An Interactive Clustering-based Approach to Integrating Source Query Interfaces on the Deep Web

Presented by Yingying Tao

Motivation

- Large number of data sources on web are hidden behind query interfaces
 - User has to access each source individually
 - A unified query interface is required for integration

- Limitations of current solutions
 - Flat schema
 - 1:1 mapping
 - Black-box fashion
 - Laborious parameter tuning

Hierarchical Modeling

- Query interface in HTML forms is consisted by fields
 - Text input box, selection lists, check box, etc.

- Each field contains three properties:
 - Name: id of the field
 - Label: description of the field
 - Domain: set of valid values the field may take
Hierarchical Modeling

- Hierarchical schema – ordered tree
 - Leaf element: field in the interface
 - Internal element: group/super-group of fields
 - Sibling elements: elements with same parent

Interface Matching

- Interface matching – identify semantically similar fields over different query interfaces
 - 1:1 mapping vs. 1:m mapping

Challenges and solutions

- 1:1 mapping
 - Label mismatch problem
 - Bridging approach
 - Label & b → x → c

- 1:m mapping
 - More complex
 - Field matching via clustering

Interface Matching via Clustering

- Field similarity function

 For two field e and f in different interface, their similarity

 \[S(e,f) = \lambda_1 \cdot \text{linguistic}_\text{Sim}(e,f) + \lambda_2 \cdot \text{domain}_\text{Sim}(e,f) \]

 \[\lambda_1 = \text{name}_\text{Sim}(e,f) + \lambda_2 \cdot \text{value}_\text{Sim}(e,f) \]

 \[\lambda_2 = \text{value}_\text{Sim}(e,f) \]

 \[d \text{ and } d' \Rightarrow \text{domain of field } e \text{ and } f \]
Finding 1:1 mappings – Greedy matching

1. Place each field in \(D \) in a cluster by itself.
2. While there are two clusters with similarity \(\geq \tau \),
 - choose two clusters, \(c_1 \) and \(c_2 \), whose similarity
 is the largest over all pairs of clusters.
 - merge the two if necessary.
 - merge \(c_1 \) and \(c_2 \) into a new cluster \(c_{12} \) and
 remove clusters \(c_1 \) and \(c_2 \).
 - remove all rows and columns associated with \(c_1 \) and
 \(c_2 \) in \(D \), and add a new row and column for \(c_{12} \).
 - compute similarities of \(c_{12} \) with other clusters
 using Formula 1.
3. Return the clusters of fields.

Interface Matching via Clustering

Breaking tie – more than one pair with same max similarity

- Select the first best choice

Question: how to determine the order of fields?

Finding 1:m mappings – three phases

- Preliminary 1-m matching phase
- Clustering phase
- Final 1-m matching phase
Interface Matching via Clustering

- Identify preliminary 1:m mappings
 Aggregate type
 Is-a type
 Infinite domains

- Obtain final 1:m mappings
 Bridging approach:
 $a \{b_1, b_2\} \& b_1 \sim c_1, b_2 \sim c_2$

User Interactions and Parameter Learning

- Parameter learning – learning the threshold

 Observation:
 - Matching fields typically have at least one large component similarity
 - Non-matching fields normally have small similarities in both components

 Approach: Finding the gap

User Interactions and Parameter Learning

- User Interaction – resolving uncertainties
 - Determine possible homonyms
 - High linguistic similarity but low domain similarity
 - Determine possible synonyms
 - Check Ask-Merge procedure
 - Determine Possible 1:m mappings
Experiments

- Data set
 - 5 domains, 20 query interfaces for each
 - Manually transformed into schema trees
 - All weight coefficients based on observation

- Performance Measurement
 - Precision (P)
 - Recall (R)
 - F-measure (F)

Experiments

- Experimental results
 - Automatic field matching accuracy
 - Threshold set to zero
 - Average P = 88.2%, R = 91.1%, F = 89.5%
 - Threshold learning results
 - Average P = 95.2%, R = 88.0%, F = 91.3%
 - User interaction results
 - Average P = 96.0%, R = 94.0%, F = 94.8%

Experiments

- Component contribution
 - 1:m mappings
 - Instance information
 - Tie resolution

Question: Under what circumstances 1:m mapping may have a worse performance?
Conclusions and Future Work

- Conclusions
 - Flat schema vs. schema tree
 - 1:1 mapping vs. 1:m mapping
 - Blackbox vs. user interaction
 - Threshold tuning vs. threshold learning

- Future work
 - Automatically generating schema trees
 - Better solutions for breaking the tie
 - Self-learning on weight coefficients

Discussions

- Effectiveness vs. efficiency?
- Depth of the schema tree: what’s the purpose?
- Transitivity of the bridging approach?
- How to handle dynamic query interfaces?
- How to determine the weight coefficients?
- How to define the order of fields for breaking the tie?
- When will the 1:m mapping approach has a worse performance?