Query Processing, Approximation, and Resource Management in a Data Stream Management System

Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, Rohit Varma

Presentation by:
Abram Hindle
Department of Computer Science
University of Waterloo
ahindle@cs.uwaterloo.ca

October 4, 2005

This Presentation

- What am I going to cover?
 - Authors
 - Introduction
 - DSMS
 - STREAM
 - Summary

Authors

- Most authors come from the Stanford DB group
- Rajeev Motwani - Professor (CS) and Director of Grad Studies at Stanford
- Jennifer Widom - Professor (CS,EE) at Stanford
- Arvind Arasu - Ph.D. Candidate (CS) at Stanford (Widom)
- Brian Babcock - Ph.D. Candidate (CS) at Stanford (Motwani)
- Shivnath Babu - Ph.D. Candidate (CS) at Stanford (Motwani and Widom)
- Mayur Datar - Ph.D. (Motwani)
- Gurmeet Manku - Ph.D. - Works for Google now
- Christopher Olston - Assistant Professor (CS) at Carnegie Mellon
- Justin Rosenstein - Msc (CS) - Works for Google now
- Rohit Varma - Stanford Student?
Introduction

- STREAM (Stanford Stream Manager) is a Data Stream Management System (DSMS) from Stanford
- SQL Extension for Streams
- Query Plans, Approximation, etc
- General overview of a prototypical DSMS

DSMS

- Data Stream Management Systems
- Like RDBMS but allows streams
- Streams consist of sequential, temporal data,
- Stream can be continuous, time varying, unbounded
- Queries can be streams
- New data comes in at various intervals
- A DSMS can query and help reason about data streams.
- Like a pipe and filter architecture for DBMS
 - Primary difference: DSMS are for querying where was dataflow/pipe and filter architectures might not be used for querying.

DSMS Challenges

- Changing conditions of streams
- Query Accuracy
- Run Time Conditions
- Data Rates
- Query Loads
- Windowing, Queuing, Aggregation
Query Processing, Approximation, and Resource Management in a DSMS CS856

Context
- DSMS implementations existed at the time
 - Aurora
 - Hancock w/ AT&T
 - TelegraphCQ and NiagraCQ

Contributions
- SQL extension
- Plan Sharing and approximating Query Plans
- Static and Dynamic Approximation
- Algorithms for resource allocations
- Constraints based resource allocation
- Scheduling Algorithm
- Implementation

Query Language Extension
- An extension of SQL (SELECT, CREATE STREAM)
- Streams can be built up from other continuous queries
- FROM is extended to reference streams and the windowing to use
 - RANGE for time intervals (1 DAY PRECEDING)
 - ROWS selects preceding rows
 - WHERE clause is optional
 - SAMPLE selects a (uniform?) sampling
 - PARTITION BY is a group by for streams
Query Language Example

- Select from a web proxy
- Number of requests during the last day

```sql
SELECT COUNT(*)
FROM Requests S [RANGE 1 DAY PRECEDING]
WHERE S.domain = 'stanford.edu'
```

- Select from a web proxy with partitions
- How many requests, considering only a max of 10 per client

```sql
SELECT COUNT(*)
FROM Requests S
[PARTITION BY S.client_id
ROWS 10 PRECEDING
WHERE S.domain = 'stanford.edu']
WHERE S.URL LIKE 'http://cs.stanford.edu/%'
```

- Sub select with Sampling
- Sample 10% of 10000 preceding rows and count how many are commerce

```sql
SELECT COUNT(*)
FROM
(SELECT R.class
FROM Requests S 10% SAMPLE, Domains R
WHERE S.domain = R.domain) T
[ROWS 10000 PRECEDING]
WHERE T.class = 'commerce'
```
Formal Semantics

- $C(S)$ - current timestamp of stream S
 - Explicit Timestamps $C(S) = τ' - B$ (B scrambling bound)
 - Arrival Timestamps $C(S)$ is the system clock
 - $C(Q)$ for query Q is the minimum $C(S)$ for streams referenced by Q

- $A(Q, τ)$ is the answer of query Q at time $τ$
 - Continuous Queries: $A(Q, C(Q))$
 - Streamed Queries: $∪_{τ ≤ C(Q)} A(Q, τ)$ (only the smallest $τ$ are in result)

Query Plans

- STREAM uses somewhat shared query plans but not a global plan like Aurora.

- Plan consists of
 - Query operators - operators read the tuples from the stream and write output to queues
 - Inter-operator queries - operators connected by queues
 - Synopses - tuple summary (aggregates, over whole history or windows)

Figure 1: Plans for queries Q_1, Q_2 over streams R, S, T.

Abram Hindle
Dataflow

- Variable Rate Flows
- Issues of Shared Data Plans
 - Variable Consumption Rate (shared queues not a good idea then)
 - Approximation with all the queue mayhem, approximation might be best
 - Synopses sharing
- This done heavily in Computer Music, Computer Audio, Digital Filters, and just about any data flow application, what was shown here is not very new at all.

Static Approximation

- Window Reduction
 - reduce window sizes
- Sampling Rate Reduction
 - decrease sampling rate based on the requirements of the query.

Dynamic Approximation

- Assumptions: Less Memory Overhead is better performance
- Synopsis Compression
 - Reduce Memory Overhead
- Sampling and Load Shedding
 - Aggregate or throw out tuples.
 - Add more sampling (reduce storage)
 - There are a few clever randomized algorithms that allow you to keep a uniformly distributed sample
Resource Management

- Memory, CPU, I/O, Network
- More Implementation Based
 - “Maximize” result precision through statically allocating memory for a query. Algorithm: assume you know just about everything about the resource usage, then use a numerical solver to find the best precision solution.
 - Incorporate known constraints to reduce synopsis sizes. Assume based on prior knowledge the behavior of the system how data arrives, (e.g. in clusters around OrderID), use this information in joins.
 - Scheduling, either tuples processed as they arrive or process n tuples and push the results through the system. (This has been studied to death in the Computer Music field and Operating Systems)
- “provably has close-to-optimal queue size overhead”

Their Conclusions

- SQL Extension for DSMS
- Query Plans w/ Approximation
- Static and Dynamic Approximations
- Resource allocation algorithms

Issues

- Overview paper
- Naive Algorithms used in other fields
- Ignoring work done in non-DB fields
- Ignoring Temporal DBMS (TQuel, ATSQL)
Summary

- This paper was an overview of STREAM (a DSMS)
- The largest contribution was their SQL Extension to streams
- Provided details regarding data flow issues

Questions

- What other research could they have looked at?
- What other fields have similar problems with Stream data?
- What are lessons from other fields?
- Is their SQL extension the right route? What would you add change or remove?