
1

Processing Sliding Window Multi-Joins in
Continuous Queries over Data Streams

presented by Yingying Tao

Background and Motivation

• Data stream – real-time, continuous, ordered
Issues
– May not be wholly stored in memory
– New items are often more accurate/relevant
– Query may need consume entire input before giving results

Solution: sliding window
time-based
tuple-based

• Two issues for query processing over sliding
windows:
– Re-execution strategies

• eager re-evaluation: re-execute query upon new tuple arrival
 – not feasible for streams with high arrival rate
• lazy re-evaluation: re-execute query after certain time period
 – delay on generating new results

– Tuple invalidation procedures
• eager expiration: remove old tuples upon new tuple arrival
• lazy expiration: remove old tuples after certain time period

Background and Motivation

2

• Joins over n data streams with n sliding windows
Assumptions
– Streams consist relational tuples – one timestamp attr + value attrs
– All windows fit in main memory
– Query plans use extreme right-deep tree
– No intermediate results materialized

Upon new tuple k arrival
• Invalidate expired tuples
• Probe all tuples not expired
• Stream results to user

Background and Motivation

naive multi-way join

• Problem with naive multi-way join
Example

Background and Motivation

new S3 tuple arrives

prune expired tuples

Solution:
put newly arrived tuple
on top of join order

• Improved eager multi-way nest-loop joins
Pseudo code

Sliding-Window Join Algorithms

3

Sliding-Window Join Algorithms

• Lazy multi-way nest-loop joins
– Adopt same idea as improved eager multi-way NLJs
– Replace trigger condition “insert new tuple” by re-execute

interval

• General lazy multi-way nest-loop joins
– Remove restriction of “put newly arrived tuples to the outer-

most for-loop”
– Timestamp comparisons can only be done in the for-loop of

new arrived tuples

Sliding-Window Join Algorithms

Pseudo codes

• Multi-way hash joins
– Only scan on hash bucket where the attribute of newly

arrived tuple falls in
• Eager version

• Lazy version: similar to Lazy/General lazy multi-way NLJ

Sliding-Window Join Algorithms

Pseudo code

4

• Extension to tuple-based windows
– Eager re-evaluation: overwrite the oldest tuple by new one
– Lazy re-evaluation:

• Maintain a counter
 for each tuple
• Verify counter
 instead of timestamp

Sliding-Window Join Algorithms

Pseudo code

• Eager re-evaluation
– Heuristic 1: join with the smallest remaining window first
– Heuristic 2: join with the window that have the highest
 selectivity first
– Heuristic 3: move faster streams up

• Lazy re-evaluation
– Lazy multi-way NLJs: Considered as straight-forward

extension of eager re-evaluation
– General lazy multi-way NLJs: independently optimize each

local join order by applying above heuristics

Heuristic based Join Ordering

Heuristic based Join Ordering

• Multi-way hash join
– Same number of hash bucket in all streams: same as NLJs
– Various number of hash bucket: compute the average

bucket size and apply heuristics

• Other scenarios
– Hybrid hash-NLJ
– Expensive predicates
– Joins on different attributes
– Fluctuating stream arrival rates

5

• Join processing cost compare
– Eager multi-way NLJs vs. Naive multi-way NLJs

 50 values each window, time size 100, 1 tuple per unit time

Experiments

Observation: eager multi-way NLJs outperform Naive

• Join processing cost compare (cont’d)
– Lazy/General lazy multi-way NLJs vs. Naive multi-way NLJs

Experiments

4 windows, same parameters
as previous. example

Increase arrival rate of S4 to
10 tuples per unit

Observations:
• General NLJs always performs best
• Lazy NLJs will be beaten when re-evaluation interval is large
• Almost linear performance for Lazy and General NLJs?

• Join ordering heuristic validation

Experiments

Observations:
• Best plan derived from the heuristics for all above cases
• Hash join outperforms NLJs

4 windows, arrival rates 1~10 tuple per unit,
time size 100~200, # of values 5~500

6

• Effect of re-evaluation frequency and number of
 hash buckets on different algorithms

Experiments

4 windows, arrival rates 1 tuple per unit,
time size 100, 50 values each window

Observations:
• NLJ is the slowest
• The more hash buckets, the better performance
• Very frequent and infrequent re-evaluations are both inefficient

• Varying hash table sizes

Experiments

4 windows, time size 100, 50 values each window, re-evaluation rate 5 unit
arrival rates 1 tuple per unit for S1, S2, S3, 50 tuple per unit for S4

Observation: allocate more hash buckets to frequent refreshing
 window may improve performance

• Multi-way NLJ and multi-way hash join proposed
can beat naive multi-way NLJ

• Heuristics for join ordering can improve performance
• System parameters may affect efficiency

• Stream arrival rates
• Tuple expiration policies
• Number of hash buckets

• Future work
• Consider query operators other than join
• More heuristics for join ordering
• Better cost estimation strategies

Conclusion

7

• Large, or complex multi-joins?
• Adopting existing query optimization techniques

for stream join ordering?
• Windows not be able to fit in main memory?
• Update selectivity for better estimating cost?

Discussion

