
Distributed Database
Management Systems

Distributed DBMS

Outline
 Introduction
 Distributed DBMS Architecture
 Distributed Database Design
 Distributed Query Processing
 Distributed Concurrency Control
 Distributed Reliability Protocols

Distributed DBMS

Outline
 Introduction

 What is a distributed DBMS
 Problems
 Current state-of-affairs

 Distributed DBMS Architecture
 Distributed Database Design
 Distributed Query Processing
 Distributed Concurrency Control
 Distributed Reliability Protocols

Distributed DBMS

Motivation

Database
Technology

Computer
Networks

integration distribution

integration

integration ≠ centralization

Distributed
Database
Systems

Distributed DBMS

What is a Distributed Database
System?

A distributed database (DDB) is a collection of multiple,
logically interrelated databases distributed over a
computer network.

A distributed database management system (D–DBMS) is
the software that manages the DDB and provides an
access mechanism that makes this distribution
transparent to the users.

Distributed database system (DDBS) = DDB + D–DBMS

Distributed DBMS

Centralized DBMS on Network

Communication
Network

Site 5

Site 1

Site 2

Site 3Site 4

Distributed DBMS

Distributed DBMS Environment

Communication
Network

Site 5

Site 1

Site 2

Site 3Site 4

Distributed DBMS

Implicit Assumptions
 Data stored at a number of sites  each site

logically consists of a single processor.
 Processors at different sites are interconnected

by a computer network  no multiprocessors
 parallel database systems

 Distributed database is a database, not a
collection of files  data logically related as
exhibited in the users’ access patterns
 relational data model

 D-DBMS is a full-fledged DBMS
 not remote file system, not a TP system

Distributed DBMS

Distributed DBMS Promises

 Transparent management of distributed,
fragmented, and replicated data

 Improved reliability/availability through
distributed transactions

 Improved performance

 Easier and more economical system expansion

Distributed DBMS

Transparency
 Transparency is the separation of the higher

level semantics of a system from the lower level
implementation issues.

 Fundamental issue is to provide
data independence

 in the distributed environment

 Network (distribution) transparency

 Replication transparency

 Fragmentation transparency
horizontal fragmentation: selection
vertical fragmentation: projection
hybrid

Distributed DBMS

Example

TITLE SAL

PAY

Elect. Eng. 40000
Syst. Anal. 34000
Mech. Eng. 27000
Programmer 24000

PROJ

PNO PNAME BUDGET

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP

ENO PNO RESP

E1 P1 Manager 12

DUR

E2 P1 Analyst 24
E2 P2 Analyst 6
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E5 P2 Manager 24
E6 P4 Manager 48
E7 P3 Engineer 36

E8 P3 Manager 40

ASG

P1 Instrumentation 150000

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000

E7 P5 Engineer 23

Distributed DBMS

Transparent Access

SELECT ENAME,SAL

FROM EMP,ASG,PAY

WHERE DUR > 12

AND EMP.ENO = ASG.ENO

AND PAY.TITLE = EMP.TITLE
Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects
Paris projects
New York projects
 with budget > 200000
Montreal employees
Montreal assignments

Boston

Communication
Network

Montreal

Paris

New
York

Boston projects
Boston employees
Boston assignments

Boston projects
New York employees
New York projects
New York assignments

Tokyo

Distributed DBMS

Distributed Database

Distributed Database –
User View

Distributed DBMS

Distributed DBMS - Reality

Communication
Subsystem

User
Query

DBMS
Software

DBMS
Software User

Application

DBMS
Software

User
ApplicationUser

Query
DBMS

Software

User
Query

DBMS
Software

Distributed DBMS

Potentially Improved
Performance

 Proximity of data to its points of use

 Requires some support for fragmentation and replication

 Parallelism in execution

 Inter-query parallelism

 Intra-query parallelism

Distributed DBMS

Parallelism Requirements

 Have as much of the data required by each
application at the site where the application
executes

 Full replication

 How about updates?

 Updates to replicated data requires implementation of
distributed concurrency control and commit protocols

Distributed DBMS

System Expansion

 Issue is database scaling

 Emergence of microprocessor and workstation
technologies

 Demise of Grosh's law

 Client-server model of computing

 Data communication cost vs telecommunication
cost

Distributed DBMS

Distributed DBMS Issues
 Distributed Database Design

 how to distribute the database

 replicated & non-replicated database distribution

 a related problem in directory management

 Query Processing
 convert user transactions to data manipulation instructions

 optimization problem

 min{cost = data transmission + local processing}

 general formulation is NP-hard

Distributed DBMS

Distributed DBMS Issues

 Concurrency Control
 synchronization of concurrent accesses

 consistency and isolation of transactions' effects

 deadlock management

 Reliability
 how to make the system resilient to failures

 atomicity and durability

Distributed DBMS

Directory
Management

Relationship Between Issues

Reliability

Deadlock
Management

Query
Processing

Concurrency
Control

Distribution
Design

Distributed DBMS

Outline
 Introduction
 Distributed DBMS Architecture

 Implementation Alternatives
Component Architecture

 Distributed Database Design
 Distributed Query Processing

 Distributed Concurrency Control
 Distributed Reliability Protocols

Distributed DBMS

DBMS Implementation
Alternatives

Distribution

Heterogeneity

Autonomy

Client/server

Peer-to-peer
Distributed DBMS

Federated DBMS

Distributed
multi-DBMS

Multi-DBMS

Distributed DBMS

Dimensions of the Problem
 Distribution

 Whether the components of the system are located on the same
machine or not

 Heterogeneity
 Various levels (hardware, communications, operating system)
 DBMS important one

 data model, query language,transaction management algorithms
 Autonomy

 Not well understood and most troublesome
 Various versions

 Design autonomy: Ability of a component DBMS to decide on
issues related to its own design.

 Communication autonomy: Ability of a component DBMS to
decide whether and how to communicate with other DBMSs.

 Execution autonomy: Ability of a component DBMS to execute
local operations in any manner it wants to.

Distributed DBMS

Datalogical Distributed
DBMS Architecture

...

...

...

ES1 ES2 ESn

GCS

LCS1 LCS2 LCSn

LIS1 LIS2 LISn

Distributed DBMS

Datalogical Multi-DBMS
Architecture

...

GCS… …

GES1

LCS2 LCSn…

…LIS2 LISn

LES11 LES1n LESn1 LESnm

GES2 GESn

LIS1

LCS1

Distributed DBMS

Clients/Server

Communications

Client
Services

Applications

Communications

DBMS Services

LAN
High-level
requests

Filtered
data only

Communications

Client
Services

Applications

Communications

Client
Services

Applications

Database

Multiple client/single server

Distributed DBMS

Task Distribution
Application

Communications Manager

Communications Manager

Lock Manager

Storage Manager
Page & Cache Manager

Query Optimizer

QL
Interface

Programmatic
Interface…

SQL
query

result
table

Database

Distributed DBMS

Advantages of Client-
Server Architectures

 More efficient division of labor

 Horizontal and vertical scaling of resources

 Better price/performance on client machines

 Ability to use familiar tools on client machines

 Client access to remote data (via standards)

 Full DBMS functionality provided to client
workstations

 Overall better system price/performance

Distributed DBMS

Problems With Multiple-
Client/Single Server

 Server forms bottleneck

 Server forms single point of failure

 Database scaling difficult

Distributed DBMS

Multiple Clients/Multiple Servers

Communications

Client
Services

Applications

LAN

 directory

 caching

 query decomposition

 commit protocols

Communications

DBMS Services

Database

Communications

DBMS Services

Database

Distributed DBMS

Server-to-Server

Communications

DBMS Services

LAN

Communications

DBMS Services

 SQL interface

 programmatic
interface

 other application
support
environments

Communications

Client
Services

Applications

Database Database

Distributed DBMS

Peer-to-Peer
Component Architecture

Database

DATA PROCESSORUSER PROCESSOR

USER

User
requests

System
responses

External
Schema

U
se

r
In

te
rf

a
ce

H
a

n
d

le
r

Global
Conceptual

Schema

S
em

a
n

ti
c

D
a

ta
C

o
n

tr
o

ll
er

G
lo

b
a

l
E

x
ec

u
ti

o
n

M
o

n
it

o
r

System
Log

L
o

ca
l

R
ec

o
v

er
y

M
a

n
a

g
er

Local
Internal
Schema

R
u

n
ti

m
e

S
u

p
p

o
rt

P
ro

ce
ss

o
r

L
o

ca
l

Q
u

er
y

P
ro

ce
ss

o
r

Local
Conceptual

Schema

G
lo

b
a

l
Q

u
er

y
O

p
ti

m
iz

er

GD/D

Distributed DBMS

Outline
 Introduction
 Distributed DBMS Architecture
 Distributed Database Design

 Fragmentation
 Data Placement

 Distributed Query Processing
 Distributed Concurrency Control
 Distributed Reliability Protocols

Distributed DBMS

Design Problem
 In the general setting :

 Making decisions about the placement of data and
programs across the sites of a computer network as well as
possibly designing the network itself.

 In Distributed DBMS, the placement of
applications entails
 placement of the distributed DBMS software; and
 placement of the applications that run on the database

Distributed DBMS

Distribution Design

 Top-down

 mostly in designing systems from scratch

 mostly in homogeneous systems

 Bottom-up

 when the databases already exist at a number of sites

Distributed DBMS

Top-Down Design

User Input
View Integration

User Input

Requirements
Analysis

Objectives

Conceptual
Design

View Design

Access
Information ES’sGCS

Distribution
Design

Physical
Design

LCS’s

LIS’s

Distributed DBMS

Distribution Design
 Fragmentation

 Localize access
 Horizontal fragmentation
 Vertical fragmentation
 Hybrid fragmentation

 Distribution
 Placement of fragments on nodes of a network

Distributed DBMS

PROJ1 : projects with budgets
less than $200,000

PROJ2 : projects with budgets
greater than or equal to
$200,000

PROJ1

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

PNO PNAME LOC

P1 Instrumentation 150000 Montreal

P2 Database Develop. 135000 New York

BUDGET

PROJ2

Horizontal Fragmentation

New York
New York

PROJ
PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

New York
New York

Distributed DBMS

Vertical Fragmentation

PROJ1: information about
project budgets

PROJ2: information about
project names and
locations

PNO BUDGET

P1 150000

P3 250000
P2 135000

P4 310000
P5 500000

PNO PNAME LOC

P1 Instrumentation Montreal

P3 CAD/CAM New York
P2 Database Develop. New York

P4 Maintenance Paris
P5 CAD/CAM Boston

PROJ1 PROJ2

New York
New York

PROJ
PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

New York
New York

Distributed DBMS

 Completeness
 Decomposition of relation R into fragments R1, R2, ..., Rn is complete

iff each data item in R can also be found in some Ri

 Reconstruction
 If relation R is decomposed into fragments R1, R2, ..., Rn, then there

should exist some relational operator ∇ such that
R = ∇1≤i≤nRi

 Disjointness
 If relation R is decomposed into fragments R1, R2, ..., Rn, and data

item di is in Rj, then di should not be in any other fragment Rk (k ≠ j).

Correctness of Fragmentation

Distributed DBMS

Allocation Alternatives
 Non-replicated

 partitioned : each fragment resides at only one site

 Replicated
 fully replicated : each fragment at each site
 partially replicated : each fragment at some of the sites

 Rule of thumb:

If replication is advantageous,

otherwise replication may cause problems

read - only queries
update queries ≥ 1

Distributed DBMS

Fragment Allocation
 Problem Statement

 Given
 F = {F1, F2, …, Fn} fragments
 S ={S1, S2, …, Sm} network sites
 Q = {q1, q2,…, qq} applications

 Find the "optimal" distribution of F to S.

 Optimality
 Minimal cost

 Communication + storage + processing (read & update)
 Cost in terms of time (usually)

 Performance
 Response time and/or throughput

 Constraints
 Per site constraints (storage & processing)

Distributed DBMS

General Form
min(Total Cost)

subject to
response time constraint
storage constraint
processing constraint

Decision Variable

Allocation Model

xij =
1 if fragment Fi is stored at site Sj
0 otherwise

⎧
⎨
⎩

Distributed DBMS

Outline
 Introduction
 Distributed DBMS Architecture
 Distributed Database Design
 Distributed Query Processing

 Query Processing Methodology
 Distributed Query Optimization

 Distributed Concurrency Control
 Distributed Reliability Protocols

Distributed DBMS

Query Processing

high level user query

query
processor

low level data manipulation
commands

Distributed DBMS

Query Processing Components
 Query language that is used

 SQL: “intergalactic dataspeak”

 Query execution methodology
 The steps that one goes through in executing high-level

(declarative) user queries.

 Query optimization
 How do we determine the “best” execution plan?

Distributed DBMS

SELECT ENAME

FROM EMP,ASG

WHERE EMP.ENO = ASG.ENO

AND DUR > 37

Strategy 1
ΠENAME(σDUR>37∧EMP.ENO=ASG.ENO (EMP × ASG))

Strategy 2

 ΠENAME(EMP ENO (σDUR>37 (ASG)))

Selecting Alternatives

Strategy 2 avoids Cartesian product, so is “better”

Distributed DBMS

What is the Problem?
Site 1 Site 2 Site 3 Site 4 Site 5

EMP1=σENO≤“E3”(EMP) EMP2=σENO>“E3”(EMP)ASG2=σENO>“E3”(ASG)ASG1=σENO≤“E3”(ASG) Result

Site 5

Site 1 Site 2 Site 3 Site 4

ASG1 EMP1 EMP2ASG2

result2=(EMP1∪ EMP2) ENOσDUR>37(ASG1∪ ASG1)

Site 4

result = EMP1
’∪EMP2

’

Site 3

Site 1 Site 2

EMP2
’=EMP2 ENOASG2

’EMP1
’=EMP1 ENOASG1

’

ASG1
’=σDUR>37(ASG1) ASG2

’=σDUR>37(ASG2)

Site 5

ASG2
’ASG1

’

EMP1
’ EMP2

’

Distributed DBMS

 Assume:
 size(EMP) = 400, size(ASG) = 1000
 tuple access cost = 1 unit; tuple transfer cost = 10 units

 Strategy 1
 produce ASG': (10+10) tuple access cost 20
 transfer ASG' to the sites of EMP: (10+10) tuple transfer cost 200
 produce EMP': (10+10) tuple access cost 2 40
 transfer EMP' to result site: (10+10) tuple transfer cost 200

Total cost 460

 Strategy 2
 transfer EMP to site 5:400 tuple transfer cost 4,000
 transfer ASG to site 5 :1000 tuple transfer cost 10,000
 produce ASG':1000 tuple access cost 1,000
 join EMP and ASG':400 20 tuple access cost 8,000

Total cost 23,000

Cost of Alternatives

Distributed DBMS

Minimize a cost function
I/O cost + CPU cost + communication cost

These might have different weights in different
distributed environments

Wide area networks
 communication cost will dominate

 low bandwidth
 low speed
 high protocol overhead

 most algorithms ignore all other cost components

Local area networks
 communication cost not that dominant
 total cost function should be considered

Can also maximize throughput

Query Optimization Objectives

Distributed DBMS

Query Optimization Issues –
Types of Optimizers

 Exhaustive search
 cost-based
 optimal
 combinatorial complexity in the number of relations

 Heuristics
 not optimal
 regroup common sub-expressions
 perform selection, projection first
 replace a join by a series of semijoins
 reorder operations to reduce intermediate relation size
 optimize individual operations

Distributed DBMS

Query Optimization Issues –
Optimization Granularity

 Single query at a time
 cannot use common intermediate results

 Multiple queries at a time
 efficient if many similar queries
 decision space is much larger

Distributed DBMS

Query Optimization Issues –
Optimization Timing

 Static
 compilation ⇒ optimize prior to the execution
 difficult to estimate the size of the intermediate results ⇒

error propagation
 can amortize over many executions
 R*

 Dynamic
 run time optimization
 exact information on the intermediate relation sizes
 have to reoptimize for multiple executions
 Distributed INGRES

 Hybrid
 compile using a static algorithm
 if the error in estimate sizes > threshold, reoptimize at run

time
 MERMAID

Distributed DBMS

Query Optimization Issues –
Statistics

 Relation
 cardinality
 size of a tuple
 fraction of tuples participating in a join with another relation

 Attribute
 cardinality of domain
 actual number of distinct values

 Common assumptions
 independence between different attribute values
 uniform distribution of attribute values within their domain

Distributed DBMS

Query Optimization
Issues – Decision Sites

 Centralized
 single site determines the “best” schedule
 simple
 need knowledge about the entire distributed database

 Distributed
 cooperation among sites to determine the schedule
 need only local information
 cost of cooperation

 Hybrid
 one site determines the global schedule
 each site optimizes the local subqueries

Distributed DBMS

Query Optimization Issues –
Network Topology

 Wide area networks (WAN) – point-to-point
 characteristics

 low bandwidth
 low speed
 high protocol overhead

 communication cost will dominate; ignore all other cost
factors

 global schedule to minimize communication cost
 local schedules according to centralized query optimization

 Local area networks (LAN)
 communication cost not that dominant
 total cost function should be considered
 broadcasting can be exploited (joins)
 special algorithms exist for star networks

Distributed DBMS

Distributed Query Processing
Methodology

Calculus Query on Distributed
Relations

CONTROL
SITE

LOCAL
SITES

Query
Decomposition

Data
Localization

Algebraic Query on Distributed
Relations

Global
Optimization

Fragment Query

Local
Optimization

Optimized Fragment Query
with Communication Operations

Optimized Local
Queries

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

STATS ON
FRAGMENTS

LOCAL
SCHEMAS

Distributed DBMS

Step 1 – Query Decomposition
Input : Calculus query on global relations
 Normalization

 manipulate query quantifiers and qualification
 Analysis

 detect and reject “incorrect” queries
 possible for only a subset of relational calculus

 Simplification
 eliminate redundant predicates

 Restructuring
 calculus query ⇒ algebraic query
 more than one translation is possible
 use transformation rules

Distributed DBMS

 Convert relational calculus to
relational algebra

 Make use of query trees
 Example

Find the names of employees other
than J. Doe who worked on the
CAD/CAM project for either 1 or 2
years.

SELECT ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND ENAME ≠ “J. Doe”
AND PNAME = “CAD/CAM”
AND (DUR = 12 OR DUR = 24)

Restructuring
ΠENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

 PNO

 ENO

Distributed DBMS

 Commutativity of binary operations
 R × S ⇔ S × R
 R S ⇔ S R
 R ∪ S ⇔ S ∪ R

 Associativity of binary operations
 (R × S) × T ⇔ R × (S × T)
 (R S) T ⇔ R (S T)

 Idempotence of unary operations
 ΠA’(ΠA’(R)) ⇔ ΠA’(R)
 σp1(A1)(σp2(A2)(R)) = σp1(A1) ∧ p2(A2)(R)

where R[A] and A' ⊆ A, A" ⊆ A and A' ⊆ A"

 Commuting selection with projection

Restructuring –Transformation
Rules (Examples)

Distributed DBMS

Example
Recall the previous example:

Find the names of employees other
than J. Doe who worked on the
CAD/CAM project for either one or
two years.

SELECT ENAME
FROM PROJ, ASG, EMP

WHERE ASG.ENO=EMP.ENO

AND ASG.PNO=PROJ.PNO

AND ENAME≠“J. Doe”

AND PROJ.PNAME=“CAD/CAM”

AND (DUR=12 OR DUR=24)

ΠENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

 PNO

 ENO

Distributed DBMS

Equivalent Query
ΠENAME

σPNAME=“CAD/CAM” ∧(DUR=12 ∨ DUR=24) ∧ ENAME≠“J. DOE”

×

PROJASG EMP

PNO ∧ENO

Distributed DBMS

EMP

ΠENAME

σENAME ≠ "J. Doe"

ASGPROJ

ΠPNO,ENAME

σPNAME = "CAD/CAM"

ΠPNO

σDUR =12 ∧ DUR=24

ΠPNO,ENO

ΠPNO,ENAME

Restructuring

PNO

ENO

Distributed DBMS

Step 2 – Data Localization

Input: Algebraic query on distributed relations

 Determine which fragments are involved

 Localization program
 substitute for each global query its materialization program

 optimize

Distributed DBMS

Example
Assume

 EMP is fragmented into EMP1, EMP2,
EMP3 as follows:
 EMP1=σENO≤“E3”(EMP)
 EMP2= σ“E3”<ENO≤“E6”(EMP)
 EMP3=σENO≥“E6”(EMP)

 ASG fragmented into ASG1 and ASG2
as follows:
 ASG1=σENO≤“E3”(ASG)
 ASG2=σENO>“E3”(ASG)

Replace EMP by (EMP1∪EMP2∪EMP3)
and ASG by (ASG1 ∪ ASG2) in any
query

ΠENAME

σDUR=12 OR DUR=24

σENAME≠“J. DOE”

PROJ ∪ ∪

EMP1 EMP2 EMP3 ASG1 ASG2

PNO

ENO

σPNAME=“CAD/CAM”

Distributed DBMS

Provides Parallellism

EMP3 ASG1EMP2 ASG2EMP1 ASG1

∪

EMP3 ASG2

ENO ENO ENO ENO

Distributed DBMS

Eliminates Unnecessary Work

EMP2 ASG2EMP1 ASG1

∪

EMP3 ASG2

ENO ENO ENO

Distributed DBMS

Step 3 – Global Query
Optimization

Input: Fragment query
 Find the best (not necessarily optimal) global

schedule
 Minimize a cost function
 Distributed join processing

 Bushy vs. linear trees
 Which relation to ship where?
 Ship-whole vs ship-as-needed

 Decide on the use of semijoins
 Semijoin saves on communication at the expense of

more local processing.
 Join methods

 nested loop vs ordered joins (merge join or hash join)

Distributed DBMS

Cost-Based Optimization
 Solution space

 The set of equivalent algebra expressions (query trees).

 Cost function (in terms of time)
 I/O cost + CPU cost + communication cost
 These might have different weights in different distributed

environments (LAN vs WAN).
 Can also maximize throughput

 Search algorithm
 How do we move inside the solution space?
 Exhaustive search, heuristic algorithms (iterative

improvement, simulated annealing, genetic,…)

Distributed DBMS

Query Optimization Process

Search Space
Generation

Search
Strategy

Equivalent QEP

Input Query

Transformation
Rules

Cost Model

Best QEP

Distributed DBMS

Search Space
 Search space characterized by

alternative execution plans
 Focus on join trees
 For N relations, there are O(N!)

equivalent join trees that can be
obtained by applying
commutativity and associativity
rules

SELECTENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO

PROJ

ASGEMP

PROJ ASG

EMP

PROJ

ASG

EMP

×

ENO

ENO

PNO

PNO

ENO,PNO

Distributed DBMS

Search Space
 Restrict by means of heuristics

 Perform unary operations before binary operations
 …

 Restrict the shape of the join tree
 Consider only linear trees, ignore bushy ones

R2R1

R3

R4

Linear Join Tree

R2R1 R4R3

Bushy Join Tree

Distributed DBMS

Search Strategy
 How to “move” in the search space.
 Deterministic

 Start from base relations and build plans by adding one
relation at each step

 Dynamic programming: breadth-first
 Greedy: depth-first

 Randomized
 Search for optimalities around a particular starting point
 Trade optimization time for execution time
 Better when > 5-6 relations
 Simulated annealing
 Iterative improvement

Distributed DBMS

Search Strategies
 Deterministic

 Randomized

R2R1

R3

R4

R2R1 R2R1

R3

R2R1

R3

R3R1

R2

Distributed DBMS

 Total Time (or Total Cost)
 Reduce each cost (in terms of time) component individually

 Do as little of each cost component as possible

 Optimizes the utilization of the resources

Increases system throughput

 Response Time
 Do as many things as possible in parallel

 May increase total time because of increased total activity

Cost Functions

Distributed DBMS

Summation of all cost factors

Total cost = CPU cost + I/O cost + communication
cost

CPU cost = unit instruction cost no.of instructions

I/O cost = unit disk I/O cost no. of disk I/Os

communication cost = message initiation + transmission

Total Cost

Distributed DBMS

 Wide area network

 message initiation and transmission costs high

 local processing cost is low (fast mainframes or
minicomputers)

 ratio of communication to I/O costs = 20:1

 Local area networks

 communication and local processing costs are more or less
equal

 ratio = 1:1.6

Total Cost Factors

Distributed DBMS

Elapsed time between the initiation and the completion of a
query

Response time = CPU time + I/O time + communication time

CPU time = unit instruction time no. of sequential instructions

I/O time = unit I/O time no. of sequential I/Os

communication time = unit msg initiation time
no. of sequential msg + unit transmission time
no. of sequential bytes

Response Time

Distributed DBMS

Assume that only the communication cost is considered
Total time = 2 message initialization time + unit transmission

time (x+y)
Response time = max {time to send x from 1 to 3, time to send

y from 2 to 3}
time to send x from 1 to 3 = message initialization time + unit

transmission time x
time to send y from 2 to 3 = message initialization time + unit

transmission time y

Example
Site 1

Site 2

x units

y units

Site 3

Distributed DBMS

 Alternatives
 Ordering joins
 Semijoin ordering

 Consider two relations only

 Multiple relations more difficult because too many
alternatives.
 Compute the cost of all alternatives and select the

best one.
 Necessary to compute the size of intermediate

relations which is difficult.
 Use heuristics

Join Ordering

R
if size (R) < size (S)

if size (R) > size (S)
S

Distributed DBMS

Consider
PROJ PNO ASG ENO EMP

Join Ordering – Example

Site 2

Site 3Site 1

PNOENO

PROJ

ASG

EMP

Distributed DBMS

Execution alternatives:
1. EMP → Site 2 2. ASG → Site 1

Site 2 computes EMP'=EMP ASG Site 1 computes EMP'=EMP ASG
EMP' → Site 3 EMP' → Site 3
Site 3 computes EMP’ PROJ Site 3 computes EMP’ PROJ

3. ASG → Site 3 4. PROJ → Site 2
Site 3 computes ASG'=ASG PROJ Site 2 computes PROJ'=PROJ ASG
ASG' → Site 1 PROJ' → Site 1
Site 1 computes ASG' EMP Site 1 computes PROJ' EMP

5. EMP → Site 2
PROJ → Site 2
Site 2 computes EMP PROJ ASG

Join Ordering – Example

Distributed DBMS

 Consider the join of two relations:
 R[A] (located at site 1)
 S[A] (located at site 2)

 Alternatives:
1 Do the join R A S

2 Perform one of the semijoin equivalents

R A S ⇔ (R A S) A S

⇔ R A (S A R)

⇔ (R A S) A (S A R)

Semijoin Algorithms

Distributed DBMS

 Perform the join
 send R to Site 2

Site 2 computes R A S

 Consider semijoin (R A S) A S
S' ← ∏A(S)

S' → Site 1

Site 1 computes R' = R A S'
R' → Site 2

Site 2 computes R' A S

Semijoin is better if
size(ΠA(S)) + size(R A S)) < size(R)

Semijoin Algorithms

Distributed DBMS

 Cost function includes local processing as well
as transmission

 Considers only joins

 Exhaustive search

 Compilation

 Published papers provide solutions to handling
horizontal and vertical fragmentations but the
implemented prototype does not

R* Algorithm

Distributed DBMS

Performing joins
 Ship whole

 larger data transfer
 smaller number of messages
 better if relations are small

 Fetch as needed
 number of messages = O(cardinality of external relation)
 data transfer per message is minimal
 better if relations are large and the selectivity is good

R* Algorithm

Distributed DBMS

1. Move outer relation tuples to the site of the inner
relation

(a) Retrieve outer tuples

(b) Send them to the inner relation site

(c) Join them as they arrive

Total Cost = cost(retrieving qualified outer tuples)
+ no. of outer tuples fetched

 cost(retrieving qualified inner tuples)

+ msg. cost (no. outer tuples fetched
 avg. outer tuple size) / msg. size

R* Algorithm –
Vertical Partitioning & Joins

Distributed DBMS

2. Move inner relation to the site of outer relation

cannot join as they arrive; they need to be stored

Total Cost = cost(retrieving qualified outer tuples)

+ no. of outer tuples fetched
 cost(retrieving matching inner tuples
 from temporary storage)

+ cost(retrieving qualified inner tuples)

+ cost(storing all qualified inner tuples
 in temporary storage)

+ msg. cost (no. of inner tuples fetched
 avg. inner tuple size) / msg. size

R* Algorithm –
Vertical Partitioning & Joins

Distributed DBMS

3. Move both inner and outer relations to another site

Total cost = cost(retrieving qualified outer tuples)

+ cost(retrieving qualified inner tuples)

+ cost(storing inner tuples in storage)

+ msg. cost (no. of outer tuples fetched
 avg. outer tuple size) / msg. size

+ msg. cost (no. of inner tuples fetched
 avg. inner tuple size) / msg. size

+ no. of outer tuples fetched
cost(retrieving inner tuples from

 temporary storage)

R* Algorithm –
Vertical Partitioning & Joins

Distributed DBMS

4. Fetch inner tuples as needed
(a) Retrieve qualified tuples at outer relation site
(b) Send request containing join column value(s) for outer tuples

to inner relation site
(c) Retrieve matching inner tuples at inner relation site
(d) Send the matching inner tuples to outer relation site
(e) Join as they arrive

Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost (no. of outer tuples fetched)
+ no. of outer tuples fetched (no. of

inner tuples fetched avg. inner tuple
size msg. cost / msg. size)

+ no. of outer tuples fetched
cost(retrieving matching inner tuples
for one outer value)

R* Algorithm –
Vertical Partitioning & Joins

Distributed DBMS

Step 4 – Local Optimization

Input: Best global execution schedule

 Select the best access path

 Use the centralized optimization techniques

Distributed DBMS

Outline
 Introduction
 Distributed DBMS Architecture
 Distributed Database Design
 Distributed Query Processing
 Distributed Concurrency Control

 Transaction Concepts & Models
 Serializability
 Distributed Concurrency Control Protocols

 Distributed Reliability Protocols

Distributed DBMS

Transaction
A transaction is a collection of actions that make consistent

transformations of system states while preserving system
consistency.
 concurrency transparency
 failure transparency

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

Distributed DBMS

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME,SPECIAL)

Distributed DBMS

Example Transaction

Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

output(“reservation completed”)
end . {Reservation}

Distributed DBMS

Termination of Transactions
Begin_transaction Reservation
begin
input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight_no AND DATE = date;

if temp1 = temp2 then
output(“no free seats”);
Abort
else
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

Commit
output(“reservation completed”)
endif

end . {Reservation}

Distributed DBMS

Properties of Transactions
ATOMICITY

 all or nothing

CONSISTENCY

 no violation of integrity constraints

ISOLATION

 concurrent changes invisible È serializable

DURABILITY

 committed updates persist

Distributed DBMS

Transactions Provide…

 Atomic and reliable execution in the presence
of failures

 Correct execution in the presence of multiple
user accesses

 Correct management of replicas (if they support
it)

Distributed DBMS

Architecture Revisited

Scheduling/
Descheduling
Requests

Transaction Manager
(TM)

Distributed
Execution Monitor

With other
SCs

With other
TMs

Begin_transaction,
Read, Write,
Commit, Abort

To data
processor

Results

Scheduler
(SC)

Distributed DBMS

Centralized Transaction
Execution

Begin_Transaction,
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write,
Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

Distributed DBMS

Distributed Transaction
Execution

Begin_transaction,
Read, Write, EOT,
Abort

User application

Results &
User notifications

Read, Write,
EOT, Abort

TM

SC

RM

SC

RM

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

Distributed DBMS

Concurrency Control
 The problem of synchronizing concurrent

transactions such that the consistency of the
database is maintained while, at the same time,
maximum degree of concurrency is achieved.

 Anomalies:
 Lost updates

 The effects of some transactions are not reflected on
the database.

 Inconsistent retrievals
 A transaction, if it reads the same data item more than

once, should always read the same value.

Distributed DBMS

Serializable History
 Transactions execute concurrently, but the net

effect of the resulting history upon the database
is equivalent to some serial history.

 Equivalent with respect to what?
 Conflict equivalence: the relative order of execution of the

conflicting operations belonging to unaborted transactions in
two histories are the same.

 Conflicting operations: two incompatible operations (e.g.,
Read and Write) conflict if they both access the same data
item.
 Incompatible operations of each transaction is assumed

to conflict; do not change their execution orders.
 If two operations from two different transactions conflict,

the corresponding transactions are also said to conflict.

Distributed DBMS

Serializability in Distributed
DBMS

 Somewhat more involved. Two histories have to
be considered:
 local histories
 global history

 For global transactions (i.e., global history) to
be serializable, two conditions are necessary:
 Each local history should be serializable.
 Two conflicting operations should be in the same relative

order in all of the local histories where they appear together.

Distributed DBMS

Global Non-serializability

The following two local histories are individually
serializable (in fact serial), but the two transactions
are not globally serializable.

T1: Read(x) T2: Read(x)
x ←x+5 x ←x 15
Write(x) Write(x)
Commit Commit

LH1={R1(x),W1(x),C1,R2(x),W2(x),C2}

LH2={R2(x),W2(x),C2,R1(x),W1(x),C1}

Distributed DBMS

Concurrency Control
Algorithms

 Pessimistic
 Two-Phase Locking-based (2PL)

 Centralized (primary site) 2PL
 Primary copy 2PL
 Distributed 2PL

 Timestamp Ordering (TO)
 Basic TO
 Multiversion TO
 Conservative TO

 Hybrid

 Optimistic
 Locking-based
 Timestamp ordering-based

Distributed DBMS

Locking-Based Algorithms
 Transactions indicate their intentions by requesting

locks from the scheduler (called lock manager).
 Locks are either read lock (rl) [also called shared

lock] or write lock (wl) [also called exclusive lock]
 Read locks and write locks conflict (because Read

and Write operations are incompatible
 rl wl

rl yes no
wl no no

 Locking works nicely to allow concurrent processing
of transactions.

Distributed DBMS

Centralized 2PL
 There is only one 2PL scheduler in the distributed system.
 Lock requests are issued to the central scheduler.

Data Processors at
 participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks

Distributed DBMS

Distributed 2PL
 2PL schedulers are placed at each site. Each

scheduler handles lock requests for data at that
site.

 A transaction may read any of the replicated
copies of item x, by obtaining a read lock on
one of the copies of x. Writing into x requires
obtaining write locks for all copies of x.

Distributed DBMS

Distributed 2PL Execution
Coordinating TM Participating LMs Participating DPs

Lock Request

Operation

End of Operation

Release Locks

Distributed DBMS

Timestamp Ordering
Transaction (Ti) is assigned a globally unique timestamp

ts(Ti).
Transaction manager attaches the timestamp to all

operations issued by the transaction.
Each data item is assigned a write timestamp (wts) and a

read timestamp (rts):
 rts(x) = largest timestamp of any read on x
 wts(x) = largest timestamp of any read on x

Conflicting operations are resolved by timestamp order.
Basic T/O:
for Ri(x) for Wi(x)
if ts(Ti) < wts(x) if ts(Ti) < rts(x) and ts(Ti) < wts(x)
then reject Ri(x) then reject Wi(x)
else accept Ri(x) else accept Wi(x)
rts(x) ← ts(Ti) wts(x) ← ts(Ti)

Distributed DBMS

Outline
 Introduction
 Distributed DBMS Architecture
 Distributed Database Design
 Distributed Query Processing
 Distributed Concurrency Control
 Distributed Reliability Protocols

 Distributed Commit Protocols
 Distributed Recovery Protocols

Distributed DBMS

Problem:
How to maintain

atomicity

durability

properties of transactions

Reliability

Distributed DBMS

Types of Failures
 Transaction failures

 Transaction aborts (unilaterally or due to deadlock)
 Avg. 3% of transactions abort abnormally

 System (site) failures
 Failure of processor, main memory, power supply, …
 Main memory contents are lost, but secondary storage contents

are safe
 Partial vs. total failure

 Media failures
 Failure of secondary storage devices such that the stored data

is lost
 Head crash/controller failure (?)

 Communication failures
 Lost/undeliverable messages
 Network partitioning

Distributed DBMS

Distributed Reliability Protocols
 Commit protocols

 How to execute commit command for distributed transactions.
 Issue: how to ensure atomicity and durability?

 Termination protocols
 If a failure occurs, how can the remaining operational sites deal

with it.
 Non-blocking : the occurrence of failures should not force the

sites to wait until the failure is repaired to terminate the
transaction.

 Recovery protocols
 When a failure occurs, how do the sites where the failure

occurred deal with it.
 Independent : a failed site can determine the outcome of a

transaction without having to obtain remote information.

 Independent recovery ⇒ non-blocking termination

Distributed DBMS

Two-Phase Commit (2PC)
Phase 1 : The coordinator gets the participants

ready to write the results into the database
Phase 2 : Everybody writes the results into the

database
 Coordinator :The process at the site where the transaction

originates and which controls the execution
 Participant :The process at the other sites that participate

in executing the transaction

Global Commit Rule:
 The coordinator aborts a transaction if and only if at least

one participant votes to abort it.
 The coordinator commits a transaction if and only if all of

the participants vote to commit it.

Distributed DBMS

Centralized 2PC

ready? yes/no commit/abort?commited/aborted

Phase 1 Phase 2

C C C

P

P

P

P

P

P

P

P

Distributed DBMS

2PC Protocol Actions
 Participant Coordinator

No

Yes

VOTE-COMMIT

Yes GLOBAL-ABORT

No

write abort
in log

Abort

Commit
ACK

ACK

INITIAL

write abort
in log

write ready
in log

write commit
in log

Type of
msg

WAIT

Ready to
Commit?

write commit
in log

Any No? write abort
in log

ABORTCOMMIT

COMMITABORT

write
begin_commit

in log

write
end_of_transaction

in log

READY

INITIAL

PREPARE

VOTE-ABORT

VOTE-COMMIT

U
N

IL
A

T
E

R
A

L
A

B
O

R
T

Distributed DBMS

Problem With 2PC
 Blocking

 Ready implies that the participant waits for the coordinator
 If coordinator fails, site is blocked until recovery
 Blocking reduces availability

 Independent recovery is not possible
 However, it is known that:

 Independent recovery protocols exist only for single site
failures; no independent recovery protocol exists which is
resilient to multiple-site failures.

 So we search for these protocols – 3PC

