
1

Streaming Queries over
Streaming Data

Presented by:
George Beskales

Sirish Chandrasekaran and Michael J. Franklin

University of California at Berkeley

VLDB 2002

Motivation and Contribution

 Current Systems support either
 Streaming Queries over static data (traditional DBMS)
 Static queries over streaming data (Data Streaming

Systems)
 PSoup supports streaming queries streaming data.

 Data Streams and Query Stream
 New queries can access old data (and of course new data)
 Active / Inactive queries (,i.e. disconnected operation)
 Query results is partially materialized

PSoup System Architecture

2

Query Structure

Standing Query
Clause (SQC)

Begin_End
clause

Modes of Query

 Snapshot : begin_time & end_time are constants
 Landmark : begin_time is constant, end_time is

variable (e.g. NOW)
 Sliding Window :begin_time & end_time are

variables.

 PSoup assumes that sliding window technique is
used and it fits into the main memory.

Data structures

 Data State Module (SteM): holds the current
tuples for each data source.

 Query State Module (SteM): stores SQCs of all
queries.

 WindowTable : stores Begin_End clause of the
queries

 Results Structure : Holds (partially) materialized
results

 Hybrid Struct : to hold intermediate join results.

3

4

Implementation Issues
 Eddy is modified to be Stream-Prefix-

Consistent
 Temporary tuples are stored separately from new

tuples.
 Temporary tuples are processed before new

tuples.
 Data SteM

 Red-Black tree indexes are created for every
attribute of each stream

 Hash index over tupleID to speed up result
construction

Implementation Issues

 Query SteM
 Red-Black index over predicates constants, e.g. c

in predicate (R.a > c)
 Each node has five lists, one for each RELOP <,≤

,= ,≥ ,>
 Predicates that have more than one attribute are

stored in linked list.
 AND operators are implemented by decrement of

a counter until it reaches zero

5

Implementation Issues

 Results Structure
 Each cell refer to a query and a tuple
 2D bitmap (tuple timestamp, query ID)
 Linked list for each query
 Timestamp in case of streams joins is the older

based on assumption that Snapshot queries are
less frequent.

Experiments

 Psoup-P : lazy approach; results are output
when requested (partial materialization)

 Psoup-C : eager approach; results are output
immediately (complete materialization)

 NoMat : does not materialize results

Response time vs. window size

6

Response time vs. window size
(Joins Queries)

Max data arrival rate vs. number o queries

Extensions to PSoup

 Composite tuples in joins :

7

Extensions to PSoup
 Aggregate queries

Pros

 Provide access to old data for new queries.
 Combination of efficient data processing rate

and query response time by partial
materialization and indexing data streams
and query predicates.

 Support disconnection mode to avoid
unnecessary maintaining of sliding window.

Cons
 Predicate Indexing is inefficient for complex

predicates , e.g. string predicates, and complex
mathematical predicates

 Index maintaining / materialization can be a
bottleneck for high speed streams

 Sliding windows must completely reside in memory.
 How snapshot / landmark queries are processed.
 Maximum sustainable rate of queries and rate of

invocations should be examined.
 Aggregate function are supported on small scale
 Query operator Scheduling is ignored
 Memory requirements are expected to be high.

8

Discussions

 How to support complex predicates without
sacrificing the performance?

 How to integrate more sophisticated scheduling
techniques

 What is the expected performance relative to other
(newer) approaches (e.g. Aurora ad-hoc queries)

 What is the PSoup-P performance at different
invocation rates / query rates

 Lazier approach that PSoup-P, especially if
invocation rate is very low, e.g. selectively choose
what attribute/query to materialize.

 How memory usage behave with different values of
window size/ data rates.

