Toward Large Scale Integration: Building a MetaQuerier over Databases on the Web

K. C.-C. Chang, B. He, and Z. Zhang
Presented by: M. Hossein Sheikh Attar

Background

- Deep (hidden) Web
 - Searchable online databases
 - 450,000 databases on the Internet
 - Growing fast
 - Invisible to users and current crawlers
 - Accessible through query interfaces

Problem Statement

- Currently users have difficulties in
 - Finding the right sources
 - E.g., What is a good source for finding apartments in Waterloo?
 - Querying them
 - Each source supports different query capabilities
- The goal of MetaQuerier
 - Make deep Web systematically accessible
 - Make it uniformly usable
Challenges

- Somewhat similar to the traditional information integration problem
- However
 - The scale is much larger
 - Dynamic discovery
 - No pre-selected sources
 - On-the-fly semantic discovery
 - Ad-hoc queries
 - No pre-configured per-source knowledge

Summary of Observations

- Survey and observe (do some "reality checks")
 - Helps make right assumptions
- Online databases are NOT arbitrarily complex
 - Convergence
 - Regularity
- Reason
 - Influence by peers
 - Amazon effect
Architecture of MetaQuerier

- 7 Subsystems
- Plan
 - Study and implement each subsystem individually
 - Integrate them
- 5 subsystems implemented so far

Subsystem 1: Database Crawler
Database Crawler (DC)
- Focused crawler for finding query interfaces
- Survey shows that the query interfaces are close to root page of Web sites

Subsystem 2: Interface Extraction

Interface Extraction (IE)
- Input: HTML query interface
- Output: query capabilities
 - constraint templates:
 - [attribute, operator, value]
 - E.g., [title, contains, v]
IE – Hidden Syntax Hypothesis

- Different interfaces share similar patterns
- Regularities
 - Presentation conventions

Hypothetic hidden syntax across sources
- Using this hidden syntax, we can interpret an interface unseen before
- Principles algorithmic framework
 - Using a grammar for pattern specification
 - Using a parser for pattern recognition

Grammar

<table>
<thead>
<tr>
<th>Rule</th>
<th>Productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
</tr>
</tbody>
</table>

Productions of the 2P grammar.
Ambiguities - 2P Grammar

- 2P grammar
 - A set of **productions** to capture conventional hidden patterns
 - A set of **preferences** to capture hidden priority conventions
- Best effort parser
 - multiple parse trees
 - incomplete parse trees
 - Merging trees at the end

Subsystem 3: Schema Matching
Schema Matching

- **Input:**
 - Query capabilities from several extracted forms in a domain

- **Output:**
 - Semantic correspondence (matching) among attributes

Schema Matching

- Existing method do not scale well to our problem
- Large scale is both a challenge and an opportunity
 - Holistic schema matching
 - Explore context information across all schemas
 - Assumes the existence of a hidden generative schema model

Attribute frequencies in Books domain.
Schema Matching

- Abstract the problem as **correlation mining**
 - Mining for *positive and negative* correlations

Examples:
- \{first name, last name\}, author

Schema Matching – DCM framework

Data Preparation
- Form Extraction
- Text Recognition
- Symbol Merging

Correlation Mining
- Group Discovery
- Matching Discovery
- Matching Selection

From matching to mining: the DCM framework.
Integrating Subsystems

System Integration

- Challenges
 - Accuracy problems
 - IE delivers 85-90% accuracy
 - Not accurate enough for SM

- Opportunities
 - feedback

Ensemble Framework

- Ensemble Framework
 - Accuracy problems mainly because of noisy input
 - **Sampling** and **voting** techniques
Feedback

- Feedback: Domain Statistics
- Example
 - Conflict between
 - last name; contain; val
 - e.g. Mike; contain; val
 - SM notices that the first one is much more frequent

Feedback

- IE processes one interface at a time
- SM has holistic domain statistics
- Feedback from SM can help IE resolve conflicts
- Another example that large scale is both curse and blessing
Feedback

- 3 types of domain statistics
 - Type of attributes
 - Frequency of attributes
 - Correlation of attributes

Summary

- Large scale integration involves challenges and opportunities
- Integrating subsystems also involves challenges and opportunities
- Holistic Integration insights
 - Hidden regularity
 - Peer majority