
1

An Adaptive Query Execution System for Data
Integration – Zachary Ives, Daniela Florescu,
Marc Friedman et al. (ACM SIGMOD 1999)

CS856 Fall 2005 Presentation

Anand Subramanian
anand@cs.uwaterloo.ca

Problem Statement
 Problem Domain: Web Data Integration
 For a user query over distributed (and possibly

duplicated) data sources with unreliable statistics and
with unreliable data arrival characteristics – devise a
query processor that adapts to real-life changes

Why Adapt?
 Autonomous & heterogeneous data source => Impacts

the query cost function
 Data arrival is unpredictable => impacts static query

plans
 Data overlap & Redundancy => impacts efficiency of

query optimizer

Solution

 Adaptive Query Processing

 A framework called Tukwila
 City near Seattle
 A futuristic (2007?) Intel multi-core

processor – 16 cores on one processor

2

Tukwila System Components

 Data Schema Catalog
 Metadata view for varying data sources

 Query Reformulator
 Query Optimizer
 Query Execution Engine
 Wrappers

Tukwila Architecture[1]

Tukwila Query Reformulation &
Optimization

 Uses source mappings
 Reformulate user query in terms of

the mediated sources
 Create query plan of operators
 Divide into fragments

 Atomic units of execution

3

Tukwila Query Plans

 A plan consists of:
 Fragments

 Pipelined units of execution
 Tree of query operators

 Process each fragment
 Decide – do we need to re-optimize?

Tukwila Rules usage

 Allows dynamic decisions, error
handling, re-optimization

 Events trigger sets of rules
 Rule conditions can be evaluated in

parallel
 ON event IF condition THEN action

Open,closed
Error, Timeout
Out-of-memory
threshold

#tuples processed
mem_free >x
mem_used < x

alter memory allocated
Re-optimize the plan
Return error to user

Set overflow method for join

Adaptive Operators

 Double Pipelined Hash Join [2]

1)

2) Dynamic Collectors
• unify data sources intelligently
• Try data sources in parallel and by some fixed policy

• e.g. first source to send X tuples is accepted

Operators adapting to unexpected transfer rates
• Transfer rates of build and proble inputs may vary
• GOAL : avoid pausing when a join input is slow

4

Double Pipelined Join (Cont’d.)

Advantages
 Output tuple time is minimized
 Symmetric – do not have to choose the right source for inner

relation
Issues
 Memory consumption – have to hold two join relations instead

of just the smaller
 Handling Memory Overflows

 Static sized buckets – does not work if join size > memory
 We tend towards Hybrid Hash Join – flush one hash table
 Incremental Left Flush
 Incremental Symmetric Flush

 Blocks when both inputs are blocked => XJoin

Experiments

Other Adaptive QP techniques

 EDDIES - Used extensively
to reshape dataflow graphs
and maximize performance
in the Telegraph project [3]

 Per-tuple decisions – believed
that it is expensive, project
folks claim otherwise

 Operators adapting to data
statistics – Early Rate BindJoin

 XJoin [2]
 Toward Self-Tuning :

AutoAdmin Project

 Discussions?

5

References
 [1] http://lbd.epfl.ch/e/teaching/SlidesST/adaptive-2005.pdf

 [2] http://www-
lsr.imag.fr/EDBT2002/Other/edbt2002PDF/EDBT2002School-
Manolescu.pdf

 [3] http://telegraph.cs.berkeley.edu/techover.html

