
1

A survey of approaches to
automatic schema matching

E. Rahm, and P. A. Bernstein.

The VLDB Journal, 10(3): 334-350, 2001.

Presented by Joel So (j2so@cs.uwaterloo.ca)

Topics to be covered

Motivation: match application domains
Generic match operator
Generic match taxonomy
Combining matchers
7 surveyed prototypes
5 related prototypes
Conclusions

Motivation: application domains

Schema integration
Developing global view over set of independently developed
schemas

Data warehousing
Transforming data from source format to warehouse format

E-commerce / B2B integration
Transforming between message types and trading partner
formats

Semantic query processing
Mapping user-specified query concepts to database schema
elements

2

Generic match operator

IN: 2 schemas S1 and S2
OUT: match result – mapping of elements in S1 and S2

Schema: set of elements connected by some structure

Match result: set of mapping elements

Mapping element: specification of elements in S1 that
map to elements in S2 and a mapping expression
specifying how they are related...

{elements in S1} ~= {elements in S2} : (mapping expression)

Generic match operator (cont’d)

A generic matcher architecture:

Taxonomy: instance vs. schema

Schema-level matchers
Consider schema information, not instance data
Mapping expressions on schema element name,
description, type, constraints, structure, etc.

Instance-level matchers
Characterize (using linguistic- or constraint-based
techniques) contents of schema elements, mapping
expressions on characterizations
Useful for semi-structured data, absence of schema
information

3

Taxonomy: element vs. structure

Element-level matchers (instance- or schema-
level)

Match schema elements (attributes, fields/columns) in
isolation without considering relative parent- or sub-
structure

Structure-level matchers (schema-level)
Match schema structures (sub-trees, tables), i.e.
combinations of elements that form structures
Can have full or partial structural matches

Taxonomy: linguistic vs. constraint

Linguistic matchers (element-level)
Consider semantic similarities in element names,
descriptions, instance values
Examine equality, canonical extraction, synonyms,
hypernyms, common forms, user-provided matches

Constraint-based matchers (element- or
structure-level)

Consider similarities in constraint information
(cardinalities, relationships, data types, value
constraints, etc.)

Taxonomy: matching cardinality

Matching cardinality (1:1, 1:n, n:1, n:m) describe
how (many) elements in S1 are mapped to
elements in S2
Global cardinality: defined across mapping
elements
Local cardinality: defined for an individual
mapping element
Cardinality may differ w.r.t. to structure-level
match vs. element-level match perspectives

4

Taxonomy: auxiliary information

Additional information (beyond schemas
S1 and S2) used by match operator
E.g., dictionaries, global schemas,
previous mappings, user input,
namespaces, etc.

Combining matchers

Hybrid matchers
Integrate multiple matching criteria
Individual matchers synchronously contribute to final
match result

Composite matchers
Aggregate multiple matching criteria
Individual matchers output match results
independently
Match results serially/subsequently combined
automatically or manually (external to matchers)

7 surveyed prototypes

1. SemInt
2. LSD
3. SKAT
4. TransScm
5. DIKE
6. ARTEMIS & MOMIS
7. Cupid

5

SemInt (Northwestern Univ.)

Supports up to 15 constraint-based and 5
content-based matching criteria
Determines match signature and
considers Euclidean distance between
signatures
Uses neural networks
element-level matching, constraint-based schema-level matching, constraint-based instance-level
matching, 1:1 global cardinality, hybrid matcher

LSD (Univ. of Washington)

Multi-strategy machine-learning approach
Training phase, matching phase
Automatic (trained) composition of match results
Highly extensible; incorporates user-supplied,
domain-specific constraints
element- and structure-level matching, linguistic-based schema-level matching, constraint-based
structure-level matching, linguistic- and constraint-based instance-level matching,1:1 global
cardinality, training results and domain-specific constraints as auxiliary input, composite matcher

SKAT (Stanford Univ.)

Rule-based, semi-automatic
First-order logic rules express match and
mismatch relationships
Intended for ontology matching, matching
based heavily on “is-a” relationships
element- and structure-level matching, linguistic- and constraint-based schema-level matching,
constraint-based structure-level matching, 1:1 and n:1 global cardinality, general matching rules
as auxiliary input, hybrid matcher

6

TransScm (Tel Aviv Univ.)

Automatic data translation between
schema instances
Schemas internally represented as labeled
graphs
Rule-based matchers
element- and structure-level matching, linguistic- and constraint-based schema-level matching,
constraint-based structure-level matching, linguistic- and constraint-based instance-level
matching,1:1 global cardinality, hybrid matcher

DIKE (Univ. of {Reggio Calabria, Calabria})

System to automatically determine
synonym, homonym, is-a, and hypernym
relationships between objects in E-R
schemas
Uses schema matching techniques to
determine similarities between objects
element- and structure-level matching, linguistic- and constraint-based schema-level matching,
constraint-based structure-level matching, 1:1 global cardinality, synonyms and inclusion
definitions as auxiliary input, hybrid matcher

ARTEMIS (Univ. of {Milano, Brescia})

& MOMIS (Univ. of Modena & Reggio Emilia)

ARTEMIS clusters schema attributes
based on “affinities” (determined using
schema matching techniques)
MOMIS is a database mediator, must
integrate independently developed
schemas into virtual global schema
element- and structure-level matching, linguistic- and constraint-based schema-level matching,
constraint-based structure-level matching, 1:1 global cardinality, thesauri as auxiliary input, hybrid
matcher

7

Cupid (Microsoft Research)

Generic schema matcher, prototype applied to
XML and relational schemas
3-phase algorithm:

Linguistic processing
Structural processing
Evaluate weighted mean of similarity coefficients and
determine mapping

element- and structure-level matching, linguistic- and constraint-based schema-level matching,
constraint-based structure-level matching, 1:1 and n:1 global cardinality, thesauri and glossaries
as auxiliary input, hybrid matcher

5 related prototypes
1. Clio

Semi-automatic schema matching
Schema Readers and Correspondence Engine (CE)
CE uses mapping knowledge-base and user input (via GUI tool)

2. Similarity flooding
Graph matching algorithm applied to schema matching
Convert schemas into directed labeled graphs, exploit structural
similarities between resulting graphs

3. Delta
Exploits (exclusively) textual/semantic similarities it attribute metadata
Converts attribute metadata into simple text string, matchings found
by way of text search

5 related prototypes (cont’d)

4. Tess
Focuses on mapping between schema evolution, therefore,
high degree of similarity between matched schemas can be
assumed
Identifies top-level match candidates, then recursively matches
sub-structure(s)

5. Tree matching
Algorithm for finding mappings between two labeled trees
(purely structural)
Can be applied to schema matching (obviously)
Simple linguistic rules can be incorporated using “rename”
transformation operator

8

Conclusions
Schema matching is a basic problem in many database
applications
Schema matching taxonomy:

Schema- and instance-level
Element- and structure-level
Linguistic- and constraint-based
Matching cardinality, Auxiliary information

Hybrid and composite matchers
Wishes from the authors: continued study of schema
matching as an independent/generic problem (agnostic
of domain/application), quantitative comparison of
approaches (performance, accuracy)

