Resource Sharing in Continuous Sliding-Window Aggregation

A. Arasu J. Widom

Presented by: Hossein S. Attar

Cost Parameters

3 parameters

- *Space* (memory) for maintaining state
- *Time* to compute answer (lookup time)
- Update time when a new tuple arrives
- Space-Update-Lookup Tradeoff
 - partial answer computation at update time
 - Compute final answers using partial results at lookup time

Base Intervals (B-INT)

- Base intervals
 - (2ⁱ i + 1, 2ⁱ (i+1)) for some i
- Active intervals
 - Intervals to the right of the beginning of the earliest window

CI-COUNT

- Used for function COUNT on substreams when range conditions are one sided
- Produces approximate answers

CI COUNT

- The following are equivalent
 - Look for substreams that have received more than v elements in the last T time units
 - Look for substreams for which the v^{th} element form the end has timestamp greater than τ -T

CI_COUNT

- Maintain an index over the timestamps of the vth element from the end of all substreams
- Instead of maintaining an index for each v value, maintain an index for each *level*
- All v values such that log v = l share the same index

