An Interactive Clustering-based
Approach to Integrating Source Query
Interfaces on the Deep Web

Presented by Yingying Tao

Motivation

m Large number of data sources on web are hidden
behind query interfaces
— User has to access each source individually

— A unified query interface is required for integration

® Limitations of current solutions

— Flat schema == Hicrarchical model
— 1:1 mapping = 1:m mapping
— Black-box fashion == User interaction

— Laborious parameter tuning == Parameter learning

Hierarchical Modeling

® Query interface in HIML forms is consisted by fiekds

Text input box, selection lists, check box, etc.

m FEach field contains three properties:
— Name : id of the field
— concatenated/abbreviated words
— Label: description of the field
— ordinary words, can be absent

— Domain : set of valid values the filed may take

Hierarchical Modeling

m Hierarchical schema — ordered tree
— Leaf element : field in the interface
— Internal element : group/super-group of fields

— Sibling elements : elements with same parent

TN

Where. Go? When Go? NumberofPasagers Clss o Sevice
- ~.
From:City To: Cty Deparune Date RewmDate Adult Childen
S
deparaRlonth deputureDay depe ctumMonh reumDay_returTime

Interface Matching

m Interface matching — identify semantically similar fields
over different query interfaces
1:1 mapping vs. 1:m mapping

m Challenges and solutions
— 1:1 mapping
Label mismatch problem == Bridging approach
aeb & bec = aerc
— 1:m mapping —
more complex ™ field matching via clustering

Interface Matching via Clustering

m Field similarity function
For two field ¢ and f in different interface, their similarity
AS@f) = \i.f linguistic_sim(e,f) + Ay domain_sim(e,f)

An = nSim(e, f) + Ar # 1Sim(e, f) + Az * nlSim(e, f)

name similarity label similarity name vs. label similarity

¢ # typeSim(d, d') + Ay * valueSim(d.d")

d and d” — domain of field e and f

Interface Matching via Clustering

® Finding 1:1 mappings — Greedy matching

Cluster(S, M, 7.) — P.
(1) place each field in S in a cluster by itself.
(2) while there are two clusters with similarity >
(a) choose two clusters, ¢; and ¢;, whose similar
is the largest over all pairs of clusters
(b) resolve the ties if necessar
(c) merge ¢; and ¢; into a new cluster cx, and
remove clusters ¢; and ¢;.
(d) remove all rows and columns associated with ¢; and
¢; in M, and add a new row and column for c;.
(e) compute similarities of ¢z with other clusters
using Formula 4.
(3) return the clusters of fields.

Interface Matching via Clustering

= Breaking tie — more than one pair with same max similarity

== Select the first best choice

st where to go? g2 where to travel?

departire city return city from city to city

Question: how to determine the order of fields?

Interface Matching via Clustering

® Finding 1:m mappings — three phases
= Preliminary 1-m matching phase
= Clustering phase

® Final 1-m matching phase

FicldMateh(S) — P and @
(1) /% Prelimiu iatching phase: */

Q — IDENTIFYINITIALONETOMANY MAPPINGS(S)
(2) /* Clustering phase: *

(a) /*

compute pairwise aggregate similarities of fields */
M — COMPUTEAGGREGATESIMILARITIES(S)
(b) /* identify 1:1 mappings via clustering */
LUSTER(S, M 7c)
(3) /* Final-1-m-matching phase:
combine P and Q to obtain final 1:m mappings */
Q' — OBTAINFINALONETOMANYMaPPING(P, Q)

Interface Matching via Clustering

— Identify preliminary 1:m mappings
Aggregate type
Is-a type
Infinite domains

from date pagsengers

i
— Obtain final 1:m mappings
Bridging approach:
ar{bib2} & biescybresc: = aes e}

User Interactions and Parameter Learning
m Parameter learning — learning the threshold
Observation:
® Matching fields typically have at least one large component
similarities

= Non-matching fields normally have small similarities in both

components

Approach:
Finding the gap roms,

User Interactions and Parameter Learning

m User Interaction — resolving uncertainties
— Determine possible homonyms
High linguistic similarity but low domain similarity
— Determine possible synonyms
Check-Ask-Merge procedure

— Determine Possible 1:m mappings

Experiments

® Data set
— 5 domains, 20 query interfaces for each

— Manually transformed into schema trees

— All weight coefficients based on observation

® Performance Measurement
— Precision (P)
— Recall (R)

— F-measure (F)

Experiments

m Experimental results
— Automatic field matching accuracy
Threshold set to zero
Average P — 88.2%, R — 91.1%, F — 89.5%
— Threshold learning results
Average P — 95.2%, R — 88.0%, F — 91.3%
Larger threshold will lead to higher precision but lower recall

— User interaction results
Average P — 96.0%, R — 94.0%, F — 94.8%

Experiments

— Component contribution
= 1:m mappings
® Instance information

= Tie resolution

ione No 1:m Handling No Instances No Tie Res. Al
Proc [Ree | F | Prec [Rec]| ¥ Prec | Rec| F | broc | Rec | ¥

Domain

Prec | Rec

Airfare | 510 | 00 o3.0)| s1s 528 | sa0 o4
Automobile [so.1 | sss | so. 887 | 028 0
Book s65 | 919 o21 | oss 30
Job 765 | 516 | s10 784 | s15 | 35| 226 826
766 | 708 | 813 555 | so1 | oe0 | w73 881
S5 sio | we1 | sss 555 | s66 | 903 | w83 5

Question: Under what circumstances 1:m mapping

may have a wo

rformance?

Conclusions and Future Work

m Conclusions
— Flat schema vs. schema tree
— 1:1 mapping vs. 1:m mapping
— Blackbox vs. user interaction

— Threshold tuning vs. threshold learning

m Future work
— Automatically generating schema trees
— Better solutions for breaking the tie

— Self-learning on weight coefficients

Discussions

Effectiveness vs. efficiency?

Depth of the schema tree: what’s the purpose?
Transitivity of the bridging approach?

How to handle dynamic query interfaces?

How to determine the weight coefficients?
How to define the order of fields for breaking the tie?

When will the 1:m mapping approach has a worse
performance?

