
1

Streaming Queries over
Streaming Data

Presented by:
George Beskales

Sirish Chandrasekaran and Michael J. Franklin

University of California at Berkeley

VLDB 2002

Motivation and Contribution

 Current Systems support either
 Streaming Queries over static data (traditional DBMS)
 Static queries over streaming data (Data Streaming

Systems)
 PSoup supports streaming queries streaming data.

 Data Streams and Query Stream
 New queries can access old data (and of course new data)
 Active / Inactive queries (,i.e. disconnected operation)
 Query results is partially materialized

PSoup System Architecture

2

Query Structure

Standing Query
Clause (SQC)

Begin_End
clause

Modes of Query

 Snapshot : begin_time & end_time are constants
 Landmark : begin_time is constant, end_time is

variable (e.g. NOW)
 Sliding Window :begin_time & end_time are

variables.

 PSoup assumes that sliding window technique is
used and it fits into the main memory.

Data structures

 Data State Module (SteM): holds the current
tuples for each data source.

 Query State Module (SteM): stores SQCs of all
queries.

 WindowTable : stores Begin_End clause of the
queries

 Results Structure : Holds (partially) materialized
results

 Hybrid Struct : to hold intermediate join results.

3

4

Implementation Issues
 Eddy is modified to be Stream-Prefix-

Consistent
 Temporary tuples are stored separately from new

tuples.
 Temporary tuples are processed before new

tuples.
 Data SteM

 Red-Black tree indexes are created for every
attribute of each stream

 Hash index over tupleID to speed up result
construction

Implementation Issues

 Query SteM
 Red-Black index over predicates constants, e.g. c

in predicate (R.a > c)
 Each node has five lists, one for each RELOP <,≤

,= ,≥ ,>
 Predicates that have more than one attribute are

stored in linked list.
 AND operators are implemented by decrement of

a counter until it reaches zero

5

Implementation Issues

 Results Structure
 Each cell refer to a query and a tuple
 2D bitmap (tuple timestamp, query ID)
 Linked list for each query
 Timestamp in case of streams joins is the older

based on assumption that Snapshot queries are
less frequent.

Experiments

 Psoup-P : lazy approach; results are output
when requested (partial materialization)

 Psoup-C : eager approach; results are output
immediately (complete materialization)

 NoMat : does not materialize results

Response time vs. window size

6

Response time vs. window size
(Joins Queries)

Max data arrival rate vs. number o queries

Extensions to PSoup

 Composite tuples in joins :

7

Extensions to PSoup
 Aggregate queries

Pros

 Provide access to old data for new queries.
 Combination of efficient data processing rate

and query response time by partial
materialization and indexing data streams
and query predicates.

 Support disconnection mode to avoid
unnecessary maintaining of sliding window.

Cons
 Predicate Indexing is inefficient for complex

predicates , e.g. string predicates, and complex
mathematical predicates

 Index maintaining / materialization can be a
bottleneck for high speed streams

 Sliding windows must completely reside in memory.
 How snapshot / landmark queries are processed.
 Maximum sustainable rate of queries and rate of

invocations should be examined.
 Aggregate function are supported on small scale
 Query operator Scheduling is ignored
 Memory requirements are expected to be high.

8

Discussions

 How to support complex predicates without
sacrificing the performance?

 How to integrate more sophisticated scheduling
techniques

 What is the expected performance relative to other
(newer) approaches (e.g. Aurora ad-hoc queries)

 What is the PSoup-P performance at different
invocation rates / query rates

 Lazier approach that PSoup-P, especially if
invocation rate is very low, e.g. selectively choose
what attribute/query to materialize.

 How memory usage behave with different values of
window size/ data rates.

