
1

Resource Sharing in Continuous
Sliding-Window Aggregation

A. Arasu
J. Widom

Presented by: Hossein S. Attar

Motivation

 Large number of concurrent continuous
queries
 Publish-subscribe systems

 Handling each query separately
 Inefficient

 Resource sharing among queries
 Computation
 Memory
 Disk bandwidth

Motivation

 Operator level sharing
 A single generic operator handling several

queries
 Previous work

 Filters (stateless)

 This paper
 Aggregation over sliding windows

 Each operator maintains state

2

Background

 Sliding windows
 Used to solve problems with unbounded streams
 window size

 time interval (time-based)
 number of tuples (tuple-based)

 Suffix windows
 More recent data

 Non-suffix (historical) windows

Background

 Aggregation over a sliding window
(ASW)

 Aggregations on substreams
 Similar to GROUP BY

 Substream filters(SSF)
 Similar to HAVING

Output Model

 ASW output updated
 actively

 as window slides
 using some interval

 Upon request
 Lookup Model
 considered in this paper

3

Cost Parameters

 3 parameters
 Space (memory) for maintaining state
 Time to compute answer (lookup time)
 Update time when a new tuple arrives

 Space-Update-Lookup Tradeoff
 partial answer computation at update time
 Compute final answers using partial results

at lookup time

Resource Sharing

 In this work sharing is possible among
operators
 Over the same streams
 Of the same type
 Only different in their sliding window

specification
 QUANTILE is an exception

 Quantile parameter can also be different

ASW Operators

4

Agg. Functions
 Aggregation Functions

 Distributive
 f(X1) and f(X2) ⇒ f(X1∪X2)
 SUN, COUNT, MAX, MIN

 Algebraic
 There exists a synoptic function g such that

 g(X) ⇒ f(X)
 g is distributive

 AVG
 Holistic

 Not algebraic
 QUANTILE

Algorithms

 Distributive or algebraic
 Base Intervals (B-INT)
 Landmark Intervals (L-INT)

 Results are precomputed and stored for
some intervals

 Final answer for other intervals
calculated using precomputed results

Base Intervals (B-INT)

 Base intervals
 (2l i + 1, 2l (i+1)) for some i

 Active intervals
 Intervals to the right of the beginning of

the earliest window

5

lookup

B-INT

B-INT Costs

 Space
 O(Nmax)

 Update (amortized)
 O(1)

 Lookup (worst case)
 O(log W)

Landmark Intervals (L-INT)

 Wmin and Wmax

 Landmark intervals
 (αWmin, αWmin + d)
 (αWmin - d,αWmin - 1)

 d < Wmax

6

L-INT Lookup

L-INT Update

αWminαWmax αWmax

L-INT Costs

 Wmin and Wmax should be close to equal
 Space

 O(Nmax)

 Update (amortized)
 O(1)

 Lookup (worst case)
 O(1)

7

PSoup

 Proposed by Chandrasekharan and Frankiln
 Uses an augmented n-ary search tree

 Leaves are tuples
 Internal nodes store the value of agg. Function

for its descendents
 Update

 O(log Nmax)

 Lookup
 O(log Nmax)

QUANTILES

 Consider a bag of N elements
 QUANTILE (φ) = element at position φN in

the sorted sequence of elements
 B-INT-QNT

 Based on B-INT
 Store a sorted array of elements for each base

interval
 Compute QUANTILE using the sorted arrays

SSF Operators

8

Sharing in SSF

 sharing among SSF operators that differ
only in
 Window specification
 Range predicate

Simple Approach

 Simple Approach
 For each substream

 process ASW suboperations using one of the
ASW sharing algorithms

 Lookup cost depends on the size of key
attribute domain |K|

 More efficient approaches
 For certain comb. of window type and

functions

CI-COUNT

 Used for function COUNT on
substreams when range conditions are
one sided

 Produces approximate answers

9

CI COUNT

 The following are equivalent
 Look for substreams that have received

more than v elements in the last T time
units

 Look for substreams for which the vth

element form the end has timestamp
greater than τ-T

CI_COUNT

 Maintain an index over the timestamps
of the vth element from the end of all
substreams

 Instead of maintaining an index for
each v value, maintain an index for
each level

 All v values such that log v = l share
the same index

CI COUNT Example

10

CI-COUNT Costs

 Space
 O(|K| log Nmax)

 Update (amortized)
 O(log |K|)

 Lookup
 O(|Ko|)

Comments

 The space and execution costs of
algorithms are good

 Algorithms are easy to implement
 But no proof of optimality

