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Problem Definition

Statement

» They want to solve the Semantic mapping verification problem (ie:
answer the question, Is a given mapping broken ?7)

» Assume that the Semantic mapping has been done

» Motivation: They have found that the dominating cost is often the
mapping maintenance (detect and repair).
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Previous Work

Background

» The authors have a strong Al (machine learning) background
» They are very active in this domain

» From Doan’s Ph.D. thesis " First, it introduced machine learning as an
indispensable component of matching solutions. Second, it articulated
a multi-component, highly extensible architecture for schema
matching. Third, it showed how to learn from past matching efforts
(to improve accuracy of subsequent matching tasks).”
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Previous Work

Some Perspective

» First, Regression tester, relies on formating regularities
» Kushmerick (2000), RAPTURE system, syntaxic only
» Could be 1 sensor in the current system

» Lerman et al. (2003), syntaxic measure as well (results in the
experiments section).
> Learned structural information
» Positive Data only
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Previous Work

Some Perspective

» Activity monitoring (for example, Fawcett et al., '99)
» It might be formulated as a stream problem

» Data is continuously arriving from querying the sources
» You even have some control on the stream since you're controlling the
queries.
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Previous Work

Typical Machine Learning - Online learning algorithm

» Given a m experts (sensors)
> At each time step (iteration)

> the sensors predict scorej € [0, 1]

> the learner, based on all the score; predicts scorecym € [0, 1]

> compare scoreq,m With the actual label of the example (update the
sensor weights based on this).

» In verification (testing): You simply predict with the learned weights

> (this is taken from Robert Schapire’s lectures)
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MAVERIC
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1 - The Sensors

» Computational modules which capture specific characteristics of a
source S

> Idea
1. Train them on data from S
2. Deploy them to monitor the data returned by queries
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1- The Sensors

> Generate examples from querying "valid” semantic mappings
» Two types of parameters to learn

> The parameters of each sensor (Gaussian mean and variance)
> The weight of the sensors (in the Winnown algorithm)
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1 - Winnow Algorithm

Train the Sensor Combiner

Input: examples R;,..., R, labeled with +or , alarm threshold
Sensors S;,...,S,, (already trained on R;,...,R)
Output: sensorweights w;, ,w;,
1. Initialize each weight w; to 1
2. Repeat: for each exanple R
foreach sensor s, scorg;  the score of 5 when applied to R
score,,y, = the combined score of all sensors using w;, ,w;,
if (scorg,,;, =6 and R.label = -) // false alarm
[w; = w/2Toreach score, = 0 |
elseif (scorgy,, < ©and R.Jabel =+ // missed alarm
[w = w/2foreach score < 8]
until a stopping criterion is reached
3.Retmw;, ,w;

» Final classifier is given by

m
vote,,jid = E wj * score;

1

m
voteinyalid = E w; x (1 — score;)
i
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MAVERIC

1 - The Sensor Types

» Value Sensors
» Monitor features of attributes
» Data modeled according to a Gaussian distribution
» Density Scoring score; =1 — P(v)
» Normalized Density scoring scores = Pr[P(v') > P(v)]
» Trend Sensors
» Work much like the Value sensors
» Layout Sensors
» Monitors the HTML layouts
» Constraint Sensors
» Monitors pre-defined attribute constraints
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MAVERIC

2 - Perturbation

» Problem: No Negative Example
» Solution: Generate negative examples from current source (S) data

» Corrolary: They are also trying to generate more diversified examples
» They Simulate the following situations
» Change in the Source Query Interface
» Change Source Data
» Change the Presentation Format
» In training they incorporate this new data (both positive and
negative) into the examples R.
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MAVERIC

2 - Perturbation

» The addition of positive (invalid data) changed the way the score is
calculted

» It's due to the fact that they use Gaussian modeling of the data (they
cannot incorporate both positive and negative examples in their
distributions).

» They have two Gaussians

> scorecym = score_ [(score_ + score,.)
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MAVERIC

3 - Multi-Source training

» Usually you have to train on a single source S

» What about using other sources S’ from the same domain which have
equivalent attributes

» Example (two attributes which are tied by the semantic schema):

» S: price $185,000
» S’: amount 185,000USD
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MAVERIC

4 - Filtering

» Motivation : Have to find a balance between false positve and false
negative (it cannot be attained by changing the value of the threshold
0).

> 3 filters

» Each as the ability to silence attribute
» |f some are not silenced after passing the filters then you raise an alarm
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MAVERIC

4 - Filtering

1. Syntaxic Recognizer (much in the style of previous papers on the
subject)
2. Exploiting External Sources
» Trains a new sensor on newly acquired data from a different source
> Lets you learn from other previously broken mappings
3. Learning from the web (Google is your friend !)

» |s 185,000 USD" a cost ?
» Search for:

3.1 "185,000 USD"
3.2 "cost 185,000 USD”

> If the ratio is high enough, then it's valid (ie: silence the attribute)

» This is the most semantic it gets
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Experiments

Results

O Sensor Ensemble (D)

O Sensor Ensemble (D) + Perturbation

B Sensor Ensemble (D) + Perturbation + Multi-Src Train

B Sensor Ensemble (D) + Perturbation + Multi-Src Train + Filtering

Flights Books Researchers  Real Estate Inventory Courses
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Experiments

Results

Domain Lerman System Sensor Ensemble (D) |Sensor Ensemble (ND)
P/ R F-1 P/ R F-1 P/ R F-1
Flights 0.81/1.00 0.85 0.93/0.98 0.93 0.93/0.98 0.93
Books 0.83/1.00 0.89 0.90/0.99 0.93 0.90/0.99 0.93

Researchers | 0.77/0.99 0.84 0.90/0.99 0.93 0.9070.99 0.93
Real Estate | 0.45/0.90 0.63 0.80/0.82 0.82 0.82/0.82 0.80
Inventory 0.52/0.89 0.67 0.7570.90 0.77 0.71/0.90 0.75
Courses 0.49/0.94 0.66 0.92/0.88 0.88 0.88/0.87 0.85
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Conclusion

Discussion

» They improve previous work by
» Broader collection of evidences
» The ensemble of sensors allow to use these evidences
» Weighted combining of sensors

» They still have to improve

» Unrecognized formats (not seen in training and not on the web)
» Mixed same type attributes when they were switched
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Conclusion

Final remarks

» Why not use a more powerful meta-learning algorithm (ie: AdaBoost
(Schapire '90s)) ?

» How far can we push the stream analogy 7

» Why does (D) perform as well as (ND) ?
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Conclusion

Final remarks

» Previous work do mostly syntaxic analysis
» This paper does it a little better
» They have the same fundamental problems as other papers
Very adhoc sensors
Needs to train on every source independently
Filtering is a good idea but it needs to be pushed further

v vy

» Next step, try to understand semantically the query returns

» Al techniques would become even more important
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