
1

Resource Sharing in Continuous
Sliding-Window Aggregation

A. Arasu
J. Widom

Presented by: Hossein S. Attar

Motivation

 Large number of concurrent continuous
queries
 Publish-subscribe systems

 Handling each query separately
 Inefficient

 Resource sharing among queries
 Computation
 Memory
 Disk bandwidth

Motivation

 Operator level sharing
 A single generic operator handling several

queries
 Previous work

 Filters (stateless)

 This paper
 Aggregation over sliding windows

 Each operator maintains state

2

Background

 Sliding windows
 Used to solve problems with unbounded streams
 window size

 time interval (time-based)
 number of tuples (tuple-based)

 Suffix windows
 More recent data

 Non-suffix (historical) windows

Background

 Aggregation over a sliding window
(ASW)

 Aggregations on substreams
 Similar to GROUP BY

 Substream filters(SSF)
 Similar to HAVING

Output Model

 ASW output updated
 actively

 as window slides
 using some interval

 Upon request
 Lookup Model
 considered in this paper

3

Cost Parameters

 3 parameters
 Space (memory) for maintaining state
 Time to compute answer (lookup time)
 Update time when a new tuple arrives

 Space-Update-Lookup Tradeoff
 partial answer computation at update time
 Compute final answers using partial results

at lookup time

Resource Sharing

 In this work sharing is possible among
operators
 Over the same streams
 Of the same type
 Only different in their sliding window

specification
 QUANTILE is an exception

 Quantile parameter can also be different

ASW Operators

4

Agg. Functions
 Aggregation Functions

 Distributive
 f(X1) and f(X2) ⇒ f(X1∪X2)
 SUN, COUNT, MAX, MIN

 Algebraic
 There exists a synoptic function g such that

 g(X) ⇒ f(X)
 g is distributive

 AVG
 Holistic

 Not algebraic
 QUANTILE

Algorithms

 Distributive or algebraic
 Base Intervals (B-INT)
 Landmark Intervals (L-INT)

 Results are precomputed and stored for
some intervals

 Final answer for other intervals
calculated using precomputed results

Base Intervals (B-INT)

 Base intervals
 (2l i + 1, 2l (i+1)) for some i

 Active intervals
 Intervals to the right of the beginning of

the earliest window

5

lookup

B-INT

B-INT Costs

 Space
 O(Nmax)

 Update (amortized)
 O(1)

 Lookup (worst case)
 O(log W)

Landmark Intervals (L-INT)

 Wmin and Wmax

 Landmark intervals
 (αWmin, αWmin + d)
 (αWmin - d,αWmin - 1)

 d < Wmax

6

L-INT Lookup

L-INT Update

αWminαWmax αWmax

L-INT Costs

 Wmin and Wmax should be close to equal
 Space

 O(Nmax)

 Update (amortized)
 O(1)

 Lookup (worst case)
 O(1)

7

PSoup

 Proposed by Chandrasekharan and Frankiln
 Uses an augmented n-ary search tree

 Leaves are tuples
 Internal nodes store the value of agg. Function

for its descendents
 Update

 O(log Nmax)

 Lookup
 O(log Nmax)

QUANTILES

 Consider a bag of N elements
 QUANTILE (φ) = element at position φN in

the sorted sequence of elements
 B-INT-QNT

 Based on B-INT
 Store a sorted array of elements for each base

interval
 Compute QUANTILE using the sorted arrays

SSF Operators

8

Sharing in SSF

 sharing among SSF operators that differ
only in
 Window specification
 Range predicate

Simple Approach

 Simple Approach
 For each substream

 process ASW suboperations using one of the
ASW sharing algorithms

 Lookup cost depends on the size of key
attribute domain |K|

 More efficient approaches
 For certain comb. of window type and

functions

CI-COUNT

 Used for function COUNT on
substreams when range conditions are
one sided

 Produces approximate answers

9

CI COUNT

 The following are equivalent
 Look for substreams that have received

more than v elements in the last T time
units

 Look for substreams for which the vth

element form the end has timestamp
greater than τ-T

CI_COUNT

 Maintain an index over the timestamps
of the vth element from the end of all
substreams

 Instead of maintaining an index for
each v value, maintain an index for
each level

 All v values such that log v = l share
the same index

CI COUNT Example

10

CI-COUNT Costs

 Space
 O(|K| log Nmax)

 Update (amortized)
 O(log |K|)

 Lookup
 O(|Ko|)

Comments

 The space and execution costs of
algorithms are good

 Algorithms are easy to implement
 But no proof of optimality

