Data Management in Peer-to-Peer Systems

Survey by A.Sung, N.Ahmed, R.Blanco, H.Li, M.Soliman, D.Hadaller

> Rolando Blanco September 21st, 2005

> > – p.1/70

P2P Systems

- Systems for sharing large amounts of resources
- Massively distributed
- Highly volatile
- Communication via overlay network topology
- No costly infrastructure
- Resilient to node failures
- Low overhead on participating nodes
- "Pure" P2P systems:
 - All participants (peers) have the same functionality
 - Sharing done by direct exchange

Initially for sharing unstructured data (e.g. music files). Re-

cently proposed systems support structured data

– p.2/70

Data Management Issues

- Data location
 - Referring to/locating data in other peers
- Query processing
 - Identifying data relevant to a query
 - Efficiently executing the query
- Data Integration
 - Accessing/referring to data if different schemas/representations
- Data Consistency
 - Data replication/caching maintenance

Some Unstructured Systems

Napster	Hybrid P2P with central cluster of ap- proximately 160 servers for all peers	
Gnutella	Pure P2P	
FastTrack /KaZaA	Super-nodes	
eDonkey2000	Hybrid P2P with tens of servers around the world. Peers can host their own server	
BitTorrent	Hybrid P2P with central servers called Tracker. Each file can be managed by a different	

- p.11/70

Index Management

- Napster:
 - Metadata (indices) kept in central server
 - Peers report bandwidth, number of shared files, uploads and downloads in progress, filename and size of shared files, IP.
 - Metadata uploaded when peer joins network
- Gnutella:
 - Indices stored locally
- Freenet:
 - Indices stored locally, but may not belong to peer \rightarrow indices are signed.
- FastTrack /KaZaA:
 - Filename, size, modification time, content hash and file descriptors from shared folder kept in super-node

- p.15/70

- Routing protocol requires peers to maintain routing state
- Routing info differs between routing protocols
- Maintenance algorithms to keep routing state up-to-date and consistent.
- Issue: Peer volatility (churn), undependable networking

- p.27/70

Query Routing

- Blind search
 - Query arbitrarily forwarded to peers
 - No guarantee peer receiving query can satisfy query
 - Simple, minimal or no metadata required
- Informed search
 - Query forwarded to peers that may satisfy query with high probability
 - Additional knowledge needed to route queries
 - Considerable amount of metadata required

– p.28/70

Blind Search

- No information stored regarding data placement
- Flooding:
 - Query sent to all neighbours
 - Time-to-live (TTL) used to limit radius of flood
 - Can overload network quickly

Improvements:

- Super-nodes acting as proxys
 - * Flooding between super-nodes only
 - * Poor scalability as number of super-nodes grows
- Random walk
 - * Query forwarded to one neighbour at a time + TTL
 - * Reduction in traffic
 - * Searches may take longer
 - * Popular files still found quickly

p.29/70

Informed Search

- Goal is to increase probability of locating data item as hop count increases
- Query Routing Protocol:
 - Keywords describing file contents summarized in bloom filters
 - Bloom filters are propagated for a number of hops
 - Queries propagated to neighbours if keywords match
 - Blind search if no matches
- Scalable Query Routing
 - Random walk + bloom filters with information that decreases exponentially as the hop count increases.

- Introduction of load balancing problems, and sometimes a-priori knowledge of interesting ranges
- Non DHT solutions:
 - Most proposals consist in extending distributed catalogue

Complex Queries - Multi-Attributes

• MAAN Multi-Attribute Addressable Network [CF03]

- Built on Chord; Supports multi-attribute and range queries
- Numeric attributes hashed with locality preserving hash function (if $n_1 > n_2$ then $h(n_1) > h(n_2)$)
- Hashing function parameter is pair (*attr*, *val*)
- Multi-attribute query split into single-attribute queries
- Sub-queries are executed and merged at query originator
- Query selectivity breakpoint at which flooding is more efficient

- p.40/70

Complex Queries - Joins

- PIER [HHL+03]
 - DHT (CAN) based
 - Key constructed from a "namespace" (relation) and "resourceID" (primary key)
 - Queries multicasted to all nodes in namespace to be joined
 - * Symmetric hash join: each node in each namespace hashes tuples into new namespace
 - * Fetch matches: one of the two namespaces already hashed on the join attribute. Each node in the second namespace finds the matching tuples from the first namespace using DHT get operations

– p.41/70

Complex Queries - Ranking

- Top-k in Edutella:
 - Uniform schema and ranking function at peers
 - Peers evaluate top-k query locally, send results and scores to super-peers
 - Super-peers select results with highest scores

- Data mappings
 - * Specify equivalence between attribute values
 - * Used when semantic differences between schemas make schema mapping inapplicable
- · Schema and data mappings complement each other

Schema Mapping Maintenance

• Machine learning techniques

Schema Mapping Maintenance (cont'd)

- Common agreement mappings:
 - Schema mapping done between peers with common interest for sharing data
 - Manually maintained by privileged or expert users
- Semantic gossiping
 - Initial common agreement mappings built by experts
 - Queries propagated towards peers without direct mapping
 - Semantic agreement measured by analyzing results
 - New mappings created or old mappings adjusted

– p.53/70

Schema Mapping Maintenance (cont'd)

Peer	Names	Keywords	
P1 Kinases		protein, human	
	SeqID	key, identifier, ID	
	length	length	
	proteinSeq	sequence, protein sequence	
	Protein	protein, annexin, zebrafish	
P2	SeqNo	number, identifier	
	len	length	
	sequence	sequence	
	ProteinKLen	protein, kinases, length	
	ID	number, identifier	
P3	seqLength	length	
	ProteinKSeq	protein, sequence	
	ID	number, identifier	
	sequence	sequence	
	Protein	protein, kinases, annexin,	
P4	name	name	
	char	characteristics, features, function	

- Information Retrieval Approaches
 - Descriptive words for attributes/relations
 - Queries flooded to neighbouring peers
 - Peers receiving query, decide if matching attributes in local schema using IR techniques
 - User confirms matching, system remembers

[NOTZ03]

- p.59/70

P2P Specific Challenges

Challenge	Implications	
High churn rate: nodes frequently joining, leaving, and failing	Must have ways of maintaining the network struc- ture, e.g. using a DHT	
Lack of global knowledge	Must act on partial knowledge, such as probabilistic measures	
Low online probability	Peers are offline most of the time and cannot be relied on to keep data intact	
Unknown and varying node capacity	Can't assume well connected and powerful infrastruc- ture; must be sensitive to individual capacity	
Overlay topology is independent of physical topology	One hop in the overlay may be a large physical dis- tance; must be aware of underlying topology	

Solutions

r		
Challenge	Solutions in Replication	Solutions in Caching
High churn rate and low on- line probability (<i>how to guar-</i> <i>antee data is not lost; data</i> <i>consistency and availability</i>)	Must maintain k online replicas: (1) Using estimated global information and probabilistic methods, (2) Store k repli- cas at k successors in a Chord ring, (3) Maintain replicas at nodes with k closest numeric lds in the DHT	No need to maintain avail- ability of cached data, use DHT to maintain lookup; peers cache whatever is available
Lack of global knowledge (<i>data location</i>)	 Use estimated global information based on rumor spreading, (2) Not an issue if using a DHT 	Global knowledge would help optimize cache placement, but not necessary
Unknown and varying node capacity	(1) Often ignored, (2) Nodes adver- tise their capacity, replica placement is based on these capacities	Cache and share only what you choose

- p.61/70

Solutions (cont'd)

Challenge	Solutions in Replication	Solutions in Caching
Overlay topology is indepen- dent of physical topology	(1) Often ignored, (2) Use a DHT with locality properties	(1) Often ignored, (2) Use a DHT with locality properties
Updating replicas / Reduc- ing staleness	 Push updates to all active replias, Pull updates from most recent replica when required (3) Store updates as node-specific log entries 	(1) Assume data doesn't go stale, (2) Web: Expiry (TTL), Conditional GETs (If-modified-since)

- p.62/70

Example: Support for Range Queries

http://www.csg/~rblanco/w05/cs856/report.pdf

Assumptions:

- High semantic similarity between data sources in the system
- Very large number of peers
- Location of the data cannot be altered
- A high percentage of queries are range queries
- Range conditions are specified for a small subset of attributes

Example: Support for Range Queries

Proposal:

- Peers register:
 - Schema descriptions with synonyms/alternate names (schemas assumes to be semantically very close)
 - Range information including relevant functional dependencies
- System maintains:
 - SP-to-P and SP-to-SP catalogues with schema and range information

- p.65/70

Example: Support for Range Queries

Example: Support for Range Queries

References

- CS856 Data Management in P2P Systems Survey http://www.csg/~rblanco/w05/cs856/p2p_survey.pdf
- [HCW05] D. Hughes, G. Coulson, and J. Walkerdine. Free riding on gnutella revisited: the bell tolls? Draft at

 $http://www.comp.lancs.ac.uk/computing/users/hughesdr/papers/freeriding.pdf,\ February\ 2005$

- [BDK⁺03] Ingo Brunkhorst, Hadhami Dhraief, Alfons Kemper, Wolfgang Nejdl, and Christian Wiesner. Distributed Queries and Query Optimization in Schema-Based P2P-Systems. In Proceedings of the 1st International Workshop on Databases, Information Systems, and Peer-to-Peer Computing (DBISP2P 2003), pages 184–199, 2003
- [CF03] M. Cai and M. Frank. MAAN: a Multi-Attribute Addressable Network for Grid Information Services. In Proceedings of the International Workshop on Grid Computing, 2003
- [DMD⁺03] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon Halevy. Learning to match ontologies on the semantic web. *The VLDB Journal*, 12(4):303–319, 2003
- [GWJD03] L. Galanis, Y. Wang, R. Jeffery, and DeWitt D. Processing Queries in a Large Peerto-Peer System. In Proceedings of Conference on Advanced Information Systems Engineering (CAISE), 2003

– p.68/70

References (cont'd)

- [HIST04] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarivov. Schema mediation for large-scale semantic data sharing. *VLDB Journal*, 2004
- [HHL⁺03] R. Huebsch, J. Hellerstein, B. Lanham, Loo S., and I. Stoica. Querying the Internet with PIER. In *Proceedings of the 29th Int. Conf. on Very Large Data Bases* (VLDB), 2003
- [KAM03] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Mapping data in peer-to-peer systems: Semantics and algorithmic issues. In SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pages 325–336. ACM Press, 2003
- [NWQ⁺02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch. Edutella: a p2p networking infrastructure based on rdf. In WWW '02: Proceedings of the eleventh international conference on World Wide Web, pages 604–615, New York, NY, USA, 2002. ACM Press
- [NOTZ03] Wee Siong Ng, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. Peerdb: A p2pbased system for distributed data sharing. In Intl. Conf. on Data Engineering (ICDE), 2003

References (cont'd)

- [RFHK01] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A scalable content-addressable network. In SIGCOMM '01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications. ACM Press, 2001
- [SMLN⁺01] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet applications. In SIGCOMM '01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications. ACM Press, 2001
- [UII97] Jeffrey D. Ullman. Information integration using logical views. In *Proceedings of the 6th Int. Conf. on Database Theory (ICDT-97)*, 1997. Lecture Notes in Computer Science, pages 19–40. Springer-Verlag, 1997

- p.70/70