Processing Sliding Window Multi-Joins in
Continuous Queries over Data Streams

presented by Yingying Tao

4
Background and M

ata stream — rcal—timc, continuous, ordered
Issues
— May not be wholly stored in memory
— New items are often more accurate/relevant

— Query may need consume entire input befor

time-based

w Solution: sliding window <

tuple-based

>

Background a

Two issues for query processing over sliding
windows:
— Re-execution strategies
* eager re-evaluation: re-execute query upon new tuple arrival
not feasible for streams with high arrival rate
valuation: re-execute query after certain time period

delay on generating new results

invalidation procedures
« eager expiration: remove old tuples upon new tuple arrival

o lazy expiration: remove old tuples after certain time period

4
Background and Motivati

» Joins over n data streams with n sliding window

Assumptions
ams consist relational tuples — one timestamp attr + value attrs

— All windows fit in main memory

— Query plans use extreme right-deep tree

— No intermediate results materialized

Upon new tuple k arriva
« Invalidate expired tuples
« Probe all tuples not expired Ss
am results to user § §
S1 M (S M (S3 M Sy))

m naive multi-way

4
Back

e Problem with naive multi-way join

Example

Solution:
put newly arrived tuple
on top of join order

I
| LN I G [T
[0 T Jso] T TS| 1

4

Sliding-Window Join ithm

e Improved eager multi-way nest-loop joins

seudo code

loop thy c2up 1o S
S, and rts
0

n-1
k.ts

4

Sliding-Window Join Algorithms

multi-way nest-loop joins
— Adopt same idea as improved eager multi-way
— Replace trigger condition “insert new tuple
interval

e General lazy multi-way nest-loop joins
— Remove restriction of “put newly arrived tuples to the outer-
most for-loc
— Timestamp comparisons can only be done in the for-loop of
new arrived tuples

4
Sliding-Wi

Algorithm Lazy Muir-Way N
Tnsert each new tuple into its window as it arrives
Every time the query is to be re-executed
Fori=1...n
vk € S, and NOW kts < NOW
COMPUTE]O .

Pseudo codes

Algorithm AL LAzY MULT-WAY NLJ
Iusert new tuples into windows as they arive
Every time the query is to be re-executed
ori=1
GENERALCOMPUTEJOIN(i, O;)

Algorithm ALCOMPUTEJOIN
Tuput: window subseript i and a join order O;
= O;
If watr 0 v.attr
Toop through Oi3 up t0 Ogp—y
7 < kits £ NOW and
< kts and
If wattr 6
loop throt

4

Sliding-Window Join ithm

e Multi-way hash joins
— Only scan on hash bucket where the attribute of newly
arrived tuple falls in

« Eager version

Pseudo code PP —

w tuple k fron

n
If k.attr 6 v

u a1k and kits = A
If attr 6

e Lazy version: similar to Lazy/General lazy multi-way NLJ

4

Sliding-Wir i gorithms

» Extension to tuple
— Eager re-evaluation: overwrite the oldest tuple by new one

— Lazy valuation:

ithm COMPUTECOUNTJOIN

¢ Maintain a counter
tuple k from window S; and a join order

for each tuple
* Verify counter u&
. o If k.attr 6 u.c
instead of timestamp

seudo code
2 up to Spy
[

4

Heuristic based Join Ordering

» Eager re-evaluation
— Heuristic I: join with the smallest remaining window first

— Heuristic 2: join with the window that have the high

selectivity first
— Heuri 3: move f: streams up
re-evaluation

NLJs: Considered as straight-forward

4

Heuristic ed

e Multi-way hash join
same number of hash bucket in all streams: same as NLJs

— Various number of hash bucket: compute the avera
bucket size and aj heuristics

Other scenarios
Hybrid hash-NLJ
Expensive predicates
Joins on different attributes

Fluctuating stream arrival rates

4
Experiments

* Join processing cost compare
— Eager multi-way NLIJs vs. Naive multi-way NLJs

50 values each window, time size 100, 1 tuple per unit time

Observation: er multi-way NLIJs outperform Naive

Experiments

* Join processing cost compare (cont’d)
— Lazy/General lazy multi-way NLJs vs. Naive multi-way NLJs

4 windows, same parameters Increase arrival rate of $4 to
as previous. example 10 tuples per unit

Observations:
General NLJs always performs best
+ Lazy NLJs will be beaten when re-evaluation interval is large
+ Almost linear performance for Lazy and General NLJs?

4
Experiments

» Join ordering heuristic validation

4 windows, arrival rates 1~10 tuple per unit,
time size 100~200, # of values 5~500

Algorthm | Max. tato of | Max. Tz
best plan_|worst plan

Observations:
* Best plan derived from the heuristics for all above cases
* Hash join outperforms NLJs

4
Experiments

» Effect of re-evaluation frequency and number of

hash buckets on different algorithms

4 windows, arrival ra ple per unit,
h window

Observations:
* NLJ is the slowest
* The more hash buckets, the better performance
* Very frequent and infrequent re-evaluations are both inefficient

Experiments

4 windows, time size 100, 50 values each window, re-evaluation rat
arrival rates 1 tuple per unit fo 50 tuple per unit for

Observation: allocate more hash buc
window may improve p

4

Conclusion

Multi-way NLJ and multi-way h join proposed
can beat naive multi-

Heuristics for join ordering can improve performance

em parameters may affect efficiency
e Stream arrival rates
¢ Tuple expiration pol
¢ Number of hash buckets
Future work

operators other than join

4

Discus

Large, or complex multi-joins?
Adopting existing query optimization tec
for stream join ordering?

Windows not be able to fit in main memor

Update selectivity for better estimating cost?

