Streaming Queries over
Streaming Data

Sirish Chandrasekaran and Michael J. Franklin
University of California at Berkeley
VLDB 2002

Presented by:
George Beskales

Motivation and Contribution

o Current Systems support either
Streaming Queries over static data (traditional DBMS)
Static queries over streaming data (Data Streaming
Systems)

o PSoup supports streaming queries streaming data.
Data Streams and Query Stream
New queries can access old data (and of course new data)
Active / Inactive queries (,i.e. disconnected operation)
Query results is partially materialized

PSoup System Architecture

Data SteM Query SteM

PROBE

PROBE p

e

T Symmetric Join
,/\@} &
N 5
WO\

N~

Streaming | N] Y
Data [oATA > PSoup |/ queries Clients
Sources \ ,-/

Query Structure

SELECT select_list }Standingmew
FroM from.list Clause (SQC)
WHERE conjoinedboolean-factors

BEGIN begin_time }Begin_End
END end_time clause

Modes of Query

» Snapshot : begin_time & end_time are constants

» Landmark : begin_time is constant, end_time is
variable (e.g. NOW)

» Sliding Window :begin_time & end_time are
variables.

o PSoup assumes that sliding window technique is
used and it fits into the main memory.

Data structures

o Data State Module (SteM): holds the current
tuples for each data source.

o Query State Module (SteM): stores SQCs of all
queries.

o WindowTable : stores Begin_End clause of the
queries

o Results Structure : Holds (partially) materialized
results

o Hybrid Struct : to hold intermediate join results.

I
ID | Predicate ID |Ra|R.b I =
! 20 0<R.a<=5
20 O<Ra<=5 R 21 | Ra>4 AND Rb=3
21 [Ra>4ANDRDH=3 [P<1| 49 | 7 | 3 || ==
5 0>Rb>4 50 3 8 |l 22 0>R.b>4
. 51 0 0 I 23 R.a=4 AND R.b=3
23 | R.a=4 AND R.b=3 |
52 8 4 24 |R.a<=4 AND R.b>=3
TN | SELECT * / éo(’
(PSoup IFrom R B\
N |WHERE R.a <= 4 AND Rb>33 >
| NEW QUER'
I /
I
(a) Initial State I (b) Building Query SteM
'
________________________ B ittt
Data SteM } Queries
ID |R.a| Rb |match | 20 [21 [22] 23 [24
48 | 4 3 [; 8 T
24 |R.a<=4 AND R.b>=3 k:m:nar> 49 | 7 3 | match | s ﬂg ;
50| 3 | 8 |e— 185 | T |
51| 0] 0 - a
- 52| 8 | 4 | =
i
RESULTS
PS
C Q‘D | STRUCTURE
— I
i
|
I

(c) Probing Data SteM

(d) Inserting Results

1 1
Query SteM Data SteM | I%ataRS;eMR 5 I
1D Predicate D [Ra|Rb]! - - [
20 0<R.a<=5 28 a [3 : 48 | 4 | 3 :
21 | Ra>4 avoRb=3 |P[49 | 7 | 3 _|I 491718 1
22 0>R.b>4 50| 3 | 8 : 0| 3 8 :
23 | R.a=4 AND Rb=3 51|00 | s1|o] o H
24 |R.a<=4 AND R.b>=3 52 | 8 4 : 52 | 8 4 |
|
! EIEe] |
1 1
| |
! @m !
' R
(a) Initial State . (b) Building Data SteM !
1
Query SteM 1 Queries
match |2 Predicate ! Fol A 2l
20 0<R.a<=5 I 5
21 | Ra4 ANDRb=3 = [
> RboA [5313T6] : o
match | 23 | R.a=4 AND R.b=3 : 2;
—| 24 | Raa<=4 AND R.b>=3 : N I I I
| RESULTS
GS(’@ ! STRUCTURE
- 1
1)
(c) Probing Query SteM 1 (d) Inserting Results
-~ D Predicates
\ZJ 20 R.a=5 and R.b<S.b
NEW QUERY PSoup 21 R.a>4 and R.a<Sband S.a<i0
% 22 |Rb=4and Ra+5>S.aand Sb>2
23 R.a<5 and R.a>S.b and S.b>1

[[22 [Ra<5andRa>Sband Sb>1

Query SteM

8

R-Data SteM 5

1D Predicates @ D [RaJRb]| E
20 R.a=5and R.b<S.b 10 2 5
21 R.a>4 and R.a<S.b and S.a<10 14 3 3
22 |Rb=4 and R.a+5>S.aand S.b>2 31 4 1
[23 [Ra<5andRa>Sbandsb>1_|PROBE] 48 | 9 | 7
54 7 4

Query SteM

Hybrid Structs

Matohes@
oo,
ey P
LIS
wlo;
NN
wWlw
AR,
2o
s
3:!
=2
2o

o o
Y5

X
|

Results Results

O
mmpmmg ROBE

w

o

21 2 } Structure
25 3

36 4 JL

49 5

50 0

S-Data SteM @

Implementation Issues

Eddy is modified to be Stream-Prefix-

Consistent

o Temporary tuples are stored separately from new
tuples.

o Temporary tuples are processed before new
tuples.

Data SteM

o Red-Black tree indexes are created for every
attribute of each stream

o Hash index over tuplelD to speed up result
construction

Implementation Issues

Query SteM

o Red-Black index over predicates constants, e.g. ¢
in predicate (R.a > c)

o Each node has five lists, one for each RELOP <,<
,: 12 ,>

o Predicates that have more than one attribute are
stored in linked list.

o AND operators are implemented by decrement of
a counter until it reaches zero

Implementation Issues

Results Structure

o Each cell refer to a query and a tuple
o 2D bitmap (tuple timestamp, query ID)
o Linked list for each query

o Timestamp in case of streams joins is the older
based on assumption that Snapshot queries are
less frequent.

Experiments

Psoup-P : lazy approach; results are output
when requested (partial materialization)

Psoup-C : eager approach; results are output
immediately (complete materialization)

NoMat : does not materialize results

Response Time per Query (in msec)

Response time vs. window size

S T

i

o

f
10° i

q
1
t

.
Query (in msec)

—F NoMat

= Psoup-P
> Psoup-C — NoMat

- Psoup-P
* Psoup-C

2 3 4 5 2 3 4 5
Window Size (in #uples) Y10t Window Siz (in #tuples)

(a) Equality Predicates (b) Interval Predicates

Response time vs. window size

(Joins Queries)
700

o

o

=]
T

o
=3
=)
T
+
L

Response Time per Query (in msec)

400 500
Window Size (in #tuples)

Max data arrival rate vs. number o queries

10 T T T T
—~ PSoup-P_Unshrd
——— PSoup-P_Shrd
—k— PSoup-C_Unshrd
—- PSoup-C_Shrd

Maximum Data Arrival Rate (per sec)
5
T
.

500 1000 1500 2000 2500
#query specifications

Extensions to PSoup

Composite tuples in joins :

Composite Tuple Predicates

50 2 23 | 2>Sband Sb>1 w25 5555
=
51| 3 23 [3>SbandSb>1] | = [57[3]3] [3sb]
52 | 4 | 1 | 23 |4>SbandSb>1 | 52| 4 | 1 43:53:

Data

o

w

(a) Single-Query-Multiple-Data (SQMD)

Composite Tuple "

P Ple predicate

53[5 [4 [20] <56 | Index
=

53| 5 | 4 [22] 10>S.aand Sb>2 Data

(b) Single-Data-Multiple-Query (SDMQ)

Extensions to PSoup

Aggregate queries

Pros

Provide access to old data for new queries.
Combination of efficient data processing rate
and query response time by partial
materialization and indexing data streams
and query predicates.

Support disconnection mode to avoid
unnecessary maintaining of sliding window.

Cons

Predicate Indexing is inefficient for complex
predicates , e.g. string predicates, and complex
mathematical predicates

Index maintaining / materialization can be a
bottleneck for high speed streams

Sliding windows must completely reside in memory.
How snapshot / landmark queries are processed.

Maximum sustainable rate of queries and rate of
invocations should be examined.

Aggregate function are supported on small scale
Query operator Scheduling is ignored
Memory requirements are expected to be high.

Discussions

How to support complex predicates without
sacrificing the performance?

How to integrate more sophisticated scheduling
techniques

What is the expected performance relative to other
(newer) approaches (e.g. Aurora ad-hoc queries)
What is the PSoup-P performance at different
invocation rates / query rates

Lazier approach that PSoup-P, especially if
invocation rate is very low, e.g. selectively choose
what attribute/query to materialize.

How memory usage behave with different values of
window size/ data rates.

