Resource Sharing in Continuous Sliding-Window Aggregation

A. Arasu
J. Widom

Presented by: Hossein S. Attar

Motivation
- Large number of concurrent continuous queries
 - Publish-subscribe systems
 - Handling each query separately
 - Inefficient
- Resource sharing among queries
 - Computation
 - Memory
 - Disk bandwidth

Motivation
- Operator level sharing
 - A single generic operator handling several queries
 - Previous work
 - Filters (stateless)
 - This paper
 - Aggregation over sliding windows
 - Each operator maintains state
Background
- Sliding windows
 - Used to solve problems with unbounded streams
 - Window size:
 - Time interval (time-based)
 - Number of tuples (tuple-based)
- Suffix windows
 - More recent data
- Non-suffix (historical) windows

Background
- Aggregation over a sliding window (ASW)
- Aggregations on substreams
 - Similar to GROUP BY
- Substream filters (SSF)
 - Similar to HAVING

Output Model
- ASW output updated
 - Actively
 - As window slides
 - Using some interval
 - Upon request
 - Lookup Model
 - Considered in this paper
Cost Parameters

- 3 parameters
 - Space (memory) for maintaining state
 - Time to compute answer (lookup time)
 - Update time when a new tuple arrives

Space-Update-Lookup Tradeoff
- Partial answer computation at update time
- Compute final answers using partial results at lookup time

Resource Sharing

- In this work sharing is possible among operators
 - Over the same streams
 - Of the same type
 - Only different in their sliding window specification
- QUANTILE is an exception
 - Quantile parameter can also be different

ASW Operators
Agg. Functions

- Aggregation Functions
 - Distributive
 - \(f(X_1) \) and \(f(X_2) \Rightarrow f(X_1 \cup X_2) \)
 - \text{SUM, COUNT, MAX, MIN}
 - Algebraic
 - There exists a synoptic function \(g \) such that
 - \(g(X) \Rightarrow f(X) \)
 - \(g \) is distributive
 - \text{AVG}
 - Holistic
 - Not algebraic
 - \text{QUANTILE}

Algorithms

- Distributive or algebraic
 - Base Intervals (B-INT)
 - Landmark Intervals (L-INT)
- Results are precomputed and stored for some intervals
- Final answer for other intervals calculated using precomputed results

Base Intervals (B-INT)

- Base intervals
 - \((2^{i+1}, 2^{(i+1)})\) for some \(i\)
- Active intervals
 - Intervals to the right of the beginning of the earliest window
B-INT

B-INT Costs
- Space
 - $O(N_{\text{max}})$
- Update (amortized)
 - $O(1)$
- Lookup (worst case)
 - $O(\log W)$

Landmark Intervals (L-INT)
- W_{min} and W_{max}
- Landmark intervals
 - $(\alpha W_{\text{min}}, \alpha W_{\text{min}} + d)$
 - $(\alpha W_{\text{min}} - d, \alpha W_{\text{min}} - 1)$
 - $d < W_{\text{max}}$
L-INT Costs

- W_{min} and W_{max} should be close to equal
- Space
 - $O(N_{max})$
- Update (amortized)
 - $O(1)$
- Lookup (worst case)
 - $O(1)$
PSoup
- Proposed by Chandrasekharan and Franklin
- Uses an augmented n-ary search tree
 - Leaves are tuples
 - Internal nodes store the value of agg. Function for its descendents
- Update
 - $O(\log N_{\text{max}})$
- Lookup
 - $O(\log N_{\text{max}})$

QUANTILES
- Consider a bag of N elements
- QUANTILE $(\phi) =$ element at position ϕN in the sorted sequence of elements
- B-INT-QNT
 - Based on B-INT
 - Store a sorted array of elements for each base interval
 - Compute QUANTILE using the sorted arrays

SSF Operators
Sharing in SSF

- sharing among SSF operators that differ only in
 - Window specification
 - Range predicate

Simple Approach

- Simple Approach
 - For each substream
 - process ASW suboperations using one of the ASW sharing algorithms
 - Lookup cost depends on the size of key attribute domain |K|
 - More efficient approaches
 - For certain comb. of window type and functions

CI-COUNT

- Used for function COUNT on substreams when range conditions are one sided
- Produces approximate answers
CI COUNT

- The following are equivalent
 - Look for substreams that have received more than \(v \) elements in the last \(T \) time units
 - Look for substreams for which the \(v \)th element from the end has timestamp greater than \(\tau - T \)

CI_COUNT

- Maintain an index over the timestamps of the \(v \)th element from the end of all substreams
- Instead of maintaining an index for each \(v \) value, maintain an index for each level
- All \(v \) values such that \(\log v = l \) share the same index

CI COUNT Example
CI-COUNT Costs

- Space
 - $O(|K| \log N_{\text{max}})$
- Update (amortized)
 - $O(\log |K|)$
- Lookup
 - $O(|K_o|)$

Comments

- The space and execution costs of algorithms are good
- Algorithms are easy to implement
- But no proof of optimality