uniquely identify a node in the source.

path identifiers. In the following, we first introduce minimal
path identifiers and then discussµPIDs.

4.3.1 Minimal path identifiers. Consider the example source
at the center of Fig. 4, ignoring the rest of the figure for now.
The black nodes in the figure mark the rooted data pathp =
/DigitalLibrary/Loc[5]/Books/Bk[4]/A[3], which is an instance
of the label pathl = /DigitalLibrary/Loc/Books/Bk/A. The in-
formation inp is sufficient to uniquely identify a particular
book author.

Assume the label pathl is given. What furtherminimum
amount of information is necessary to fully representp and
thus, uniquely identify the author nodep specifies?–Starting
from the root, thesibling positions5, 4, and 3 for theLoc,
Bk, andA nodes are sufficient to determine which particu-
lar A node is specified byp. However, these sibling positions
are only required for nodes for which multiple siblings of the
same label path exist anywhere in the source. No sibling po-
sition is ever required for the root node of a source (DigitalLi-
brary in the example) or for aBooks node (assuming noLoc
node has more than a singleBooks child). The steps within
any rooted data path that require a sibling position can be
determined from the XDG. This is, because the XDG pro-
vides the maximum sibling positions for every rooted label
path in a source (maxpos, s. Def. 3). Hence, the above rooted
data pathp can be minimally represented as pair (/DigitalLi-
brary/Loc/Books/Bk/A, <5,4,3>).

Formally, a minimal path identifier is defined as follows:

Definition 7 (Minimal path identifier)
Let S be a data source andG the Extended DataGuide for
S. A minimal path identifier(minPID) for S is a pair (p, s),
wherep is a rooted label path inG ands is a sequence of nat-
ural numbers. The numbers ins are sibling positions for all
nodespi alongp, for whichmaxpos(pi) > 1. The numbers
are ordered by their distance from the root node.

Relationships between two nodesa and b in a data source
can easily be determined based on their minPIDs. If no label
path of one of the minPIDs is a prefix of the other minPID’s
label path, then the nodes cannot have an ancestor-descendant
or parent-child relationship. Otherwise, the minPIDs’ sibling
positions determine which, if any, of the two relationships the
nodes have.

In the following, we present an efficiently encoded in-
stance of minPIDs calledµPIDs (“micro-Path IDs”).

4.3.2µPID scheme. µPID node identifiers consist of a pair
of integers. The first integer, callednode number, is an identi-
fier for a rooted label path as found in the XDG. According to
Def. 3, we assume that all nodes in the XDG have such a se-
quential number assigned, following a pre-left order traversal.
The second integer ofµPID node identifiers is calledposition
numberand contains the encoded sibling position sequence.

Figure 4 shows the construction of the position number
for the data pathp = /DigitalLibrary/Loc[5]/Books/Bk[4]/A[3]
used above. The position number bit-accurately encodes sib-
ling positions for theLoc[ation], Bk, andA[uthor] nodes. The
number of bits required at each step along a data path is de-
termined by the maximum number of related sibling nodes
anywhere in the source (sibling fanout). In Fig. 4, assuming
everyBooks node in the source has at most fourBk children,
dlog2(4)e = 2 bits are sufficient to encodeBk sibling posi-
tions.

The sibling fanout information is a part of the XDG in
the form of themaxpos function and can be obtained as fol-
lows. For a source that already exists at the time the XDG is
constructed, the fanout can be derived from the source. Other-
wise, the fanout can be derived from estimates or schema in-
formation that might exist at least for parts of a source. Some
space in the sibling position range can be left to provide for
future updates and insertions in a source, or for constructing a
data source from scratch. For updates and insertions, reserv-
ing such space in node identifiers is also state of the art in
other node identification schemes [46].

Furthermore, our empirical studies on real-world data sour-
ces show that most node types vary only little in their number
of siblings. Therefore, our encoding of node ids is quite effec-
tive as our experimental evaluation in Sect. 6 shows, although
in the worst-case, the length ofµPIDs can grow linearly with
the number of nodes in a source.

Worst-caseµPID length.As a worst case scenario, a
source structure as show on the left side of Fig. 5 re-
sults in the longest overallµPID length for a given
total number of nodesn.
The source has a total depth ofd with just three nodes
at each level and thus, a total number ofn = 3d +

Integrating Document and Data Retrieval Based on XML 11

2 Bits

2 Bits

2 Bits

...

A AA

A

AA A

Position bits

Depth

d
0 Bits

0 Bits

0 Bits

Fig. 5 Worst-case source forµPIDs (left side): For a source with
n = 3d + 1 nodes,µPIDs can reach a maximum bit length of2d +
log(d+1) = O(n), the node number accounting for onlylog(d+1)
bits. A completely degenerate, linear tree (right side) requires no bits
for node positions, thus giving an optimalµPID length oflog(n).

1 nodes. With all nodes labeled with the same label
A it takes onlylog(d + 1) bits to encode the node
numbers that identify the distinct label pathsA, A.A,
A.A.A etc. Encoding the position numbers, however,
requires twoposition bitsat each depth level in order
to distinguish between the three sibling nodes with
identical labelA. This leads to a totalµPID length of
log(d + 1) + 2d = O(n) bits. That this is really the
worstµPID length that any source withn nodes can
have follows mainly from the fact that the source in
Fig. 5 is a deep source, where a maximum number of
0.5 out of 2 bits (25%) is wasted at each depth step. It
is easy to see that with more or less than three nodes at
each level therelativewaste is smaller than 25% (e.g.,
0.5 out of 3 bits for respective fiveA-nodes results in
only 17% waste).

However, a source structure that causesµPIDs to grow
linearly is unlikely to occur in real data as our experiments in
Sect. 6 confirm. Moreover, in a partially degenerated source,
µPID length is only affected locally and thus, only a few
nodes exhibit this property. Therefore, although in the the-
oretical worst case the length of node ids could grow linearly
with the number of nodes in a source while growing only log-
arithmically in earlier approaches [44], in practice, the length
of node ids in our approach shows similar bounds as in these
earlier approaches. However,µPIDs directly encode more in-
formation in each node id than in previous approaches. Over-
all, this makesµPIDs likely more suitable for efficient query
processing than node id schemes that have guaranteed length
limits, but much weaker support for query processing, an as-
pect we will detail in Sect. 5.

Position numbers are constructed by appending bits re-
lated to single sibling numbers within a rooted data path.
Therefore, all position numbers related to a certain node num-
ber, i.e., rooted label path, have the same bit length. Hence,
they can be interpreted ask-bit integersas shown on the left
side of Fig. 4. This fact is a main contribution to the efficiency
of theµPID scheme. The bit-length of position numbers re-
lated to a certain node number in an XDG can easily be kept
with each XDG node. In the following, we assume a function
numlen() that maps each XDG node to the length (possibly
zero) of its related position numbers.

A node’sµPID allows for directly deriving the node’s par-
ent node, ancestors, and preceding siblings. Other node rela-
tionships need to be derived as in related approaches through
structural joins. Compared to minPIDs,µPIDs make it even
easier to check for node relationships. Parent-child and an-
cestor-descendant relationships can be determined through
comparing node numbers and matching prefixes of position
numbers. The time complexity of the comparison is reduced
to O(1) from O(k) for minPIDs, where k is the number of
nodes in the XDG.

The following propositions give a formal specification
of core node relationships and the node order that plays a
crucial role in constructing index structures and evaluating
queries with a position condition (s. Sect. 4.2). For this, let
a = (n1, N1) andb = (n2, N2) beµPIDs, where theni are
node numbers in an XDGG and theNi are position num-
bers. Furthermore, letprefixk, prefix : N2 → N, be the
function that returns thek most significant bits of an integer.

Proposition 1 (Node relationships)
Nodeb is a child of nodea, if and only if

n2 ∈ children(n1) in G ∧N1 = prefixnumlen(n1)(N2)

Replacingchildrenwith descendantsdefines descendant re-
lationships analogously. 2

Proposition 2 (Node order)
Letn0 be the least common ancestor node ofn1 andn2, and
`0 = numlen(n0). Then, the node order≤ onµPIDs can be
given as:

a ≤ b ⇔ (`0 = 0 ∧ n1 ≤ n2) ∨
(`0 > 0 ∧ (prefix`0(N1) < prefix`0(N2) ∨
prefix`0(N1) = prefix`0(N2) ∧ n1 ≤ n2)) 2

Clearly, given twoµPIDs, the relationship between respective
nodes and their relative position within a source can be deter-
mined in constant time. For the node relationships, this re-
quires an XDG that allows parent-child and ancestor-descen-
dant relationships to be determined in O(1), which can be
accomplished by using interval node ids [2] (see also Sect. 6)
for nodes in the XDG.

The above node order is not sufficient to establish a global
document order and thus, to reconstruct a source from frag-
ments with just theirµPIDs. However, complete reconstruc-
tion of a data source is not the purpose of an index structure.
Furthermore, little additional information like that provided
by the A-index introduced in the following is sufficient to de-
rive a global document order fromµPIDs.

4.4 Core Index Structures

We useµPIDs within two standard index structures of the
structural join (SJ) query processing approach: apath index
(P-index) and aterm index(T-index). The term index allows
for processing term containment queries and the path index

12 Jan-Marco Bremer, Michael Gertz

for the rest of path and tree pattern queries. However, our in-
dexes have two major differences to most existing approaches.
Instead of using flat lists ofµPIDs in document order,µPIDs
are grouped by their XDG node numbers in both index struc-
tures. This is equivalent to grouping ids by common rooted
label path.

The grouping allows us to avoid repeated storage of node
numbers for eachµPID in index lists. Only position num-
bers are stored repeatedly. Within each group, the number
of bits of position numbers is constant. Therefore, every ele-
ment in the group can be directly addressed. Furthermore, the
grouping provides for a more efficient processing of pattern
queries. This is, because a query pattern can first be matched
against the relatively small XDG in main memory to identify
all the qualifying node numbers. Then, onlyµPIDs of these
node numbers have to be considered within the index struc-
tures. For path patterns, a similar procedure is employed by
Yoshikawa et al. [70], but based on node ids that are stored in
database tables.

As a further improvement of the path index, we employ a
sparse storage of position numbers. Position numbers related
to the same XDG node number and in document order build
a sequence of integers with gaps like0, 1, 2,5, 6, 10, 11, 12,
etc. Instead of storing all these elements, we store only the
start element in each continuous sub-sequence together with
the element’s position in the full list, in the example (0,0),
(5,3), (10,5) etc. (see also Fig. 6).

Example 10In Fig. 4, consider the position numbers for au-
thor nodes as in the marked path. The marked author node
has position number 78, as discussed previously. Its two pre-
ceding author siblings have position numbers(1001101)2 =
77 and(1001100)2 = 76. The construction is analogous to
the one shown on the left side of the figure. Assuming the
preceding book nodeBk[3] has only two authors, these au-
thors would have the position numbers(1001000)2 = 72
and (1001001)2 = 73. Hence, the subsequence of/Digital-
Library/Loc/Books/Bk/A nodes for these two books is 72, 73,
<gap>, 76, 77, 78.

An important observation, which we will confirm in our ex-
periments in Sect. 6, is that in real-world data these gaps are
relatively rare. Therefore, the path index size is significantly
reduced by sparse storage.

Sparse storage has a further use. The index position as-
sociated with each position number can also be used as a di-
rect pointer into another index structure, which storesµPID-
related physical addresses. We call this indexphysical ad-
dress index(A-index). As the path index has to be accessed
for query processing anyway, there is no additional cost asso-
ciated with obtaining direct pointers into the A-index. Physi-
cal addresses then allow for the retrieval of source fragments.
Physical addresses can be offsets into a file, tuple ids in a
relational database system, OIDs in an object database sys-
tem etc. It should be noted that in existing structural join ap-
proaches an efficient mapping of logical node identifiers to
their physical counter parts is frequently not considered.

Besides sparse storage,µPIDs allow for another storage
optimization within the P-index: When child nodes of a cer-
tain rooted label path always occur exactly once under their
respective parent nodes, only information related to their par-
ent nodes is stored in the P-index. This is possible, because
the childrens’ node identifiers can be easily computed from
their parents’ identifiers.

1
2
3
4

XDG Node#

...

A−index

P−index...
...

T−index

1
2
3
4

XDG Node#

...
40 1 2 53 ...

Optional (B−tree)
 index

Physical addresses

XDG ...0 5 10 21
0 3 5

Position numbers (sparse)

1
2
3
4

...

1 2 5 ... 0 1 3 ... 1 ...

XDG Node#’s Position numbersTerm#

6

Fig. 6 Core index structures: P-, A-, and T-index

Figure 6 shows the overall design of P-, A-, and T-index.
The figure also shows an additional, small B-tree index as an
option to speed up non-linear access to node identifiers in the
path index. Depending on typical access patterns, such index
could also be employed on the term index. Non-linear index
access can be useful for joiningµPID lists that are relatively
short with respect to the length of the complete list [21], an
aspect that will become obvious in Sect. 5.

4.5 Indexes for Embedded Document Retrieval

The main parameters used in most weighting schemes for
document retrieval such as the core tf-idf scheme discussed
in Sect. 2.4 are term frequency (tf), the inverse of the docu-
ment frequency (df), and document length (dlen). In embed-
ded document retrieval, the analogous parameters are (1) the
number of times a term occurs in a document fragment, (2)
the number of fragments in an intermediate document frag-
ment sequence that contain a term, and (3) the total number
of non-unique terms found in a document fragment. Further
term- or fragment-specific parameters can be incorporated in
the same way as these three basic parameters. Therefore, in
the following, we focus on providingtf, df, anddlen for ar-
bitrary fragment sequences (we use the abbreviationstf, df,
dlenwith respect to embedded document retrieval from now
on).

Integrating Document and Data Retrieval Based on XML 13

The objective is to incorporate these parameters into the
existing indexing framework laid out above, while preserving
the storage and access efficiency of the host data retrieval sys-
tem. The major factor to achieve this goal is to exploit typical
properties of semistructured sources.

4.5.1 Options for incorporatingtf, df, anddlen. Thedf pa-
rameter is a by-product of data retrieval or can be obtained
through an additional structural join. Thedf of a termt in a
DFSS is the number of elements inS that can also be found
in the T-index list fort. If this list has to be accessed for the
data retrieval part of a query anyway, no additional cost is as-
sociated with obtaining thedf. This is the case, for instance,
when a query first asks for document fragments that contain
the termt at least once and then ranks them by their weight
with respect tot. The additional join that is necessary other-
wise is an unavoidable expense for the additional functional-
ity embedded document retrieval provides.

Other than thedf parameter,tf anddlenhave to be explic-
itly stored. For the kind of storage and the storage location of
tf anddlencounters, three basic options exist:

1. Repeated storage vs. accumulation at runtime

Both tf anddlencan be stored repeatedly for each level of
a source’s tree structure, or just for the node they aredirectly
related to. For example, for a term “Smith” occurring un-
der a data path/book[4]/authors/author[1] (the fourth book’s
first author) in a source, one could just keep the information
that (/book[4]/authors/author[1], “Smith”) has atf counter of
one. In this case, a query that ranks the twelve/book[3-14]
fragments according to their relevance to “Smith” would re-
quire the accumulation of alltf counters from authors, title,
text, and whatever other descendant nodes a book node might
have.

The accumulation of counters means a structural join for
every level of the tree structure under a DF’s root node. These
joins do not come for free, but, being a core operation in the
host system, their associated costs are at least minimized as
far as possible. Path identifiers, as they are used in our ap-
proach in particular, allow for an effective selection of only
small sub-lists containing all the potential matches.

To avoid accumulation at runtime, additional counters
need to be stored. In the above example, a counter of one
is stored again for (/book[4]/authors, “Smith”), assuming no
other author is named “Smith”, and another possibly greater
counter for (/book[4], “Smith”). Fordlen, the number of terms
under each node, the same choice between dynamic and static
counter accumulation has to be made.

2. Direct storage of counters within existing core indexes, or
in additional indexes, or in both

tf anddlencounters can be stored directly in the T-index,
or P-index respectively, or in an additional index structure.
Extending a core index structure is more storage-efficient.
Moreover, for a simultaneous counter accumulation during
the processing of the data retrieval parts of a query, direct

storage is required. Storing counters in a separate index al-
ways requires additional accesses besides accessing the T-
and P-index.

3. Counters of variable-length or fixed-length as approxi-
mations.

Bothtf anddlencounters may vary in their size and range.
For this reason, counters in document retrieval are usually
stored with variable-length encodings [68]. However, coun-
ters of varying length stored together withµPIDs that are of
fixed-length in the T- and P-index result in a variable length
of all index entries. This eliminates optimization options for
data retrieval based on a direct access to node ids. A variable
length may also hinder a block-wise storage model that is re-
quired to support updates of the structure and text content of
a source.

A hybrid solution between options 2 and 3 to support
variable-length counters without negatively affecting the core
indexes is to split counters. A shorter, fixed-length part is
stored directly in the existing indexes. Only for counters that
exceed this length, additional entries for the differences to the
full counters are stored, for instance, in aterm counter index
(TC-index) added to the T-index. The additional index could
then contain entries of varying length without affecting the
execution of query portions that only relate to data retrieval.

The rational behind this seemingly cumbersome approach
is the following. Compared to complete documents in stan-
dard document retrieval, DFs will likely contain significantly
less content, keeping counters small. In fact, we specifically
target XML sources or XML views over textual content with
a potentially high degree of structured data. These sources
can be expected to contain fewer terms or even only a sin-
gle term per attribute and element. Thus, with only a minor
impact on data retrieval, a counter of only a few bits may be
sufficient to directly store most of the counters within the core
indexes.

To summarize the options for placingtf anddlencounters
into the core index framework, counters can be

1. repeatedly stored or accumulated at runtime,
2. stored directly within the existing core indexes, or in ad-

ditional indexes, or in both,
3. variable-length or fixed-length as approximations.

Variable-length storage within core indexes is not advisable,
but an option when using an additional (“split”) index.

4.5.2 Making the right choice.As our experiments in Sect. 6
indeed show, term counters are mostly very small. Only a few
bits k are required within the T-index to represent most of
the tf counters. Therefore, the preferred option to store term
frequencies of a data source is a small extension of the re-
lated T-index and an additional TC-index. When approximate
counters are sufficient, the TC-index can be eliminated. In the
following, we call a T-index that is extended byk-bit counters
T-indexk−bit.

For the other choices in placing counters, it is clear that
repeated storage of (accumulated) counters in the T-index

14 Jan-Marco Bremer, Michael Gertz

(see the above “Smith” example) is hardly an option. Even
with non-replicated counters, the T-index is already larger
than it would be in standard document retrieval, because term
occurrences are with respect to a document’s sub-structures.
Therefore, a single term counter as in standard document re-
trieval is potentially replaced by as many counters as there are
nodes in the XDG. Repeated storage makes this even worse,
because every occurrence of a term at a source tree depth of
n would result in up to(n− 1) additional counters within the
T-index.

For thedlen parameter, the above does not hold to the
same degree. There are always exactly as manydlencounters
as there are nodes in a source. These nodes alone make up
only a small fraction of the whole content. Therefore, storing
the complete DF length related to every source node is ac-
ceptable. These counters, however, cannot be stored directly
in the P-index, because this would prevent the application of
the efficient, sparse storage model used in the P-index as de-
scribed in Sect. 4.4. Hence, there has to be an additional DF
counter index (DC-index).

In the DC-index, the usage of fixed-length counters is a
requirement to be able to address single counters. The latter
is important as data retrieval queries usually address only a
relatively small portion of all DFs in a source, and their re-
lated counters are likely not stored as a contiguous sequence.
Fortunately, finding the rightdlen counters in the additional
DC-index comes for free, because the P-index implicitly de-
livers their positions within the DC-index in the same way as
addresses in the A-index.

For this to work, the DC-index entries need to be grouped
by XDG node numbers in the same way as the P-index and
A-index. The grouping then has a further positive side-effect.
Only counters related to a single type of node are stored to-
gether. Thus, only as many bits are required to storedlen
counters as the range between minimum and maximum coun-
ter for the related DF implies. When fragments of a certain
node type always have the same length, no counters need to
be stored at all. As our experiments will show, this happens
in more than just a few cases.

4.6 Resulting Index Framework

Figure 7 summarizes the data flow and access paths for the in-
dexing framework resulting from the discussions in this sec-
tion. Figure 7 is a more detailed version of Fig. 3 provided at
the beginning of this section. As shown in the figure, query
processing for data retrieval relies on an Extended DataGuide
(XDG), T-index, and P-index. Tree patterns are identified by
joining node id lists from T- and P-index (DFS Joiner). The
content of each DF in the final sequence of DFs is obtained
from an XML source through the additional A-index.

The document frequency of query terms (df) is a by-pro-
duct of a query’s data retrieval portion. Term frequencies (tf)
are stored directly in the T-index at a fixed bit-length, pos-
sibly accompanied by an additional TC-index that comple-
ments large counters. TC- and T-index share the same struc-
ture. A DC-index contains precomputed DF counters (dlen)

P−index

DC−indexdb

book

author

XDataGuide

A−index

Fragments
Document

Joiner
DFS

DR Query
Processing

T−index

tf

TC−index
(optional)

XML
Source

dlen

df

Fig. 7 Indexes and data flow paths: The dotted box surrounds the
main structures for data retrieval. A-index and source together pro-
vide for the retrieval of source content. DC- and (optional) TC-index
add support of embedded document retrieval.

for every level of a source hierarchy. The positional informa-
tion in the P-index allows for a direct access to the length
information of DFs.

5 Query Processing

In this section, we discuss how the index structures intro-
duced in Sect. 4 are used to process the parts of IIR queries
related to data retrieval and embedded document retrieval.

5.1 Overview and Notations

In this paper, we focus on the path and tree pattern queries
discussed in Sect. 4.2, as these build the core of most XML
query languages (s. Sect. 2.3.2). Path patterns do not contain
branches and are most easily processed. Tree patterns consist
of multiple path patterns. Therefore, the processing of tree
pattern queries can be reduced to the processing of path pat-
tern queries plus some extra operations.

Following this line of thought, we first discuss the pro-
cessing of increasingly complex path pattern queries in Sect.
5.2. In Sect. 5.3, we show how existing approaches for pro-
cessing tree pattern queries can easily be adapted to use our
index structures. In addition, we outline how the newly intro-
duced node ids and indexes can provide for an execution of
tree pattern queries that is significantly more efficient than in
existing approaches (Sect. 5.3.2). Finally, in Sect. 5.4, we dis-
cuss how embedded document retrieval can be implemented
within the previously discussed framework.

We use the following functions as formal specifications
of accesses to P-, A-, and T-indexes:

p-seq: M → seq(N)

Integrating Document and Data Retrieval Based on XML 15

a-seq: M → seq(N)
t-seq: T ×M → seq(N)

p-seqmaps a given node number to the list (sequence) of po-
sition numbers as found in the P-index. Analogously,a-seq
maps a node number to a sequence of physical addresses that
are represented by natural numbers.t-seqhas the same func-
tionality asp-seq, but takes a term as additional argument.

5.2 Processing Path Pattern Queries

A path pattern query consists of labeled nodes, possibly con-
taining a term condition, but without branches in its graph
representation. As an example, the left part of Fig. 2 showed
the path pattern query//Location/Books//Title. The processing
of path pattern queries depends on the kind of leaf node of
the pattern and the location of the selection node.

We distinguish between the following three non-exclusive
types of path pattern queries:

Simple path patterns:patterns without term condition, where
the selection node is the leaf node, e.g., the path expres-
sion //Location/Books//Title

General path patterns:patterns with at least one labeled node
below the selection node, e.g.,//Location/Books[.//Title]

Path patterns with term condition:patterns with a term con-
dition, e.g.,//Location/Books//Title[contains(text(), “XML”)]

5.2.1 Simple path patterns.Simple path patterns can be pro-
cessed in the following three simple steps:

1. Find all matches of the pattern in the XDG. Matches are
rooted label paths, identified by node numbersn1, . . . , nr

2. For each node numberni, retrieve the index listsa-seq(ni)
from the A-index

3. For each physical address in these lists, obtain the DF
from the source

As the XDG itself is a data source, the first step can be ex-
ecuted by any in-memory query processing algorithm. This
can be done in polynomial time [37]. Because a simple path
expression selectsall nodes in a source that match a certain
label path, there is no need to access the P-index. The physi-
cal addresses are directly retrieved from the address index.

5.2.2 General path patterns.If the selection node in the
path pattern is not the pattern’s leaf node as in the example
//Location/Books[.//Title], an access to the P-index is neces-
sary. In this case, instead of accessing the A-index, the related
lists in the P-index are accessed. Each list related to a node
numberni consists of position numbers of fixed bit lengthki.
For the source shown in Fig. 4,ki is 5 for the only match of
the example path pattern, becauseLocation nodes require 3
bits andBk nodes 2 bits.

The selection node in this example isBooks, which is be-
low theLocation node, but above theBk node. Thus, to obtain
node ids forBooks nodes from node ids forTitle nodes, the
3-bit prefix from each position number is extracted. To obtain

the index position of the related physical addresses these 3-bit
numbers are joined with theBooks-related P-index list. Only
this list contains pointers to the physical addresses ofBooks
nodes.

In short, the executed join operation is a semi-join with
the commonµPID prefix as join attributeA:

p-seq(nodeno(LP1)) �<A p-seq(nodeno(LP2))

Here,LP1 andLP2 stand for the rooted label paths/Digital-
Library/Location/Books and/DigitalLibrary/Location/Books/Bk
/Title, respectively.

Notice that the join is necessary. It is not enough to just
accessBooks nodes in the P-index directly, because there may
be nodes that do not have anyTitle descendants and thus, do
not satisfy the query pattern. Moreover, all the joins can be
executed in an iterative fashion as described by Graefe [39].

If the example query//Location/Books[.//Title] has more
than a single instance of a rooted label path in the queried
source, then the above procedure is executed multiple times.
For each instance of the pattern, a semi-join is executed based
on node number prefixes according to the position of the se-
lection node.

The above procedure for processing path pattern queries
has a major advantage over related approaches that group
node ids by common, rooted label path [65,70]. The ear-
lier approaches cannot derive ids of selection nodes directly.
Rather than making the transition fromTitle to Books nodes
directly, they need to execute a join to establishTitle-Bk re-
lationships, and another join betweenBk andBooks nodes.
This is because of the less expressive node ids in these ap-
proaches. The extra P-index join in our case is only for deriv-
ing physical addresses, which is not discussed in the related
approaches.

Approaches that do not group node ids by common label
path [3,46,71] have another disadvantage. They cannot avoid
joining parts of lists for nodes that match only a single la-
bel in a pattern, but do not possibly match the whole pattern,
e.g.,Titles related to. . . /Location/Articles/. . . /Title nodes for a
query pattern like//Location/Books[.//Title].

5.2.3 Path patterns with term condition.A term contain-
ment condition is necessarily a leaf node in a query pattern.
If a query pattern contains such a term condition, the above
query processing is modified and extended in the following
way. First, after determining node numbers in the XDG that
match the path pattern, the T-index is accessed instead of P-
index or A-index. Then, for all termst1, . . . , tm in the con-
tainment condition, node id lists for all matching node num-
bersn1, . . . , nr are iteratively accessed.

If there are multiple terms involved, for each node number
ni, term lists are merged to obtain a single ordered list:⋃

j=1,...,m

t-seq(tj , ni)

Different types of term containment conditions can be sup-
ported through specialized merging strategies as discussed
below. Independent of the merging strategy, the merging can

16 Jan-Marco Bremer, Michael Gertz

be done in O(n) time wheren is the sum of the lengths of all
lists. The time estimation relies on the fact that the number of
lists is always strictly limited by the number of nodes in the
XDG.

With only a single term, the example query//Location
/Books//Title[contains(text(), “XML”)] changes the query exe-
cution plan shown earlier to

p-seq(nodeno(LP1)) �<A t-seq(t, nodeno(LP1)) ,

wheret is the term number of “XML”.
If the term condition is with respect to an inner node

within a source, e.g.,//Books[contains(text(), “XML”)], the list
merging is extended to all of the node’s descendant nodes:⋃

j=1,...,m

⋃
d∈desc(ni)

t-seq(tj , d)

Again,ni represents node numbers matching//Books. desc()
denotes the set of node numbers of descendant nodes ofni,
including ni. The merging of index lists required for term
conditions over descendant nodes is very similar to the pro-
cedure used to accumulate term counters in the T-index that
is extended by term occurrence statistics, as we will see in
Sect. 5.4

For all path pattern queries, if the final result is supposed
to be in document order, all node number-specific lists are
merged into one list during the retrieval of physical addresses.
This merging is in principle the same as above, but uses doc-
ument order instead of numerical order of node positions.

The algorithm in Fig. 8 summarizes the query processing
algorithm for path patterns, not including a final document or-
der. For presentation purposes, the algorithm is presented as
processing whole node id lists in each step. In the implemen-
tation, the processing is pipelined at the granularity of single
node ids.

5.2.4 Supporting different term containment conditions.We
distinguish between four kinds of term containment condi-
tions, which determine the implementation of the merge op-
erator ’∪’:

Strings //X[contains(text(), “database system”)]
AND //X[contains(text(), “database”) and

contains(text(), “system”)]
OR //X[contains(text(), “database”) or

contains(text(), “system”)]
Complex <condition involving AND and OR>

AND can be implemented as elimination of all node ids from
the term-related T-index lists that do not occur in both the
“database” list and the “system” list. For OR, these lists have
to be merged unconditionally while eliminating duplicates.
Complexconditions can be implemented accordingly.

String conditions have to be simulated through an AND
condition and a later post-processing. In the above examples,
all path patterns that contain both “database” and “system”
within anX node have to be retrieved to determine potential
pattern matches. Later on, the content of these node has to be
searched to determine the actual matches.

Term conditions containing negations, e.g.,//X[not con-
tains(text(), “database”)] are more complex to process. They

Algorithm PathPatternMatching (Path pattern Q)
Input: Path pattern Q with leaf node ` and selection node s
Output: List R of physical addresses of nodes that match Q

in s

1. If ` is a term condition C:
(a) let T := {t1, . . . , tm} be the terms in C
(b) let ` := parent(`)

2. Find the node numbers N = {n1, . . . , nr} in the XDG that
match Q in ` (ignoring any term condition C)

3. If ` = s then for all ni in N : append the A-index list for ni

to R; done .

Otherwise continue with 4:

4. For every n in N :
(a) obtain node id list for n from

i. P-index, if Q does not have a term condition and
thus C is empty; otherwise from

ii. T-index by merging T-index (n, t)-lists for all t in T
(b) determine the node id list for the selection node re-

lated to n:
i. let ns be the node (number) in the rooted label

path for n that is related to the selection node s
ii. join node id list for n with list for ns based on po-

sition number prefixes:
L := p-seq(n) �< p-seq(ns)

(c) obtain physical addresses from A-index;
append to result: R := R ∪ (a-seq(ns) �< L)

Fig. 8 Algorithm for processing path pattern queries: Step 1 makes
adjustments in case a term containment condition is present; Step 2
determines XDG node numbers for pattern matches; Step 3 handles
the simplest pattern case that requires only A-index access; Step 4
obtains node id lists from P- or T-index including an additional ac-
cess in case the selection node is some inner node; the merging of
Step 4(a)ii is detailed in Sect. 5.2.4.

can be implemented through access of node id lists related
to //X in the P-index and then eliminating (//X, “database”)-
specific T-index entries from these lists. The cost associated
with this implementation depends on the selectivity of//X.

5.3 Processing Tree Pattern Queries

The standard approach to process tree pattern queries through
structural joins employs one join for each edge in the query
pattern [3,71]. The two input lists for the join consist of node
ids related to a certain node label, not a label path. There-
fore, as a basic approach, if one can provide single input lists
related to node labels, the existing join algorithms can be di-
rectly applied.

5.3.1 Basic approach. Obtaining a single, ordered list for a
node label̀ in our approach involves two steps:

1. Identify all rooted label paths in the XDG that end in`
2. Merge the related lists from P- or T-index as discussed in

Sect. 5.2

However, there is an obvious optimization that can be
applied in Step 1. Each pair of labeled nodes that is con-

Integrating Document and Data Retrieval Based on XML 17

nected by an edge in a given tree pattern query trivially re-
lates to a pair of full path patterns. The XDG provides all
possible matches for these path patterns in the form of rooted
label paths. The matches determine a subset of node num-
bers, whose related index lists provide all join results that are
necessary and sufficient to obtain the full tree pattern. Consid-
ering complete path patterns instead of just node labels, thus,
allows the query engine to eliminate some lists of node ids
that cannot possibly have matches with respect to the com-
plete query.

In Fig. 9, consider the tree pattern query//Document[./Ab-
stract//”XML”]//Author[./Address/Country/”USA”][.//Email] that
is based on a source similar to the one shown in Fig. 4. To

Author

AddressAuthor

label paths
Matching, rooted

Author

Document

Abstract

"XML" Email

"USA"

Address

Country

Tree Pattern Query

Join

Node#
in XDG 15

Email

...

<root>

Historical

Email

Document

37

35

12

...

<root>

Document

Fig. 9 Tree pattern query//Document[./Abstract//”XML”] //Au-
thor[./Address/Country/”USA”][.//Email] and instances of path
patterns related to the join between theAuthor andEmail node.

implement the join between theAuthor and Email nodes in
the pattern, the XDG might deliver the two rooted label paths
shown on the right side of Fig. 9 as instances of the path pat-
tern//Document//Author[//Email]. Assuming node numbers 15
and 37 for the matchingEmail nodes and 12 and 35 forAu-
thor, the join operation can be restricted to:

(p-seq(12)∪ p-seq(35)) �<A (p-seq(15)∪ p-seq(37))

The restriction can result in a substantial saving when there
are many different label paths that contain nodes labeledAu-
thor or Email. There are database-centered approaches like
that of Yoshikawa et al. [70] that keep track of the rooted label
path related to every node id. However, these approaches do
not employ a custom-tailored storage scheme that keeps node
id lists sorted and thus, requires an enormous storage over-
head. Hence, extensive sorting is necessary to obtain sorted
node id lists [65].

The algorithms for actually executing the join are dis-
cussed in detail by Al-Khalifa et al. [3] and Zhang et al. [71].
The stack-treefamily of algorithms [3] in particular guar-
antees linear execution time with respect to the number of
matching node ids.

In the following, we outline a significant further improve-
ment of the above, basic query processing algorithm.

5.3.2 Further improving the basic approach.µPIDs encode
complete, rooted data paths. Therefore, it is not necessary to

execute a join for every single edge in a tree pattern. Con-
sider the sub-patternAuthor/Address/Country in Fig 9.µPIDs
that are instances of rooted label paths that matchCountry
directly contain information about theCountry nodes’Author
ancestor. Therefore, there is no need to execute any joins with
Address nodes to establish relationships betweenCountry and
Author nodes. Based on the same argumentation, it becomes
obvious that joins are requiredonly for every branch point
and not for every edge in a query pattern.

For instance, to find all patterns matching the right half of
the example query in Fig. 9, it is sufficient to:

• find matches for path pattern//Document//Author/Address
/Country/”USA” in XDG and then T-index,

• find matches for path pattern//Document//Author//Email
in XDG and P-index, and

• join node id lists from both indexes at the prefix position
related to theAuthor node (the branch point)

We refer to the logical join at theAuthor node based on a
query’s path patterns asmacro join. The actual joins are ex-
ecuted over node ids related to rooted label paths that are in-
stances of these path patterns. We call such joinsmicro joins.
A macro join is implemented through one or more micro joins
by either of the following two approaches:

1. Merge lists for the two branches in the query pattern into
two single lists in document order, and apply a standard
structural join algorithm onAuthor:⋃

i=1,...,r

t-seq(“USA” , ni) �<Author

⋃
j=1,...,s

p-seq(nj),

where theni andnj are matching node numbers for the
two respective path patterns related to the “USA” and
Email nodes. Here, the macro join is implemented by a
single micro join.

2. Execute several micro joins, but only between lists related
to rooted label paths that have a common branch point.

We discuss the second solution in more detail in the follow-
ing.

There are three leaf nodes in the example tree pattern,
which are identified by the marked numbers 1, 2, and 3 in
Fig. 10. The first step of the enhanced query processing for
tree pattern queries is analogous to the processing of path
pattern queries. Each leaf node has a related path patternPi

starting at the root of the pattern tree. All instances of these
patterns can be found in the XDG. Assume the two instances
for each of the patternsP2 andP3 as shown on the right side
of the figure. Each instance is uniquely identified by a node
number. Hence, all instances related to a query pathPi can
be considered a setPi = {pi1, pi2, . . . , piki

}, where thepij

are node numbers, overloading the symbolPi with this sec-
ond meaning. In the example, we haveP2 = {13, 21} and
P3 = {37, 15}; assumeP1 = {5, 8, 9} (the related instances
are not shown in Fig. 10).

An instance of the full query pattern can be considered
an `-tuple of node numbersT = (p1, p2, . . . , p`), pi ∈ Pi,
where` is the number of leaf nodes in the query pattern. That
is, the tuple consists of one rooted label path for each leaf-
related path pattern in the query. There arek1×k2× . . .×k`

18 Jan-Marco Bremer, Michael Gertz

Author

Author

Document

...
<root>

Address

Country

"USA"

Author

Document

...

<root>

Author Address

1 3

2

Author

= "Macro join"

Paths
Rooted Label

Document

Abstract

"XML" Email

"USA"

15

Address

Country

, }

Email

...

<root>

} {
Document

...

<root>

Authors
{

Address

Country

"USA"

,
Historical

13

21
Email

Document

37

Every branch
 requires a join

 ("macro join")

Tree Pattern Query

Fig. 10 Improved processing of a tree pattern query: onemacro join
is executed for every branch point in the pattern. The macro join
is implemented by potentially severalmicro joins. Micro joins are
joins between lists of node ids related to rooted label path that are
instances of the path patterns to the right and left of the branch point.

potential matches for the query pattern. In the example, we
have3 × 2 × 2 = 12 potential instances of the query pat-
tern. However, notice that the paths related to node numbers
13 and 37 do not match even though the paths belowAu-
thor match and both have aDocument ancestor aboveAuthor.
Thus, there can not be any matching(x, 13, 37) tuple. Con-
sequently, there are other combinations of node numbers that
do not match the query tree pattern.

All the valid combinations of node numbers can be deter-
mined from the XDGbeforelooking at any of their instances
in an index list. Although this is an important aspect that can
lead to a drastic decrease of join operations, it is not supported
by any existing query processing approach. For the running
example, a graph representing all valid triples of node num-
bers might look like the one shown in Fig. 11. A path from

Instances of
query paths

5

8

9

13

21 37

15

P P P1 2 3

(8, 21, 37)

(8, 21, 15)

Fig. 11 Instances of path patterns in a query in the form of node
numbers, and all possible combinations of node numbers to form a
valid instance of the query’s complete tree pattern.

the left to the right through all the groups of node numbers
represents a valid query pattern instance in the XDG. Only
for these patterns potential join results for node id lists exist.

Algorithm TreePatternMatching (Tree pattern Q)
Input: Tree pattern query Q with ` leaf nodes and selection

node s
Output: List R of µPIDs that match Q in the position of s

1. Determine all leaf nodes in Q (ignoring term conditions)
2. For each of the 1 . . . ` leaf nodes:

(a) find all instances of the path pattern from the leaf to
the root of Q in the XDG

(b) let Pi = {ni1, ni2, . . . , niki}, i = 1, . . . , ` be the set of
node numbers related to these instances

3. For all `-tuples T = (p1, p2, . . . , p`), pi ∈ Pi:
(a) determine whether the rooted label paths related to

node numbers p1, p2, . . . , p` constitute a tree that
matches Q

(b) while checking this, for every branch point node, look
up the total number of bits of its position number in the
XDG

4. For every resulting tuple T ′ = (p′1, p
′
2, . . . , p

′
`):

(a) Fetch the list L for p′1 from the P- or T-index
(b) For i = 2 to `:

i. fetch Li, the list related to p′i, from P- or T-index
ii. if pi contains the selection node and p′1 does not,

swap L and Li

iii. semi-join Li and L using L as the outer list:
L := L �< Li

(c) Append L to the result list R
5. If result needs to be in document order, merge ordered

sublists within R into ordered list

Fig. 12 Basic algorithm for processing tree pattern queries, while
considering only possible matches based on information available
in the XDG.

The outlined query processing approach rigorously ex-
ploits path summary information from the XDG to avoid join-
ing node ids that cannot possibly match. However, there is
some additional complexity and potential cost attached to this.
The number of joins between–now much shorter–node id lists
can increase. This can also mean that a node id list has to be
accessed repeatedly to join it with different matching lists.

However, having the full list of̀-tuples of matching node
numbers easily available (as shown, e.g., in Fig. 11) together
with detailed statistics about list lengths within index struc-
tures provides for promising optimization opportunities. Fur-
thermore, the sparse storage of path index entries (s. Sect. 4.4)
reduces the number of list elements to be loaded throughout
the join process as demonstrated in Sect. 6. Sparse storage
also provides for what we callvirtual joins. Virtual joins are
structural joins that are executed over the range of node ids
represented by a single element in a sparse P-index list with-
out expanding the element. By means of virtual joins, many
more node ids can be constantly cached in main memory,
eliminating disk accesses.

The basic algorithm in Fig. 12 summarizes the improved
query processing for tree pattern queries as outlined in this
subsection.

Integrating Document and Data Retrieval Based on XML 19

Algorithm EmbeddedDocRetrieval (DFS S, Terms T)
Input: Document fragment sequence S (that is grouped by

node number and sorted); terms T = {t1, . . . , tm}
Output: Lists R1, . . . , Rm ∈ N|S| of tf accumulators for each

term

For each term ti ∈ T :

For each group Sj ⊆ S of node ids with common node
number:
1. let n be the node number of nodes in Sj

2. let Rij be the sub-list of Ri related to Sj (the elements
of Rij are the counters for the nodes in Sj)

3. for all node numbers m that are descendants of n:
if there is a T-index list for ti and m, execute:„

Rij

Sj

«
�< t-seq(ti, m),

accumulating counters in Rij while joining their
related nodes in Sj with T-index elements

Fig. 13 Accumulation oftf counters for a DFS and a set of terms.
The accumulation is executed separately for each term and sub-DFS
with common node number. The semi-join with the combined lists
Sj andRij works as follows:Sj is joined with related T-index lists
and for each match at positionp in Sj , the term counter in the T-
index list is added to the counter at positionp in Rij .

5.4 Processing document retrieval sub-queries

The processing of document retrieval sub-queries requires the
accumulation of term counters, which, as we assume here,
extend the T-index directly (s. Sect. 4.5). The actual work in
doing so is not the accumulation, but getting to the right coun-
ters within the T-index. This requires the same joins and thus,
the same procedure as processing path pattern queries with
term conditions, which we discussed already in Sect. 5.2.3.
Here, we build on this earlier discussion.

As input to our algorithm, we assume a sequencesS of
node ids that are grouped by node number, delivered by the
preceding data or document retrieval sub-query. For such a
sequence, document fragment frequency (df) and fragment
length (dlen) are computed as outlined in Sect. 4.6: for each
node id,dlen can be found in the DC-index, anddf is a by-
product of the data or document retrieval sub-query preceding
the current document retrieval sub-query. The term frequency
(tf) can be obtained for each query termt as described in the
following and summarized in Fig. 13.

A counter with initial value zero is created for each node
id in S. Then, for each element inS, counters for all de-
scendant nodes found in the T-index under termt have to be
accumulated. This operation can be implemented ask joins
between lists in the T-index andS. Here,k is the number of
node typest occurs in. The ability to limit the joins to T-index
lists specific to termt greatly reduces the counter accumula-
tion process. In a further optimization of this procedure,S
can be sorted by node and position number. Then the joins
need only be executed between sub-lists ofS with the same
node number and lists in the T-index that contain possible de-
scendant nodes with respect to this node number. The same

procedure is repeated for each term in the document retrieval
query.

In a more formal fashion, counter vectorsRi and frag-
ment sequenceS have the following form:

R1 = (
R11z }| {

r11, r12, r13, . . . , r1q,

R12z }| {
r1(q+1), . . ., . . .

R1kz}|{
. . .)

R2 = (r21, r22, . . .)
. . .

S = (

node# n1z }| {
f1, f2, f3, . . . , fq| {z }

S1

,

n2z }| {
fq+1, . . .| {z }

S2

, . . . ,

nkz}|{
. . .|{z}
Sk

)

Let N be the total number of nodes in the underlying
source andn the total number of nodes in the Extended Data-
Guide. Then, a rough estimation of the complexityC of the
counter accumulation for each termti looks as follows:

C = |S1|+
∑

m∈desc(n1)

|t-seq(ti,m)|

+|S2|+
∑

m∈desc(n2)

|t-seq(ti,m)|

+ . . .

+|Sk|+
∑

m∈desc(nk)

|t-seq(ti,m)|

= |S|+
k∑

j=1

∑
m∈desc(nj)

|t-seq(ti,m)|

≤ N +
k∑

j=1

n∑
m=1

N = N + knN

≤ N + n2N ∼ n2N

For every term, every sub-listSj of S (with related node
numbernj), is joined with all T-index lists of descendant
nodes ofnj in the Extended DataGuide. Each join requires
to visit every element involved only once, because the lists
are ordered. While the resulting effort of O(n2N) seems ex-
pensive, the grouping of lists by node type provides for a re-
duced joining effort. This fact, however, is not covered by the
general estimation that, as an upper bound, assumes a length
of N for every node type-specific index list, and the maxi-
mum of n different node types in index lists and fragment
sequence.

Some of the expenses involved are unavoidable and present
a price that has to be paid for the additional power of rank-
ing arbitrary fragment sequences. In practice, the expenses
are bound by the limited number of fragments that contain a
term. Furthermore, there are typically only a few node types
that carry most of the text content in a source. This reduces
the number of joins to be executed and leads to an acceptable
performance as the experiments in Sect. 6 suggest.

20 Jan-Marco Bremer, Michael Gertz

6 Evaluation

In this section, we experimentally analyze various properties
of our node identification and indexing scheme. We discuss
core index structures for data retrieval and extensions that are
required for a full support of Integrated Information Retrieval
(IIR). In addition, we compare the index structures for data
retrieval introduced in this paper with related index structures
of earlier approaches.

6.1 Implementation

6.1.1 Index structures. We have implemented the path in-
dex (P-index) and term index (T-index) introduced in Sect. 4
as indexed sequential files. Both index structures utilize a
bit-accurate storage ofµPIDs. µPID position numbers are
grouped by node numbers, which refer to nodes in the Ex-
tended DataGuide (XDG).µPIDs are arranged in document
order. No overall compression is applied to these lists of node
ids. In the following, the termµPID usually refers to position
numbers that are part of a list of position numbers. Only the
complete list is preceded by the related XDG node number.

For comparison with earlier structural join (SJ) approaches
that exclusively rely on the interval (Ival) node identification
scheme [2], we have also implemented P- and T-index based
on Ival node ids.

Ival node idsconsist of a triple of integers(id,maxid,
depth). id is a node’s position in a pre-left order walk
through a data source.maxid is the largest node id
of any of the node’s descendants.depth is the depth
of the node within the source. In the Ival scheme,
ancestor-descendant relationships between nodes can
be determined based on the containment of the nodes’
[id,maxid] intervals. Parent-child relationship require
an additional comparison between the depths of the
nodes.

In order to make the index sizes for the Ival scheme compa-
rable to those for theµPID scheme, we store Ival ids using
only the required number of bits. A source withn nodes and
a maximum tree depth ofd requires2×dlog2(n)e+dlog2(d)e
bits for storing interval bounds and tree depth of an Ival id.
As a result of this dense storage, our index implementation
for the Ival scheme is significantly more storage efficient than
the best implementation reported so far [71]. Improvements
to the reported basic implementations only extend the indexes
further [17,21]. Furthermore, when stored as relations in a re-
lational database, a multiple of the storage space of custom-
tailored index structures is required [65,71]. Therefore, the
Ival-related index sizes that are reported in this paper can be
considered lower bounds for the whole class of Ival-based SJ
indexes.

While sparse storage as discussed in Sect. 4 is an im-
portant aspect of our index structures, for the Ival-schemes
indexes it is not employed. In theory, sparse storage can be
used for any monotonic sequence of integers, e.g., interval

bounds in the Ival scheme. However, because the numbers
are assigned to nodes in one, global tree traversal in the Ival
scheme, hardly any contiguous sequences of numbers arise.
Therefore, sparse storage would certainly increase the space
required to store lists of Ival ids related to, for instance, a
particular rooted label path.

For theµPID approach, we also implemented the address
index (A-index) and report its size. Like P- and T-index, our
A-index implementation uses no compression. Therefore, the
size of the A-index exclusively depends on how the source
content is stored and thus, the kind of physical identifiers
used. In our XML-based implementation, physical identifiers
are bit-accurate offsets into an efficiently compressed XML
source. The source compression is similar to the one reported
by Tolani and Haritsa [67] and reduces sources to roughly a
third of their uncompressed size. Offsets into a compressed
source are about the smallest possible physical identifiers.
Therefore, the reported A-index size represents a lower bound
for such a mapping structure.

For the A-index, a simple storage optimization similar to
the one discussed at the end of Sect. 4.4 for the P-index is
employed. The A-index does not contain address lists related
to attribute nodes, whose parent nodes always contain this at-
tribute. In this case, the physical address of the attribute node
can be easily obtained from the parent’s address in our im-
plementation, because attributes directly follow their parent
nodes in the compressed source.

Because of its small size, we assume that the XDG can
be kept in main memory. Even the largest XDG in our exper-
iments required only a few Kilobytes. Therefore, an XDG of
even ten thousands of nodes can be kept in main memory.

For the support of embedded document retrieval, we also
implemented a DC-index and extended the core T-index by a
term counter of just a single bit (s. Sect. 4.5). Counters larger
than one have an additional entry in the TC-index. So far,
the TC-index always uses a whole byte for every counter.
Therefore, in practice, the TC-index size can be considered
an upper bound for the size of any TC-index. The DC-index
is equivalent to the A-index except that document fragment
(DF) counters replace physical addresses. The length in bits
of these DF counters is determined by the minimum and max-
imum number of terms found under a certain node type. Node
types that always have exactly the same number of terms do
not need any entries in the DC-index. This frequently applies
to attributes nodes containing just a single term, but also to
some element nodes and nodes with more than one term.

6.1.2 Query processing.Query processing is based on iter-
ators [39], which directly operate on lists of node identifiers
kept in the index structures described above. We have im-
plemented the system described in this paper in Java, version
1.4, up to the operation of iterators over node id lists. Caching
is employed for the list elements at the current head of each
iterator. The default size of this cache is 4 Kb. We observed
no significant influence of the size of the cache on query pro-
cessing as long as it stayed above a few Kilobytes. No further
application caching is used.

Integrating Document and Data Retrieval Based on XML 21

While it is out of the scope of this paper to implement a
query system that fully realizes XQuery, advanced query pro-
cessing (s. Sect. 5.3.2) is operational for the examples pre-
sented in Sect. 6.5. Performance of document and data re-
trieval portions solely depends on the efficient processing and
joining of node id lists. Consequently, this is the focus of the
following evaluation. For the execution of arbitrarily nested
data and document sub-queries–the main focus of our work–
no other benchmark exists so far. Furthermore, because the
conceptual document retrieval extension we have introduced
in this paper is independent of the weighting scheme used for
ranking, it is not our intention to implement or promote any
particular weighting scheme.

6.2 Data Sources

6.2.1 Overview. In the following, we present experimental
results on a large number of publicly available XML sources
of up to 1.3 Gigabytes. Some of these sources are constructed
from standard TREC (Text Retrieval Conference1) disk 4 and
5 document collections. The document collections are con-
verted into a single XML source by introducing an artifi-
cial root node. TheXMark 1Gb, XMark 500andXMark 100
sources are generated by the XMark [62] project’sxmlgen
tool using size scaling factors 1, 4.2, and 10.Reutersrefers
to disk 1 of the Reuters Corpus [54]. Compiled into a single
source, we include the very smallShakespeareplays2 source
to allow for a comparison with the main experimental results
reported in many related works.

Except forBig10, the rest of the sources originate from
the University of Washington’s XML Data Repository.3 The
Big10source is a composite source consisting of a number of
diverse XML sources from the sites mentioned above. Details
are given in Table 1. ThroughBig10 we tried to simulate a
large, diverse, text- and structure-rich XML source. Such a
source is what we consider the main target of our approach,
and indexing and query processing for semistructured data in
general.

6.2.2 Main statistics. Table 2 summarizes main properties
of the test sources. In the table,Termsrefers to alphanumeric
character sequences that are delimited in a standard way [8]
by spaces, punctuation, etc. Terms are converted to lower
case, but no stemming [8] is applied. Number tokens are bro-
ken up beyond the standard tokenization into groups of four
digits, a common technique in document retrieval [68]. Fur-
thermore, apparently unique identifiers like “person7512” in
the XMark sources are split up into a constant part, which
still allows to distinguish the identifier from a regular “per-
son” term, and a number part.

TheAvg. termsvalue, the number of unique paths (Paths
column; equivalent to the number of nodes in the XDG), and

1 trec.nist.org
2 Formatted as XML by Jon Bosak
3 www.cs.washington.edu/research/xmldatasets/

Name Size[Mb] Size[%] Avg. words
LA Times 475.3 38.2 14.7 (1.2)
Congr. Record 252.3 20.3 71.6
Federal Register 238.7 19.2 82.8
DBLP 127.7 10.3 3.4 (3.7)
SwissProt 109.5 8.8 1.7 (1.7)
NASA 23.9 1.9 4.2 (2.7)
Shakespeare 7.3 0.6 5.1
Religion 6.7 0.5 25.6
Mondial 1.7 0.1 0.5 (1.9)
Total 1243.1 100 21.0 (2.2)

Table 1 Big10source composition: Absolute and relative contribu-
tions and average number of words per element (attribute) node of
included sources

the number of distinct nodelabelsserve as an indicator of the
structural complexity of a source.

6.2.3 Analysis. TheXMarksources are in general structure-
rich and deep, but contain relatively few terms. This is typical
for structured data. On the other extreme,Financial Times
and to a lesser extentLA Timesas standard text document
collections consist of long sections of text with little struc-
ture. The total number of XML element and attribute nodes
is relatively small for these sources. Furthermore, despite its
size,Financial Timesis very shallow.

SwissProtstands out for its high percentage of structural
components with little content. Terms are largely numbers
and scientific notations.Reuterscontains little structure, but
with over half of all nodes the largest percentage of attribute
nodes.Big10combines properties of structured data and stan-
dard document collections, although it is dominated by its
biggest contributors, in particularLA Times.

6.3 Core Index Structures

Table 3 shows the sizes of the core index structures for data
retrieval for theµPID and Ival scheme. Furthermore, the bit
lengths of respective node identifiers are compared. The length
of Ival identifiers (Ival) is constant for each source. For the
µPID scheme, the total length (µPmax) and the length of the
position number (P#) are listed. Sequences of only the posi-
tion numbers are stored repeatedly in the indexes. Therefore,
they are the main contributers to index sizes. However, their
lengths vary with node types. Therefore, Table 3 also lists the
average length of position numbers over all index elements
(Pos#avg) for P-index (left) and T-index (right). In addition to
Table 3, Table 4 presents relative sizes of the index structures
with respect to the size of the uncompressed XML source.

6.3.1 Node identifiers. AlthoughµPIDs encode more infor-
mation than Ival ids, their maximum length is always be-
low that of the Ival scheme. Still, only theµPIDs’ position
numbers, which are just one part of aµPID, are repeatedly
stored in P- and T-indexes. Furthermore, the adaptive length

22 Jan-Marco Bremer, Michael Gertz

Name Size[Mb] Nodes (attribs.) Terms (unique) Avg. terms Paths (labels) Depth
Big10 1243.1 16,235,910 (20%) 177.7m (772,336) 13.2 (1.9) 946 (350) 9
Reuters 1354.0 37,864,292 (51%) 174.5m (313,755) 6.9 (2.4) 27 (26) 7
XMark 1Gb 1118.0 20,532,978 (19%) 126.0m (47,537) 7.0 (2.5) 548 (83) 12
XMark 500 469.4 8,631,135 (19%) 52.5m (47,464) 7.0 (2.2) 548 (83) 12
XMark 100 111.1 2,048,193 (19%) 12.4m (46,235) 7.0 (2.2) 548 (83) 12
Fin’l Times 564.1 2,847,870 (0%) 92.0m (396,571) 32.3 17 (17) 3
LA Times 475.3 5,472,913 (10%) 72.9m (250,560) 14.7 (1.2) 71 (28) 7
DBLP 127.7 3,736,406 (12%) 12.9m (412,267) 3.4 (3.7) 145 (40) 6
SwissProt 109.5 5,166,890 (42%) 8.6m (136,950) 1.7 (1.7) 264 (99) 5
Shakespeare 7.3 179,609 (0%) 0.9m (23,076) 5.1 58 (22) 5

Table 2 General XML source statistics including total size (Size), total number of nodes (Nodes) and the percentage of attribute nodes
(attribs.), total number of word tokens (Terms) in millions and number of unique terms (unique), average number of non-unique terms that
directly occur in an element node (Avg. terms) and attribute node (in parentheses), number of distinct rooted label paths (Paths) and number
of unique node labels, and finally the maximum depth of the source tree

Name Path index[Mb] Term index [Mb] Addr. index Node id length [bits]
Ival µPID (%Ival) Ival µPID (%Ival) [Mb] Ival µPmax (P#) Pos#avg (P/T)

Big10 106.5 23.1 (22%) 747.5 347.1 (46%) 51.9 52 51 (41) 22.5 24.4
Reuters 261.8 55.9 (21%) 1,113.8 519.1 (47%) 70.2 55 34 (29) 25.7 26.9
XMark 1Gb 139.5 24.2 (17%) 844.8 306.4 (36%) 63.8 54 39 (29) 21.1 19.8
XMark 500 56.6 9.5 (17%) 339.7 127.2 (37%) 25.1 52 38 (28) 20.0 18.8
XMark 100 12.0 2.0 (17%) 72.0 31.9 (44%) 5.6 46 36 (26) 17.9 16.6
Financial Times 16.6 0.9 (5%) 305.0 115.0 (38%) 10.5 46 26 (21) 20.1 18.0
LA Times 33.9 5.7 (17%) 386.2 216.5 (56%) 18.2 49 48 (41) 27.3 29.1
DBLP 22.3 5.1 (23%) 78.5 35.7 (45%) 11.4 35 34 (26) 20.2 19.2
SwissProt 32.0 10.3 (32%) 54.0 25.8 (48%) 9.9 49 39 (30) 21.5 22.8
Shakespeare 0.9 0.3 (37%) 4.6 3.2 (70%) 0.5 39 35 (29) 26.2 28.2

Table 3 Node identifier lengths and index sizes for path, term and address indexes using theµPID and the Ival node identification schemes,
in bits and Megabytes respectively; forµPID-related indexes, the size relative to that of the Ival index is given in parentheses

Name P-index T-index A-index
Ival µPID Ival µPID

Big10 8.6 1.9 60.1 27.9 4.0
Reuters 19.3 4.1 82.3 38.3 5.2
XMark 1Gb 12.5 2.2 75.6 27.4 5.7
XMark 500 12.1 2.0 72.4 27.1 5.3
XMark 100 10.8 1.8 64.8 28.7 5.0
Fin’l Times 2.9 0.2 54.1 20.4 1.9
LA Times 7.1 1.2 81.3 45.6 3.8
DBLP 17.5 4.0 61.5 28.0 8.7
SwissProt 29.2 9.4 49.3 23.6 9.0
Shakespeare 12.3 4.1 63.1 43.8 6.8
Average 13.2 3.1 66.5 31.1 5.5

Table 4 Relative[%] index sizes with respect to the XML source

of µPIDs significantly reduces the average length ofµPIDs.
This is, because inner nodes have shorter related paths and
thus, identifiers can be far shorter than the maximum length.

It is interesting to note that the effectiveness of theµPID
scheme increases (a) with the size of the XML source and in
particular (b) with an increasingly complex structure. This is,
because (a) increasingly larger sources are, overall, more reg-
ular as theXMark sources show. Sources just get larger, but
their structure does no become more complex when their size

increases beyond a certain point. (b) The XDG effectively en-
codes information about the structure outside the index, elim-
inating redundant storage of structure information with every
index entry.

However, asShakespeareshows, even a small source can
have relatively longµPIDs. This holds when the source is
relatively deep with a few node types but many nodes per
document fragment. This is only typical for document data
with very small units of text. We discuss further aspects of
theµPID scheme throughout this section.

6.3.2 Path index. The size of theµPID P-index relative to
the size of the related XML data source is about 2-4% for
most sources as shown on the left side of Table 4. This means
that arbitrary tree patterns of labeled nodes can be discovered
in, for instance, the 1.2-GigabyteBig10source, using a path
index structure of only 23 Megabytes. At that size, the P-
index can serve as a pure main memory structure, even on an
off-the-shelf desktop computer.

In comparison, for the Ival scheme, an average of four
times as much storage space is required, although less infor-
mation useful for query processing is encoded. Nevertheless,
this size of Ival P-indexes in our implementation is only a
fraction of the size reported in earlier work [71], especially
for indexes stored in a relational database [65].

Integrating Document and Data Retrieval Based on XML 23

The size of the P-index mainly depends on the number
of nodes per content unit and the regularity of a source, as
clearly visible in Tables 2, 3, and 4. For instance,Finan-
cial Timesand LA Timeshave the lowest number of nodes
for their size and therefore, the relatively smallest P-indexes.
In addition, the sparse storage of P-index elements ensures a
sub-linear growth of the P-index with increasing number of
nodes. Figure 14 provides more insights into the effects of
sparse storage.

Big10 Reuters XMark1Gb
DBLP

Financial
Times LA

Times

SwissProt

Shakesp.

0%

20%

40%

60%

80%

100%
Stored size
Stored elements
Single lists

Fig. 14 Storage space for sparse storage compared to full storage
(Stored size), elements actually stored (Stored elements), and num-
ber of P-index lists with only a single entry (Single lists) for the
P-index of eight of the test sources

First, the figure shows around 50% savings in storage
space through sparse storage compared to full storage. These
savings are realized even though no index fields need to be
stored when all elements are stored explicitly. In the worst
case, sparse storage can obviously be more wasteful than full
storage because of these index fields. Hence, sparse storage
with its additional index field is effective at providing a map-
ping from logical to physical node identifiers and still reduces
storage space.

The second value shown in Fig. 14 (Stored elements) rep-
resents the number of elements actually stored versus the total
number of elements represented. As for the relative storage
space,Financial Timeshas by far the lowest value here be-
cause of its very regular structure. Only 7% of all nodes need
to be explicitly represent in the P-index ofFinancial Times.
For most sources, this value is about 30%.

A more detailed comparison between stored and total num-
ber of elements for each list within the P-index is provided in
Fig. 15 forBig10. Big10 comprises 946 node numbers, i.e.,

0

50

100

150

200

250

300

1 40 79 118 157 196 235 274 313 352 391 430 469 508 547 586 625 664 703 742 781 820 859 898 937

XDG node number

Li
st

 e
nt

rie
s

[in
 1

00
0] Total

Stored

Fig. 15 Total vs. actually stored P-index entries for all lists ofBig10

distinct rooted label paths. For most of their related lists, only
a small portion of elements needs to be stored (the figure does
not show the full height of some of the spikes in the graph).
In total, only about 30% of the represented elements are ex-
plicitly stored. Of the 946 stored lists 163 consist of only a
single element, even though there is more than one related
node. The figure also shows that a small number of label paths
comprise the majority of nodes (rooted data paths). These are
likely leaf nodes bearing the main content. Another reason
for some dominant spikes in Fig. 15, however, is the fact that
a few sources contribute the majority of content to the com-
posite sourceBig10.

The third and rightmost value in Fig. 14 (single lists) de-
picts the relative number of lists in the P-index that consist of
only a single element although the total number of elements
represented is larger than one. Like for the two other statis-
tics,SwissProtprofits least from sparse storage, because it is
both very structure-rich and irregular.

6.3.3 Term index. T-indexes are in general much larger than
P-indexes, because information for multiple terms per node
needs to be stored. Compared to the equivalent Ival index,
still savings of roughly 50% to 60% can be observed in Ta-
ble 3. Structural complexity combined with a large number
of distinct terms per node determine the size of a T-index.

Furthermore, terms that occur closer to the root node re-
quire only relatively shortµPIDs to be stored in the T-index.
Figure 16 shows that much of the textual content occurs sig-

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3 4 5 6 7 8 9 10 11 12

Tree depth

W
or

ds

XMark1Gb
Reuters
LA Times

Fig. 16 Textual content at a certain tree depth forXMark 1Gb,
Reuters, andLA Times. Content closer to the root relates to shorter
µPIDs within the T-index

nificantly below the maximum source depths. Therefore, as
for the P-index, the variable length ofµPIDs makes storage
more efficient.

Figure 17 presents details about the length ofµPIDs as
they are stored in the T-index. The average length of their po-
sition numbers is well below their maximum length as listed
in Table 3, because large parts of the textual content require
only relative short position numbers. This is especially clear
for Financial Times.

There are other aspects of a term index that can signifi-
cantly decrease the size of the index. To name just one promi-
nent example, it is well known in document retrieval that the
size of any term index is mostly determined by a few high-
occurrence terms like “the,” “a,” or “it” [8]. These so-called

24 Jan-Marco Bremer, Michael Gertz

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0%

20%

40%

60%

80%

100%

T-
in

de
x

el
em

en
ts

PID position number length [bits]

Reuters
Big10
DBLP
Fin'l Times

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0%

20%

40%

60%

80%

100%

T-
in

de
x

el
em

en
ts

PID position number length [bits]

Reuters
Big10
DBLP
Fin'l Times

Fig. 17 T-index entries perµPID position number length for four
sources. Significant portions of the content requires position num-
bers of a length well below their maximum length

stop wordsare typically left out of the index as they have lit-
tle value in queries, but greatly increase the index size [68].
In data retrieval, stop words have little value, too. Therefore,
stop words can be eliminated from the T-index. Not employed
so far, this would lead to savings in storage space ranging
from 20% forSwissProtwith its little textual content to 34%
for Big10 as shown in Fig. 18. The savings are achieved by

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Stop words eliminated

R
em

ai
ni

ng
 s

iz
e

[%
]

Fin'l Times
SwissProt
Big10

Fig. 18 T-index size on the elimination of then most frequent stop
words out of a list of nearly 600 common English stop words

eliminating about 300 of the most frequent stop words out of
a list of nearly 600 standard English stop words. The 50 to
100 most frequent stop words show the greatest effects.

6.3.4 Address index.The size of an A-index mainly depends
on two parameters of a source: the total number of nodes and
the source size. Every node implies a physical address stored
in the A-index. Bigger sources require longer physical ids.
The A-index sizes as shown in Table 3 reflect these facts. The
A-index sizes are mostly around 5% of the XML source. Only
for the most structure-richDBLP and SwissProtsources, a
higher percentage is required to store their A-index. The op-
posite is true forFinancial Times, because this source con-
tains relatively little structure. Furthermore, the selective elim-
ination of A-index lists related to attributes as discussed above
cuts the index size into half forReuters. For other sources,
savings are smaller but still significant.

6.4 Extended Index Structures

Table 5 provides insights into the storage space required for
adding support of embedded document retrieval to the core
index structures. In addition, the table repeats the sizes of the
core index structures and presents the total size of all, now
extended index structures.

For all data sources, the total size of all indexes combined
is about 50% or less of the size of the related source. This is
remarkable as all earlier index structures have reported index
sizes that exceed the size of the indexed source, although they
support only data retrieval.

Extending the T-index by only a single bit as term counter
requires a TC-index access for all counters greater than one.
However, even a single bit is sufficient to represent most coun-
ters as Fig. 19 clearly shows. For theSwissProt, Reuters,

1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

0%

25%

50%

75%

100%

Counter value

Words
Term counters

Fig. 19 Term counters and total words per counter value from value
1 to 8 for each ofSwissProt, Reuters, Big10, Congr. Record(from
left to right)

Big10, and the TRECCongr. Recordsources, the background
of the figure shows the distribution of counter values. Only
counter values from one to eight are shown. Under counter
value eight, all counters larger than seven are combined. The
more text-rich a source is, the more counters of larger value
need to be stored. In the foreground of the figure, the total
number of terms contributing to a counter of a certain size is
shown for the four XML sources. Together, both graphs can
serve as a signature of a source’s content type.

Traditional document collections have a typical signature
like Congr. Recordon the right side of the figure. ForCongr.
Record, about 70% of the counters are one, although most
terms go into counters of larger value. Thus, 70% of all coun-
ters can be accurately represented in the T-index1-bit that uses
only one bit to represent term counters. On the other hand,
data sets likeSwissProton the left side of Fig. 19 have a clear
peak of the termand term counter distributions at a value of
one. 99% of the counters and 98% of the terms can be found
at value one. ForBig10, the numbers are somewhere in the
middle between the two extremes. 85% of the counters and
54% of the terms can be found at counter size one.

Such term counter distributions suggest that the most ef-
fective support for embedded document retrieval is realized
by extending the T-index by ann-bit counter for a smalln,

Integrating Document and Data Retrieval Based on XML 25

Name P-index A-index DC-index T-index1bit TC-indexmax Total
Big10 23.1 (2%) 51.9 (4%) 9.5 (1%) 360.6 (29%) 83.3 (7%) 533.7 (43%)
Reuters 55.9 (4%) 70.2 (5%) 16.2 (1%) 538.3 (40%) 46.9 (3%) 680.6 (50%)
XMark 1Gb 24.2 (2%) 63.8 (6%) 8.6 (1%) 325.4 (29%) 23.0 (2%) 422.0 (38%)
XMark 500 9.5 (2%) 25.1 (5%) 3.5 (1%) 137.0 (29%) 17.2 (4%) 175.1 (37%)
XMark 100 2.0 (2%) 5.6 (5%) 0.8 (1%) 35.7 (32%) 10.5 (9%) 44.1 (40%)
Fin’l Times 0.9 (0%) 10.5 (2%) 2.0 (0%) 121.1 (22%) 41.4 (7%) 134.5 (24%)
LA Times 5.7 (1%) 18.2 (4%) 4.6 (1%) 224.7 (47%) 34.5 (7%) 253.2 (53%)
DBLP 5.1 (4%) 11.4 (9%) 1.9 (1%) 37.2 (29%) 7.7 (6%) 55.6 (44%)
SwissProt 10.3 (9%) 9.9 (9%) 1.5 (1%) 26.8 (25%) 2.9 (3%) 48.5 (44%)
Shakespeare 0.3 (4%) 0.5 (7%) 0.1 (1%) 3.3 (45%) 0.4 (5%) 4.2 (58%)

Table 5 Sizes of index structures for data retrieval (P-index, A-index, T-index) and extensions for document retrieval (DC-index, TC-index,
single bit in T-index), in Megabytes and percentage of the source size; the total does not include the size of the TC-index

and leaving out the TC-index all together. Ifn is small, the
overhead for regular data retrieval queries is minimal. Every
bit added to the T-index increases the index size by roughly
four percent. That is, for example, about 14 Mb forBig10and
1.5 Mb for DBLP. This overhead is always below the over-
head introduced by the TC-index, which duplicatesµPIDs in
addition to storing counters.

The size of the DC-index is generally very small. Due to
the relatively low variance in DF lengths, DF counters can
be stored in a few bits or even left out completely. This is
very effective for keeping the DC-index size at a negligible
minimum as Table 5 shows.

6.5 Query Processing

We evaluate the query performance of our approach by means
of the example tree patterns given in Table 6. The tree pat-
terns are represented as XPath expressions on different data
sources. Different from earlier approaches, the processing of
path pattern queries–no matter how complex–is a simple iter-
ation through index lists in our approach. This is the fastest
way to process such queries and more efficient than the ex-
ecution of several joins, one for each edge in a pattern. The
path pattern queryQ10 demonstrates the effectiveness of our
approach even on a Gigabyte-size source.

Consequently, all other queries contain a branch point to
allow for a meaningful evaluation of query performance. Ta-
ble 6 presents the cardinality of the input related to both of the
resulting branches. Each of these branches may relate to mul-
tiple node numbers. In this case, multiple joins are executed
and the results are merged afterwards.

For example, the selection branch in queryQ2 resolves
to the two rooted label paths.../play/personae/persona and
.../play/personae/group/persona with node numbers 8 and 10,
respectively. The core execution plan forQ2 is:

[t-seq(“Cleopatra”, 3) �< p-seq(8)]
∪ [t-seq(“Cleopatra”, 3) �< p-seq(10)]

In the plan, 3 is the node number for.../play/title. ’�<’ stands
for the sequential matching of node ids from the two input
lists. This query execution plan represents the most straight-
forward implementation of the algorithm presented in Fig. 12.

For every matching combination of node numbers, the pattern
instance is reconstructed. Options to speed up query execu-
tion, such as merging the lists for node numbers 8 and 10 first,
additional index structures like the small index for each list as
shown in Fig. 7, or an optimized ordering of joins, would im-
prove execution times further. However, these options are not
supported by our system yet.

Table 7 presents query evaluation times for all queries on
an IBM Thinkpad T22 Notebook computer with an Intel Pen-
tium 3 processor running at 900 MHz, 384 Mb of DRAM, and
a 20 Gb (relatively slow Notebook) hard drive. Each query is
run several times consecutively. Reported are the times for the
first (cold started) execution and the average over all execu-
tions. Furthermore, times are reported including the fetching
of content into a JavaStringBuffer (Time w/), and not includ-
ing this content retrieval (Time w/o). In the latter case, the
physical address is still obtained for each document fragment
in a query result.

Table 7 also contains query execution times for theXalan4

DOM implementation, version 2.5, SAXON5, version 8, and
the X-Hive 6.0 system.6 Unfortunately, all these systems re-
quired too much main memory to run most queries to com-
pletion on the test machine. Other native XML database sys-
tems, for example, the latest versions of Qexo7, QuiP8, and
IPSI-XQ9, did not run any of the queries due to lack of mem-
ory. This demonstrates another advantage of our system that
executes queries quickly with minimum memory usage.

It should be noted that the systems used for comparison
employ a query execution model different from our structural
join approach. Thus, their query execution times can only
provide limited means to judge the performance of our im-
plementation. However, unfortunately, there are no other sys-
tems that are based on structural joins freely available as of
now.

Without fetching the related content, almost all queries
can be evaluated within about a second. In general, fetching

4 xml.apache.org/xalan-j/
5 saxon.sourceforge.net
6 www.x-hive.com
7 www.qexo.org
8 developer.softwareag.com/tamino/quip/
9 www.ipsi.fraunhofer.de/oasys/projects/ipsi-xq/indexe.html

26 Jan-Marco Bremer, Michael Gertz

Source Query Path expression Condition Selection Result
Shakespeare Q1 //play[contains(./title, “Cleopatra”)]/personae/persona 1 700 10

Q2 //play[contains(./title, “Cleopatra”)]//persona 1 969 35
DBLP Q3 //article[contains(./author, “Abiteboul”)]/title 49 111,609 49

Q4 //article[./author]/title 221,465 111,609 110,532
Reuters Q5−7 /reuters/newsitem/text[contains(., “<term>”)]/p 4/270/276,899 5,673,107 4/270/237,115
SwissProt Q8 //entry[./features/metal]//author 18,817 566,308 41,519
Big10 Q9 //entry[./features/metal]//author 18,817 566,308 41,519
XMark 1Gb Q10 /site/regions/asia/item[./mailbox/mail/text/keyword] 11,609 20,000 11,609

Q11 //*[contains(., “money”)] 133,494 20,532,978 133,224

Table 6 Example tree patterns in the form of path expressions for different data sources;condition, selection, andresult denote the num-
ber of instances related to the condition and selection paths, and the result, respectively.<term> here stands for “macht,” “market,” and
“stockmarket” in queriesQ5, Q6, andQ7, respectively. The terms occur in up to 197 different node types.

Shakespeare DBLP Reuters SwissProt Big10 XMark1Gb
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Time w/o first 33 ms 40 ms 80 ms 330 ms 1.1 s 1.4 s 8.4 s 1.5 s 0.8 s 80 ms 4.5 s
avg 1 ms 2 ms 22 ms 250 ms 1.0 s 1.4 s 4.5 s 0.5 s 0.5 s 15 ms 3.6 s

Time w/ first 100 ms 130 ms 100 ms 5 s 1.2 s 1.5 s 62 s 3.0 s 2.8 s 800 ms 54.7 s
avg 13 ms 18 ms 25 ms 5 s 1.1 s 1.5 s 61 s 1.7 s 1.7 s 490 ms 54.4 s

Xalan DOM avg 3.9 s 4.3 s
Saxon avg 1.8 s 1.5 s
X-Hive avg 1.8 s 1.9 s

Table 7 Query evaluation times for the queries from Table 6. For our implementation, every time is given as the time of the first execution
(first) and the average over 10 to 100 consecutive runs.Time w/oandTime w/denote the time excluding (w/o) or including the fetching of
the related text content from the respective sources. Times for the other systems are comparable withTime w/and reported for all queries that
did not run out of memory before completion.

the content of result fragments adds a significant amount of
time, which depends on how much text content each docu-
ment fragment contains. The times clearly depend on the car-
dinality of the input data as, for instance, queriesQ3 andQ4

demonstrate. The selectivity of the full tree pattern only plays
a role in that it determines the number and kind of accesses to
the A-index. As the only index, the A-index provides for both
a direct access to each element and a sequential scan. There-
fore, for selective results, single addresses can be accessed
without using an iterator.

The input cardinalities shown in Table 6 are relatively
small, because they are based on full path patterns instead of
just node labels. Thus, the limited size of the input is not due
to simplicity of the example query, but rather a main advan-
tage of our indexing and query evaluation approach. Contrary
to most existing approaches [3,46,56,65,71], our approach
exploits the selectivity of full path patterns as they are part of
the tree pattern query to limit the input.

For example, in order to process a query such asQ8 there
is only one main join besides fetching physical addresses.
The join resembles the query pattern from the path patterns
for the selection and condition paths. This requires 18,817
+ 566,308 = 585,125 element accesses. In most existing ap-
proaches, index lists for the pairs of node typesentry-features,
features-metal, andentry-authorsneed to be joined, adding
joins for 50,000entryand 40,925featureslist elements.

The conceptually different processing of queries makes it
difficult to directly compare query execution times of our and
earlier approaches. However, in general, the queries we have
used for experiments are more complex than reported in pre-
vious work. The query processing times presented here are
still below such as reported earlier. For instance, Al-Khalifa
et al. [3] report execution times of a single join in the sec-
onds range on a data set comparable toXMark 1Gb, a 500
MHz Pentium 3, and a larger cache than in our case. A query
like Q10 onXMark 1Gb, however, would require several such
joins. Furthermore, the experiments of Al-Khalifa et al. [3] do
not include any content access.

Other advantages of our approach are demonstrated by
queriesQ8 andQ9. The construction of node ids and their
storage only depend on their local context within a source.
Therefore, the queries take almost the same amount of time
independent of whether they are executed onSwissProtor on
the ten times as largeBig10 source that containsSwissProt.
In fact, onBig10 query execution was consistently slightly
faster–likely because of a more favorable location of the in-
dexes on disk.

QueryQ11 demonstrates the system’s ability to deal with
expensive queries–the term “money” occurs 133,494 times
in a total of 197 different node types and thus, T-index sub-
lists. Furthermore, without the additional A-index access, the
execution ofQ11 is very similar to the implementation of em-
bedded document retrieval. Instead of joins with P-index lists,

Integrating Document and Data Retrieval Based on XML 27

embedded document retrieval employs joins with an interme-
diate fragment sequence and its associated term counters (see
the algorithm in Fig. 13). Conceptually both kinds of joins
are identical.

For XMark 1Gb, Fig. 20 shows the time it takes to accu-
mulate counters for a hypothetical sequence of 10,000 frag-

XMark 1Gb Term Counter Accumulation

1
10
100

1,000
10,000
100,000

1,000,000

0
30
0
1,0
00
2,1
00
3,6
00
5,5
02
8,5
10

15
,51
7

26
,51
8

43
,31
5

69
,10
4

10
6,3
31

18
5,2
41

31
8,8
39

73
5,4
69

Term occurrences

A
cc

um
ul

at
io

n
tim

e
[m

s]

Fig. 20 Accumulating term counters with increasing number of oc-
currences fromXMark 1Gbfor a fragment sequence of 10,000 ele-
ments

ments, and for terms with increasing total number of occur-
rences. As the worst case experiment, always the full sequence
was joined with all term-related T-index lists. That is, each
entry in each such term list was checked against each root
node in the fragment sequence.

In other words, the fragment sequence was assumed to
consist of 10,000 duplicates of the fullXMark 1Gbsource,
the largest possible fragment that can be selected from the
source. Yet, the system did not know about duplicates and
thus, it did all the checks for descendant nodes and all the
counter accumulation as described in the algorithm in Fig. 13.
If the fragments would have been selected from a much larger
source (and not just duplicates of one complete source), then
that source would have to be at least 10 Terabytes large. Al-
though T-index lists for such a source would be longer, too,
this gives some impression of the magnitude of the experi-
ment.

Figure 20 shows that, as expected, the execution time grows
at most linearly with the number of occurrences of query
terms. Even in this worst case scenario, the accumulation
takes only about one second for a term occurring 4,500 times
in XMark 1Gb. At this occurrence frequency this term is likely
a stop word. Thus, for any meaningful query term, the accu-
mulation time can be expected to stay below a second. For a
term occurring only a few hundred times–this is likely a term
more significant for document retrieval–the time is reduced
to under 100 ms. For other sources, the graph is very similar
to Fig. 20.

In summary, the experiments in this section have shown
that the node identification and indexing scheme proposed
in this paper is extremely storage-efficient. Furthermore, the
experiments suggest that the index structures can efficiently
support both data retrieval and embedded document retrieval.

However, so far, there are almost no systems available for
comparison that are able to work on sources of any signif-
icant size, and obviously, there is no established framework
for testing the efficient execution of integrated information
retrieval queries. This naturally limits the expressiveness of
the presented experiments for query execution.

7 Related Work

We classify related work into (1) data retrieval approaches
and their supporting index structures and underlying node
identification schemes, and (2) extensions of data retrieval
schemes to support document retrieval.

7.1 Data Retrieval

Our approach is based on structural joins on custom-tailored
inverted files [68] as earlier approaches for XML [3,46,56,
71]. (In the general context of semistructured data, there is
earlier work on structural joins, e.g., by Jagadish et al. [43]
and work cited therein.) Different from our approach, these
schemes exclusively rely on interval node identifiers [2], do
not group these identifiers by node type, and commonly ne-
glect storage efficiency.

Through extensive materialization of common index ac-
cess paths, Chien et al. [21] improve on the basic structural
join approach of Al-Khalifa et al. [3], yet neglect index sizes.
Bruno, Koudas, and Srivastava [17] present the most effec-
tive structural join algorithms so far, but also rely on a more
extensive index structure. Still based on binary node relation-
ships, their approach exploits the selectivity of the full query
pattern to reduce intermediate query results. We achieve the
same advantage by directly matching full path patterns, yet
at index sizes of less than half of the indexed source. Further-
more, as briefly discussed in Sect. 4.4 and shown in Fig. 6, our
indexing scheme can be extended in a fashion comparable to
earlier work [17,21] with acceptable storage overhead. More-
over, so far, storage efficiency of our approach is achieved
without applying index compression techniques as discussed,
for instance, by Witten, Moffat, and Bell [68]. Such compres-
sion can still be applied to the proposed index structures.

Work on node identification schemes for tree and graph
structures in general originates from Peleg [53] and Santoro
and Kathib [60], but does not include efficiently encoded path
identifiers. The interval node identification scheme as dis-
cussed in detail by Abiteboul, Kaplan, and Milo [2] encodes
less information thanµPIDs, but still results in larger indexes
as shown in Sect. 6 and our earlier work [15]. Sacks-Davis et
al. [57] introduce path identifiers similar toµPIDs, but with
an encoding that does not allow for quickly checking parent-
child and ancestor-descendant relationships. Moreover, they
do not discuss how to efficiently map their path identifiers to
physical addresses. In our approach, node ids directly include
information about where to find related physical addresses.
This direct mapping is the most efficient way to map logical
to physical identifiers [30].

28 Jan-Marco Bremer, Michael Gertz

TheµPIDs scheme is a prefix-based approach like the one
discussed by Kaplan, Milo, and Shabo [44]. UnlikeµPIDs
their identifiers have a guaranteed length of O(log n) bits for
a source ofn nodes while, however, being less suitable for
efficient query processing. Furthermore, storage efficiency is
not only a matter of short, single ids, but also of density of
the index structures that use them as we have shown here.

With respect to structural join approaches, only Li and
Moon [46] address node identifiers that support data inser-
tions. OurµPID scheme can be extended in an analogous
fashion. Furthermore, more dynamic node identifiers are dis-
cussed by Cohen, Kaplan, and Milo [24], but, compared to
µPIDs, the presented approach is weaker in its direct sup-
port of pattern queries. Different node ids for structural joins
with the same drawbacks and in addition, an extensive storage
overhead, are compared by Tatarinov et al. [65] on indexes
(and content) stored in a relational database. Also based on
structural joins over relations, Yoshikawa et al. [70] extend
a basic interval node id scheme by information about related
rooted label paths, but without encoding the full rooted data
path in every node id as in our approach.

DataGuides as underlying our approach were introduced
by Goldman and Widom [36], and first used within the Lore
system [48]. However, query processing in Lore as well as
in the more recent Natix XML data management system [32]
builds on pointer chasing in secondary memory, which has
been shown to be relatively inefficient compared to set-based
query processing approaches [63]. Other indexing approaches
for XML [23,25,49] support only limited kinds of queries
and are unsuitable to be extended for ranked document re-
trieval.

As a general observation, most of the existing work is
evaluated based on very small test data, whose size often
resembles only a tiny fraction of the total main memory of
the computer the tests were run on. It is not untypical to find
Shakespeareor even only parts of it being used for the eval-
uations. In our work, we avoid such pitfalls by using more
realistic data as Sect. 6 shows.

7.2 Document Retrieval Extensions

In the area of classical document retrieval, passage retrieval
[45,58] can be seen as a document retrieval extension of a
rudimentary data retrieval approach. However, passage re-
trieval lacks a ranking of a dynamically established input as
in our scheme. Similarly, other approaches [34,40,50,64,66]
exploit structural information of XML to improve the weight-
ed ranking of documents without abandoning the notion of a
mostly static collection of (sub-)documents. Based on a sim-
ple structural join approach, both Myaeng et al. [50] and Shin
et al. [64] also rely on an inefficient node identification and
thus, indexing scheme.

Fuhr and Grossjohann [35] extend a general XML query
language by a document retrieval operator, which, however,
does not provide for meaningful, arbitrarily nested sub-que-
ries. With the same limitation, Grabs and Schek [38] gener-
alize the approach of dynamically accumulating biased term

weights within a tree structure as underlying Fuhr and Grossjo-
hann’s work [35]. The biased term accumulation employed in
both approaches can be applied in our approach as well. Re-
cently, Al-Khalifa, Yu, and Jagadish [4] have applied the clas-
sical structural join algorithm [3] to accumulate term coun-
ters, which are used as the sole means to obtain relevant doc-
ument fragments of arbitrary type. Our retrieval approach is
conceptually different from theirs by ranking a more homo-
geneous set of document fragments previously selected by a
precise sub-query.

Different from our approach, the focused text search in hi-
erarchical structures proposed by Jacobsen et al. [42], the ex-
tension of an XML query language by Florescu, Kossmann,
and Manolescu [33], the Proximal Nodes and related mod-
els [7,51], and finally, the algebra for structured text search
proposed by Callan, Croft, and Broglio [19] are all limited
to Boolean keyword searches without support for a weighted
ranking of dynamic sequences of document fragments. XQue-
ry/IR [13,14] is also more expressive than existing text re-
trieval extensions of relational and object-oriented databases
[5,29,47,69]. These extensions require a user to decide on a
static document collection beforehand and not within a query,
or do not support a weighted ranking at all.

Recently, the XQuery and XPath full-text requirements
[18] introduced a scoring mechanism for XQuery that largely
follows our proposal for such an operator [14]. A notable dif-
ference is that we chose an implicit sorting of ranked results,
because this allows for a more flexible limiting of the result
to the most relevant fragments, and the related statement pro-
vides the user with additional means to influence the rank-
ing procedure. XQuery’s full-text requirements rely on the
existing order by clause to sort the result according to the
assigned score. Botev, Amer-Yahia, and Shanmugasundaram
[6] proposed TeXQuery, which extends XQuery by full-text
search capabilities as well. They emphasize completeness of
the extended language [11], while we focus especially on an
efficient implementation of dynamic ranking. Therefore, our
contributions are complementary to their work and can serve
as the core of an efficient implementation of TeXQuery.

Schlieder and Meuss [61] discuss the matching of so-
called structural terms, i.e., terms embedded into a labeled
tree, against a single XML source. As in our approach, their
goals are the integration of document and data retrieval, and
dynamic ranking. However, while extending standard docu-
ment retrieval, their approach does not provide for a full data
retrieval language. Instead of using known ranking schemes
on an arbitrary but given sequence of document fragments,
they rely on an ad-hoc ranking formula for all sub-trees of
a source that satisfy a certain text pattern. Their prototypical
implementation can benefit from the index structures intro-
duced in this paper.

8 Conclusions and Future Research

We introduced Integrated Information Retrieval (IIR), a con-
ceptually new approach to integrated data and document re-
trieval based on XML. In IIR, ranked document retrieval is

Integrating Document and Data Retrieval Based on XML 29

embedded into an XML query language, working on arbi-
trary, intermediate sequences of document fragments (DFSs).
In particular, IIR provides for a meaningful nesting of data
and document retrieval sub-queries, which allows for answer-
ing new kinds of queries. Although based on XML at present,
IIR can be employed in, e.g., relational databases, there elimi-
nating the need to decide on a single, static view of a database
as document collection.

Furthermore, we discussed the syntax and semantics of
XQuery/IR, an extension of the XQuery language that allows
a user to employ IIR. Finally, we detailed an efficient realiza-
tion of IIR in terms of supporting index structures and effi-
cient query processing.

For this realization, we have introduced a new node iden-
tification scheme calledµPIDs (“micro path identifiers”) that
encodes rooted data paths. We have shown thatµPIDs, when
they are used in index structures for XML tree pattern match-
ing, provide for very small index structures. Discovery of
tree patterns based on node labels can be supported with a
(path) index size of only 2-4% of the indexed source. Adding
support for term containment conditions, weighted ranking
of arbitrary, intermediate sequences of document fragments,
and the mapping of logicalµPIDs to physical addresses still
leaves the total index size at only about half of the size of
the indexed source. The typical path index structure is about
80%, the term index structure 50% smaller than the most stor-
age efficient index implementation we provide for the widely
used interval node identification scheme.

Our studies are based on a significant number of large,
heterogenous XML sources of different structural complex-
ity. This variety of test sources also provides detailed insights
into dependencies between source properties and index sizes,
and can guide future research on semistructured and XML
data. In this paper, by giving background information and dis-
cussing realization alternatives, it has been our explicit goal
to initiate future research on IIR and to present a fresh ap-
proach to data retrieval for XML.

There are several areas worthwhile for future research.
To name just a few, we are presently seeking to integrate the
different query processing alternatives as discussed into a co-
herent framework. Furthermore, we are investigating how in-
dex compression techniques will allow for a further reduc-
tion of index sizes. Finally, we are interested in which exist-
ing weighting algorithms are particularly suitable for ranking
dynamic document fragment sequences, or whether new al-
gorithms are advisable.

Acknowledgements

We thank the reviewers for their thoughtful and valuable sug-
gestions on the draft of this paper. We also thank Reuters for
providing us with the Reuters Corpus.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From
Relations to Semistructured Data and XML. Morgan Kauf-

mann, San Francisco (2000)
2. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes

for ancestor queries. In: 12th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). (2001) 547–556

3. Al-Khalifa, S., Jagadish, H., Koudas, N., Patel, J.M., Srivas-
tava, D., Wu, Y.: Structural joins: A primitive for efficient XML
query pattern matching. In: Proceedings of the IEEE Int’l Con-
ference on Data Engineering (ICDE). (2002) 141–152

4. Al-Khalifa, S., Yu, C., Jagadish, H.: Querying structured text
in an XML database. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. (2003) 4–15

5. Alonso, O.: Oracle text white paper. Technical report, Oracle
Corp., Redwood Shores, U.S.A. (2001)

6. Amer-Yahi, S., Botev, C., Shanmugasundaram, J.: TeXQuery:
A full-text search extension to XQuery. In: Proceedings of the
13th World Wide Web Conference. (2004) 583–594

7. Baeza-Yates, R.A., Navarro, G.: Integrating contents and struc-
ture in text retrieval. SIGMOD Record25 (1996) 67–79

8. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Re-
trieval. Addison-Wesley (1999)

9. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F.,
Kay, M., Robie, J., Siḿeon, J.: XML Path Language
(XPath) 2.0. W3C working draft, W3C (Nov. 2003)
www.w3.org/TR/2003/WD-xpath20-20031112.

10. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie,
J., Siḿeon, J.: XQuery 1.0: An XML query language. W3C
working draft, W3C (Nov. 2003) www.w3.org/TR/2003/WD-
xquery-20031112/.

11. Botev, C., Amer-Yahia, S., Shanmugasundaram, J.: On the com-
pleteness of full-text search languages for XML. Technical re-
port, Cornell University. (Dec. 2003)

12. Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E.,
Yergeau, F., Cowan, J.: Extensible Markup Language
(XML) 1.1. W3C recommendation, W3C (Feb. 2004)
www.w3.org/TR/2004/REC-xml11-20040204.

13. Bremer, J.-M., Gertz, M.: Query processing and index struc-
tures for integrated XML document and data retrieval. Tech-
nical Report CSE-2002-22, Department of Computer Science,
University of California at Davis (2002)

14. Bremer, J.-M., Gertz, M.: XQuery/IR: Integrating XML docu-
ment and data retrieval. In: Proceedings of the 4th International
Workshop on the Web and Databases (WebDB). (2002) 1–6

15. Bremer, J.-M., Gertz, M.: An efficient XML node identification
and indexing scheme. Techn. Report CSE-2003-04, Department
of Computer Science, University of California at Davis (2003)

16. Brin, S., Page, L.: The anatomy of a large scale hypertextual
Web search engine. In: 7th World Wide Web Conference, Else-
vier Science (1998) 107–117

17. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: Op-
timal XML pattern matching. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data.
(2002) 310–311

18. Buxton, S., Rys, Michael: XQuery and XPath full-text
requirements. W3C working draft, W3C (May 2003)
www.w3.org/TR/2003/WD-xquery-full-text-requirements-
20030502/.

19. Callan, J., Croft, W.B., Broglio, J.: TREC and Tipster experi-
ments with InQuery. Information Processing and Management
31 (1995) 327–332,343

20. Chamberlin, D., Frankhauser, P., Florescu, D., Marchiori, M.,
Robie, J.: XML query use cases. W3C working draft,
W3C (Nov. 2003) www.w3.org/TR/2003/WD-xmlquery-use-
cases-20031112/.

30 Jan-Marco Bremer, Michael Gertz

21. Chien, S.Y., Vagena, Z., Zhang, D., Tsotras, V.J., Zaniolo, C.:
Efficient structural joins on indexed XML documents. In: Pro-
ceedings of the 28th International Conference on Very Large
Data Bases (VLDB). (2002) 263–274

22. Chinenyanga, T.T., Kushmerick, N.: An expressive and efficient
language for XML information retrieval. In: Proceedings of
24th International ACM SIGIR Conference on Research and
Development in Information Retrieval. (2001) 163–171

23. Chung, C.W., Min, J.K., Shim, K.: Apex: An adaptive path in-
dex. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. (2002) 121–132

24. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees.
In: Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS). (2002)
271–281

25. Cooper, B.F., Samle, N., Franklin, M.J., Hjaltson, G.R., Shad-
mon, M.: A fast index for semistructured data. In: Proceedings
of the 27th International Conference on Very Large Data Bases
(VLDB). (2001) 341–250

26. Cowan, J., Tobin, R.: XML Information Set (Sec-
ond Edition). W3C recommendation, W3C (Feb. 2004)
www.w3c.org/TR/2004/REC-xml-infoset-20040204.

27. Croft, W.B.: “What do people want from information re-
trieval?”. d-lib Magazine (1995)

28. DeHaan, D., Toman, D., Consens, M.P.,Özsu, M.T.: A Com-
prehensive XQuery to SQL Translation Using Dynamic Interval
Encoding. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. (2003) 623–634

29. Dessloch, S., Mattos, N.M.: Integrating SQL databases with
content-specific search engines. In: Proceedings of the 23rd
International Conference on Very Large Databases (VLDB).
(1997) 528–537

30. Eickler, A., Gerlhof, C.A., Kossmann, D.: A performance eval-
uation of OID mapping techniques. In: Proceedings of the 21th
International Conference on Very Large Databases (VLDB).
(1995) 18–29

31. Ferńandez, M., Marsh, J., Malhotra, A., Nagy, M., Walsh,
N.: XQuery 1.0 and XPath 2.0 data model. W3C work-
ing draft, W3C (Nov. 2003) www.w3.org/TR/2003/WD-xpath-
datamodel-20031112.

32. Fiebig, T., Helmer, S., Kanne, K.C., Moerkotte, G., Neumann,
J., Schiele, R.: Anatomy of a native XML base management
system. The VLDB Journal (2002) 292–314

33. Florescu, D., Kossmann, D., Manolescu, I.: Integrating key-
word search into XML query processing. In: Proceedings of the
9th International Word Wide Web Conference/Computer Net-
works. Number 33(1-6) (2000) 119–135

34. Fuhr, N., G̈overt, N., Kazai, G., Lalmas, M.: INEX: Initia-
tive for the evaluation of XML retrieval. In: Proceedings of
the ACM SIGIR 2002 Workshop on XML and Information Re-
trieval. (2002)

35. Fuhr, N., Grossjohann, K.: XIRQL: A query language for in-
formation retrieval in XML documents. In: Proceedings of 24th
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. (2001) 172–180

36. Goldman, R., Widom, J.: DataGuides: Enabling query formu-
lation and optimization in semistructured databases. In: Pro-
ceedings of the 23rd International Conference on Very Large
Databases (VLDB). (1997) 436–445

37. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for pro-
cessing XPath queries. In: Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB). (2002) 95–106

38. Grabs, T., Schek, H.J.: Generating vector spaces on-the-fly for
flexible XML retrieval. In: Proceedings of the ACM SIGIR
2002 Workshop on XML and Information Retrieval. (2002)

39. Graefe, G.: Query evaluation techniques for large databases.
ACM Computing Surveys25 (1993) 73–169

40. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRank:
Ranked keyword search over XML documents. In: Proceedings
of the ACM SIGMOD International Conference on Manage-
ment of Data. (2003) 16–27

41. Holmes, N.: The great term robbery. Computer34 (2001)
96,94–95

42. Jacobsen, G., Krishnamurthy, B., Srivastava, D., Suciu, D.: Fo-
cusing search in hierarchical structure with directory sets. In:
7th International Conference on Information and Knowledge
Management (CIKM). (1998) 1–9

43. Jagadish, H., Lakshmanan, L.V., Milo, T., Srivastava, D., Vista,
D.: Querying network directories. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data.
(1999) 133–144

44. Kaplan, H., Milo, T., Shabo, R.: A comparison of labeling
schemes for ancestor queries. In: 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). (2002) 954–963

45. Kaszkiel, M., Zobel, J., Sacks-Davis, R.: Efficient passage rank-
ing for document databases. ACM Transactions on Information
Systems17 (1999) 406–439

46. Li, Q., Moon, B.: Indexing and querying XML data for regular
path expressions. In: Proceedings of the 27th International Con-
ference on Very Large Data Bases (VLDB). (2001) 361–370

47. Maier, A., Novak, H.J.: DB2’s full-text search products – white
paper. Technical report, International Business Machines Corp.
(2001) www.ibm.com/software/data/pubs/papers/whitense
/whitense.pdf.

48. McHugh, J., Widom, J., Abiteboul, S., Luo, Q., Rajaraman, A.:
Indexing semistructured data. Technical report, Stanford Uni-
versity, Stanford, California (1998)

49. Milo, T., Suciu, D.: Index Structures for Path Expressions. In:
7th International Conference on Database Theory (ICDT99).
Volume 1540 of Lecture Notes in Computer Science (LNCS).
Springer (1999) 277–295

50. Myaeng, S.H., Jang, D.H., Kim, M.S., Zhoo, Z.C.: A flexi-
ble model for retrieval of SGML documents. In: Proceedings
of 21th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, ACM Press
(1998) 138–145

51. Navarro, G., Baeza-Yates, R.: Proximal Nodes: A model to
query document databases by content and structure. ACM
Transactions on Information Systems15 (1997) 401–435

52. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object ex-
change across heterogeneous information sources. In: Proceed-
ings of the 11th International Conference on Data Engineering
(ICDE). (1995) 251–260

53. Peleg, D.: Informative labeling schemes for graphs. In: Pro-
ceedings of the 25th International Symposium on Mathemati-
cal Foundations of Computer Science. Volume 1893 of Lecture
Notes in Computer Science (LNCS), Springer (2000)

54. Reuters Corpus, Volume 1, English language,
1996-08-20 to 1997-08-19, release data 2000-11-
03 Format version 1, correction level 0 (2000)
about.reuters.com/researchandstandards/corpus/index.asp.

55. van Rijsbergen, C.J.: Information Retrieval. 2nd edn. Butter-
worths (1979)

Integrating Document and Data Retrieval Based on XML 31

56. Rizzolo, F., Mendelzon, A.: Indexing XML data with Toxin. In:
Proceedings of the 3rd International Workshop on the Web and
Databases (WebDB). (2001) 49–54

57. Sacks-Davis, R., Dao, T., Thom, J.A., Zobel, J.: Indexing doc-
uments for queries on structure, content and attributes. In: Pro-
ceedings of the International Symposium on Digital Media In-
formation Base. (1997) 236–245

58. Salton, G., Allan, J., Buckley, C.: Approaches to passage re-
trieval in full text information systems. In: Proceedings of 16th
International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, ACM Press (1993) 49–58

59. Salton, G., McGill, M.J.: Introduction to Modern Information
Retrieval. McGraw-Hill (1983)

60. Santoro, N., Khatib, R.: Labeling and implicit routing in net-
works. The Computer Journal28 (1985) 5–8

61. Schlieder, T., Meuss, H.: Querying and ranking XML docu-
ments. Journal of the American Society for Information Science
and Technology (JASIST) 53(6) (2002) 489–503

62. Schmidt, A.R., Waas, F., Kersten, M.L., Manolescu, I., Carey,
M.J., Manolescu, I., Busse, R.: XMark: A benchmark for XML
data management. In: Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB). (2002) 974–
985

63. Shekita, E.J., Carey, M.J.: A performance evaluation of pointer-
based joins. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. (1990) 300–311

64. Shin, D., Jang, H., Jin, H.: BUS: An effective indexing and
retrieval scheme in structured documents. In: Proceedings of
the 3rd ACM Int’l Conference on Digital Libraries. (1998) 235–
243

65. Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J.,
Shekita, E., Zhang, C.: Storing and querying ordered XML us-
ing a relational database system. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data.
(2002) 204–215

66. Theobald, A., Weikum, G.: Adding relevance to XML. In:
Proceedings of the 3rd International Workshop on the Web and
Databases (WebDB). LNCS 1997, Springer (2001) 105–124

67. Tolani, P.M., Haritsa, J.R.: XGRIND: A query-friendly XML
compressor. In: Proceedings of the 18th International Confer-
ence on Data Engineering (ICDE). (2002) 225–234

68. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes –
Compressing and Indexing Documents and Images. 2nd edn.
Morgan Kaufmann (1999)

69. Yan, T.W., Annevelink, J.: Integrating a structured-text retrieval
system with an object-oriented database system. In: Proceed-
ings of the 20th International Conference on Very Large Data
Bases (VLDB). (1994) 740–749

70. Yoshikawa, M., Amagasa, T., Shimura, T., Shunsuke, U.: XRel:
A path-based approach to storage and retrieval of XML docu-
ments using relational databases. ACM Transactions on Internet
Technology1 (2001) 110–141

71. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On
supporting containment queries in relational database manage-
ment systems. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. (2001) 425–436

