
Chain:
Operator Scheduling For Memory
Minimization In Data Stream Systems.

Brian Babcock, Shivnath Babu,
Mayur Datar, and Rajeev Motwani.

Presented by:

Kareem Elgebaly
ACM SIGMOD Int. Conf. on Management of Data, pages 253-264, 2003.

2

Outline:

Introduction.

Intuition.

Proof.

Experiments.

Conclusion.

Assessment.

3

Introduction:

Problem:

Data stream data rates are not only

fast but also irregular.
(2 orders of magnitude)

4

Solutions so far:

Drop tuples: (e.g. Load Shedding {Aurora,STREAM})

Loss of data leads to inaccuracies.

Overflow on disk:

Disastrous performance degradation.

Introduction:

5

Answer:

Reduce memory needed for queuing.

How ?
Through better scheduling.

Why ?
No penalties in performance or accuracy.

Introduction:

6

Devise a scheduler that discriminates among

operators according to their memory impact.

Fast Operators:

Expected to have a very fast run-time.

Selective Operators:

Operators that consume a lot of records.

Introduction:

7

Two dimensional problem:

Fast + Selective High Priority

Slow + Unselective Low Priority

Intuition:

8

How many tuples per unit time does the Op consume?

Greedy evaluation:

Priority α (Selectivity / Time)

Intuition:

9

Opt1

Opt2

Opt3

Time

B
lo
c
k
 S
iz
e

Tuples build up here
Bad Example for Greedy

Intuition:

10

Answer is not straight forward…

A very good operator that takes results from a

bad operator will never get scheduled.

(Local Minima)

Intuition:

11

Intuition:

Opt1

Opt2

Opt3

Time

B
lo
c
k
 S
iz
e

Lower envelope

12

Chain evaluation:

Priority α Lower Envelope Slope

Intuition:

13

Proof:

Claim:

Memory needed by Chain scheduling is within
constant factor of optimal offline algorithm.

(Clairvoyant)

Proof sketch:
1.Greedy scheduling is optimal for convex progress charts

(since) Best operators are immediately available

2.Lower envelope is convex

3.Lower envelope closely approximates actual progress chart

14

Claim:
Lower envelope closely approximates actual progress chart

1. At most one block in the middle of each lower envelope segment
(Due to) tie-breaking rule

2. (Lower envelope + 1) gives upper bound on actual memory usage

3. Additive error of 1 block per progress chart

Proof:

Difference

Difference

15

Experiments:

Setup:

Data Sets:

1) Synthetic Data Set.

2) Real Data Set.

Queries:

1) Single Queries.

2) Multi Queries.

3) Join Queries.

16

Experiments:

17

Experiments:

18

Experiments:

19

Conclusions:

Starvation

Stuck in local maxima

Good performanceGreedy

StarvationNear optimal
performance

Chain

Poor performanceNo starvationRound-
Robin

Poor performanceNo starvationFIFO

Cons.Pros.

20

Chain is orthogonal to traditional memory
requirements minimization techniques. Hence you are
not trading Chain’s benefits with anything, you are
getting it for free.

Chain is an algorithm that guaranties certain
performance standard without introducing any extra
over heads.

Good !!!

Conclusions:

21

Assessment:

Limitation:

Chain is no better than FIFO in normal rates.

Chain is most useful when rates are irregular.

(plus) no experimentation done to compare performance in such cases.

What if:

The SDMS was implementing an Early Selection

optimization technique ?
Would Chain make sense?

Would it be any better than greedy?

22

TODO:

More QOS guarantees. Like (low response time)

tuples may wait for an unacceptable long time before it gets scheduled.

Chain doesn’t take into account:

1) Parallelism

2) Shared sub plans (shared queues)

Assessment:

23

Questions?

