
Data Management in
Peer-to-Peer Systems

Survey by A.Sung, N.Ahmed, R.Blanco, H.Li,
M.Soliman, D.Hadaller

Rolando Blanco

September 21st, 2005

– p.1/70

P2P Systems
• Systems for sharing large amounts of resources

• Massively distributed

• Highly volatile

• Communication via overlay network topology

• No costly infrastructure

• Resilient to node failures

• Low overhead on participating nodes

• “Pure”P2P systems:

- All participants (peers) have the same functionality

- Sharing done by direct exchange

Initially for sharing unstructured data (e.g. music files). Re-

cently proposed systems support structured data
– p.2/70

Data Management Issues
• Data location

- Referring to/locating data in other peers

• Query processing

- Identifying data relevant to a query

- Efficiently executing the query

• Data Integration

- Accessing/referring to data if different
schemas/representations

• Data Consistency

- Data replication/caching maintenance

– p.3/70

Peer Reference Architecture

Local Data

Wrapper

Peer

Peer

Peer

Peer

Peer

Data Management Layer

D
at

a
M

an
ag

em
en

t A
P

I /
U

se
r

In
te

rf
ac

e

Network
P2P

local query

global query

answer P
2P

 N
et

w
or

k
S

ub
la

ye
r

Update Manager

Cache Manager

Query Manager

Source Mappings Cache
Remote DataSemantic

– p.4/70

Outline
• Introduction

→ Network Structure

- Unstructured P2P
Systems

- Structured P2P systems

• Query Processing

• Data Integration Issues

• Data Consistency Issues

Local Data

Wrapper

Peer

Data Management Layer

D
at

a
M

an
ag

em
en

t A
P

I /
U

se
r

In
te

rf
ac

e

Network
P2P

local query

global query

answer P
2P

 N
et

w
or

k
S

ub
la

ye
r

Update Manager

Cache Manager

Query Manager

Source Mappings Cache
Remote DataSemantic

– p.5/70

Network Structure
• Unstructured (Early) P2P Systems

- No restriction on data placement in overlay topology

• Structured P2P Systems

- Distributed Hash Tables (DHTs)

- Data addressing and lookup engines:
lookup(key) = peer

- Overlay network topology optimized for data lookup

– p.6/70

Unstructured P2P Systems
• Initially for sharing unstructured data (files)

• How to find files: index files map data files to peers

• Issue: location on the network of data files and indices

- Pure systems
* Each peer stores index of local data files

- Hybrid (Client/Server) systems
* Central server or cluster stores global index

- Super-peer systems
* Specialized peers store indices and/or data files

– p.7/70

Pure Unstructured Systems

– p.8/70

Hybrid Systems

– p.9/70

Super-node Systems

– p.10/70

Some Unstructured Systems

Napster Hybrid P2P with central cluster of ap-
proximately 160 servers for all peers

Gnutella Pure P2P

FastTrack /KaZaA Super-nodes

eDonkey2000 Hybrid P2P with tens of servers around
the world. Peers can host their own
server

BitTorrent Hybrid P2P with central servers called
Tracker. Each file can be managed by a
different

– p.11/70

Index Management
• Napster:

- Metadata (indices) kept in central server

- Peers report bandwidth, number of shared files,
uploads and downloads in progress, filename and size
of shared files, IP.

- Metadata uploaded when peer joins network

• Gnutella:

- Indices stored locally

• Freenet:

- Indices stored locally, but may not belong to peer →
indices are signed.

• FastTrack /KaZaA:

- Filename, size, modification time, content hash and
file descriptors from shared folder kept in super-node

– p.12/70

Index Management (cont’d)
Locating Data:

• Keyword search (routing discussed later)

• By file identifier : .torrent files

• BitTorrent

– p.13/70

Trends
• Index storage location from central nodes, to peers, to

super-peers.

• File identifiers globally unique (hashing contents)

• Sharing incentives:

- Free-ride issue ([HCW05]) :
* Voluntary contribution of resources
* 66% share no files
* 73% share 10 files or less
* Top 1% peers accounted for 47% of query hits
* Top 25% peers accounted for 98% of query hits

- Anti-free riding:
* BitTorrent: upload part of the protocol
* Other approaches proposed include ignoring

queries from free-riders, and peer expulsion.

– p.14/70

Structured P2P Systems
• Motivated by poor scaling and recall issues in some

unstructured systems

• Structured overlays: distributed hash tables (DHTs)

• Support lookup, not typically involved in actual data
retrieval
(lookup(key) = peer)

• DHTs implement:

- Data and peer addressing (hash function)

- Routing protocol and overlay structure

- Routing state maintenance protocol

– p.15/70

Data and Peer Addressing
• Goal: uniform distribution of keys in the overlay

• Some systems implement non-uniform hashing to favour
locality/proximity or certain types of queries (e.g. range
queries)

• SHA-1 (Secure Hash Algorithm) most widely used base
hash function

• Hashing assigns keys to peers

Keys �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

k1
k2
k3

...

kn

�
�
�
�

– p.16/70

Routing Protocol
• Peers do naming (assign ids) and routing

• Provides location of peer assigned to hashed key

• Implements lookup functionality (lookup(key) =

node)

• Implementation closely associated with overlay structure
used

- Ring: Chord

- Hypercube: CAN

- Tree: Tapestry, ...

- Hybrid: Pastry (Tree/Ring), ...

- ...

• Routing protocols attempt to provide efficient lookups
and minimize routing state

– p.17/70

Routing State Maintenance Protocol
• Routing protocol requires peers to maintain routing state

• Routing info differs between routing protocols

• Maintenance algorithms to keep routing state up-to-date
and consistent.

• Issue: Peer volatility (churn), undependable networking

– p.18/70

Chord
[SMLN+01]

• lookup(key) = IP address

• Peers IPs and keys assigned a m-bit identifier using
SHA-1

• m should big enough so that chance of two keys/IPs
having the same hashing is negligible

• Identifiers ordered in a circle module 2m (Chord Ring).

• Key k assigned to first peer whose identifier is equal or
follows k’s identifier

– p.19/70

Chord Ring Example
m = 6

– p.20/70

Chord Lookup Example
lookup(K54)

– p.21/70

Chord Ring Maintenance

– p.22/70

CAN: Content Addressable Network
[RFHK01]

• Virtual dimensional coordinate space

• Each peer holds a zone

• Key is hashed to a zone, data value is stored in that zone

• lookup(key) = value

• Peers keep routing table with IP and virtual coordinate
zones of its immediate neighbours

• Two nodes are neighbours if their coordinate spans
overlap along d - 1 dimensions and abut along one
dimension (terminate at a point of contact)

• Routing by choosing closest neighbour in direction to
destination

– p.23/70

CAN Example
2d space

– p.24/70

Issues
• DHTs:

- Scalable and decentralized

- Uniform distribution of data (keys)

• Issues:

- Data may be located far away from users (no control
over data placement)

- Neighbour peer in overlay may be far away in
underlying network

- Hotspots (popular data)

- Lookup service only. Select ... from ...
where key = value; what about range queries and
aggregation ?

• Several proposals to address these issues (e.g. SkipNets)

• Still, no widespread use
– p.25/70

Outline
• Introduction

• Network Structure

→ Query Processing

- File Sharing Systems

- Querying Structured
Data

• Data Integration Issues

• Data Consistency Issues

Local Data

Wrapper

Peer

Data Management Layer

D
at

a
M

an
ag

em
en

t A
P

I /
U

se
r

In
te

rf
ac

e

Network
P2P

local query

global query

answer P
2P

 N
et

w
or

k
S

ub
la

ye
r

Update Manager

Cache Manager

Query Manager

Source Mappings Cache
Remote DataSemantic

– p.26/70

File Sharing P2P Systems
• Purpose is to locate peers that store a requested file

• In contrast to DHTs, files generally not (uniformly)
redistributed.

• Most requested files usually replicated at many peers

• Unpopular files in the system may not be found
(contrast with perfect recall in DHTs).

• Early systems use centralized indexing server

• More recent systems route queries to peers in overlay
based on some routing scheme

– p.27/70

Query Routing
• Blind search

- Query arbitrarily forwarded to peers

- No guarantee peer receiving query can satisfy query

- Simple, minimal or no metadata required

• Informed search

- Query forwarded to peers that may satisfy query
with high probability

- Additional knowledge needed to route queries

- Considerable amount of metadata required

– p.28/70

Blind Search
• No information stored regarding data placement

• Flooding:

- Query sent to all neighbours

- Time-to-live (TTL) used to limit radius of flood

- Can overload network quickly

• Improvements:

- Super-nodes acting as proxys
* Flooding between super-nodes only
* Poor scalability as number of super-nodes grows

- Random walk
* Query forwarded to one neighbour at a time +

TTL
* Reduction in traffic
* Searches may take longer
* Popular files still found quickly

– p.29/70

Informed Search
• Goal is to increase probability of locating data item as

hop count increases

• Query Routing Protocol:

- Keywords describing file contents summarized in
bloom filters

- Bloom filters are propagated for a number of hops

- Queries propagated to neighbours if keywords match

- Blind search if no matches

• Scalable Query Routing

- Random walk + bloom filters with information that
decreases exponentially as the hop count increases.

– p.30/70

Informed Search (cont’d)
• Adaptive Searches

- Counter kept for each (file, neighbour) combination

- Counter incremented if forwarding neighbour finds
file

- Issues:
* Performs well if peers in system for long periods
* Hotspots since paths gain popularity quickly;

under utilization of other possible paths

• Several other variations ...

– p.31/70

Querying Structured Data
• Traditional centralized approaches

- Mediation layer:

Source3

Query

Global
Schema

Query
Parser

Query
Translator

Data
Gathering

Mediation
Layer

Source1 Source2

* Provides global schema

* Decomposes queries into
sub-queries

* Gathers and combines results

- Integrating and materializing data in a warehouse type setting

• Issues:

- Scalability, volatility of data sources, single point of failure

• P2P approach: decentralized query processing techniques

– p.32/70

Common Data Model Systems
• Usually a distributed catalogue drives the distribution of

queries among peers based on query type, attributes
and/or data filters

• Edutella ([NWQ+02]):

- Unstructured super-peer system

- Common query exchange language

- Support for limited amount of data representations

- SP-to-SP and SP-to-Peer indices at super-peers

- Query routed first at super-peer level and then
distributed to peers

- Results are combined at remote peers

– p.33/70

Common Data Model - Examples
Edutella

• User defined code can be pushed to peers for execution

• Clustering of peers with common data

– p.34/70

Common Data Model - Examples
Edutella ([BDK+03])

– p.35/70

Common Data Model - Examples
Galanis et al. [GWJD03]

• Idea:

- Index (key, node) pairs

- Index points to structural (XML) and value summary
of data in node

• Given a query a1/a2/.../an/k op x:

- Retrieve summaries

- Use structural summary to decide if a1/a2/.../an/k

- Use value summary to decide if k op x

• Implementation:

- Distributed catalogue using DHT (Chord)

- DHT keys: k′s; DHT values: node (peer) where
summary for k is stored

- Summary locally implemented as B+ tree
– p.36/70

Common Data Model - Examples

– p.37/70

Heterogeneous Data Model Systems
• Peers need to apply data integration techniques to

identify content or structural similarities among peers

• Peer selection is a big issue

• Common approaches:

- Data translation rules to global schema or among
peers

- Gossiping, Information retrieval, semantic mappings

- Query reformulated to match other peers’ schemas

- Data merging at super peers or originating peer

- Some systems require human intervention

More on this later

– p.38/70

Complex Queries - Range Queries
• Structured P2P Systems (DHTs):

- Major problem: randomizing hash function

- Approaches include hashing ranges instead of single
values, range-aware hashing, augmenting metadata
information

- Introduction of load balancing problems, and
sometimes a-priori knowledge of interesting ranges

• Non DHT solutions:

- Most proposals consist in extending distributed
catalogue

– p.39/70

Complex Queries - Multi-Attributes
• MAAN Multi-Attribute Addressable Network [CF03]

k

SR1

SR2

SRk

N1
N2

R={SR1, SR2, ..., SRk}

...

N

- Built on Chord; Supports multi-attribute and range queries

- Numeric attributes hashed with locality preserving hash function
(if n1 > n2 then h(n1) > h(n2))

- Hashing function parameter is pair (attr, val)

- Multi-attribute query split into single-attribute queries

- Sub-queries are executed and merged at query originator

- Query selectivity breakpoint at which flooding is more efficient
– p.40/70

Complex Queries - Joins
• PIER [HHL+03]

- DHT (CAN) based

- Key constructed from a“namespace”(relation) and
“resourceID”(primary key)

- Queries multicasted to all nodes in namespace to be
joined
* Symmetric hash join: each node in each

namespace hashes tuples into new namespace
* Fetch matches: one of the two namespaces

already hashed on the join attribute. Each node
in the second namespace finds the matching
tuples from the first namespace using DHT get
operations

– p.41/70

Complex Queries - Ranking
• Top-k in Edutella:

- Uniform schema and ranking function at peers

- Peers evaluate top-k query locally, send results and
scores to super-peers

- Super-peers select results with highest scores

– p.42/70

Outline
• Introduction

• Network Structure

• Query Processing

→ Data Integration Issues

- Traditional Approach

- Schema Mappings

- Data Mappings

• Data Consistency Issues

Local Data

Wrapper

Peer

Data Management Layer

D
at

a
M

an
ag

em
en

t A
P

I /
U

se
r

In
te

rf
ac

e

Network
P2P

local query

global query

answer P
2P

 N
et

w
or

k
S

ub
la

ye
r

Update Manager

Cache Manager

Query Manager

Source Mappings Cache
Remote DataSemantic

– p.43/70

Data Integration - Example

University of Waterloo (UW): University of Toronto (UT):

Areas(area id, name, description) Project(projID, name, desc)

Projects(proj id, area id, name) Student(studID, fname, lname, status)

Publications(pub id, title, year, howpublished) Faculty(facID, fname, lname, rank, office)

AuthorPublications(author id, pub id) ProjMember(projID, memberID)

ProjectPublications(proj id, pub id) Paper(paperID, title, forum, year)

Researcher(res id, name) Author(authorID, paperID)

ProjectMembers(res id, proj id, role)

The University of British Columbia (UBC): ...

Area(areaId, name, descr)

Project(projName, sponsor)

ProjArea(projName, areaID)

Pubs(pubID, projName, title, venue, year)

Author(pubID, author)

Member(projName, member)

– p.44/70

Data Integration
• Semantically, databases store same type of data

• Peers should be able to expose only the portions that they
want to contribute to the system

• Semantic mappings: describe the relationships between two or
more schemas for the purpose of sharing and integrating data:

- Schema mappings
* Specify equivalence between relations and attributes
* Used when different names or formalisms to represent

data

- Data mappings
* Specify equivalence between attribute values
* Used when semantic differences between schemas make

schema mapping inapplicable

• Schema and data mappings complement each other

– p.45/70

Traditional vs P2P
“... the true novelty lies in the PDMS ability to exploit
transitive relationships among peers’ schemas” [HIST04]

From: To:

– p.46/70

Schema Mappings

{

UW.Projects.proj id 7−→ UT.ProjectID,

UW.Researcher.name 7−→ concat(UT.Faculty.fname, ’ ’, UT.Faculty.lname),

UW.Researcher.name 7−→ concat(UT.Student.fname, ’ ’, UT.Student.lname)

}

• Transitive; may or may not be one-to-one and reflexive

• Purpose is to provide uniform querying environment that
hides heterogeneity and distribution

• Typically manually specified, several approaches
proposed for automating

– p.47/70

Traditional Approach
• Mediated schema between data sources

[Ull97]

- Provides global unified schema

- Queries specified in terms of global schema

- Query reformulated based on schema
mappings

- Wrappers close to sources provide translation
services if required (to deal with local query
language, model or any other incompatible
feature)

- Semantic tree: Mediated schemas can be con-
structed based on other mediated schemas

– p.48/70

Traditional Approach (cont’d)
• Mediated schema between data sources (cont’d)

- Strategies for the definition of schema mappings
between mediated and local schemas:
* Global-as-view (GAV)

G = F (L1, L2, ...)
* Local-as-view (LAV)

L = F (G1, G2,)
* Global-and-local-as-view (GLAV)

F (G1, G2, ...) = F ′(L1, L2, ...)

– p.49/70

Applicability in P2P Systems
• Volatility: as peers join/leave system mediated schema

needs to be updated

• Peer autonomy: some participants may be willing to
contribute only a portion of their data

• Scalability: where is the global schema stored:
centralized, distributed, replicated?

Unique global schema seems impractical in P2P systems,
instead:

• Pair mappings

• Peer-mediated mappings

• Super-peer mediated mappings

– p.50/70

Schema Mappings in P2P Systems

UBC 7−→ UW 7−→ UT

map(UW) map(UT)

UBC ←− UW −→ UT

map(UW, UT, UBC)

(a) Pair Mappings (b) Peer Mediated Mappings

E

SFU

UBC

UAL

UCAL

UREG

UMAN

USASK UT

QU

UWO

UW

YUW C

(c) Super-peer Mediated Mappings

– p.51/70

Schema Mapping Maintenance
• Machine learning techniques

[DMD+03]

- Idea: given taxonomies of two different ontologies, find similar concepts

- Concept classifiers: to decide similarity between concepts A and B, data for

B classified with A’s classifier and vice-versa. Amount of values that can be

successfully classified into A and B represent the similarity between A and

B. – p.52/70

Schema Mapping Maintenance (cont’d)
• Common agreement mappings:

- Schema mapping done between peers with common
interest for sharing data

- Manually maintained by privileged or expert users

• Semantic gossiping

- Initial common agreement mappings built by experts

- Queries propagated towards peers without direct
mapping

- Semantic agreement measured by analyzing results

- New mappings created or old mappings adjusted

– p.53/70

Schema Mapping Maintenance (cont’d)
• Information Retrieval Approaches

[NOTZ03]

- Descriptive words for
attributes/relations

- Queries flooded to
neighbouring peers

- Peers receiving query, decide
if matching attributes in
local schema using IR
techniques

- User confirms matching, sys-
tem remembers

– p.54/70

Data Mappings
• Schema mappings work well when schema differences are

mainly structural

• When attribute values differ but are semantically related,
data mappings are used

• Implemented as relations (mapping tables) on the
attributes being mapped

• Created by experts, some proposals to validate mappings

• Very common integration method in real-world
applications

• Data mappings define semantic graph among peers as
well

• Not as much work done as with schema mappings

– p.55/70

Data Mappings (cont’d)

[KAM03]

• Specification of different semantics for data

mappings

• Work proposed to validate mappings and to infer

new mappings
– p.56/70

Current Research
• Mapping compositions

• Event/trigger mechanisms to enforce data mappings or
propagate data among peers

– p.57/70

Outline
• Introduction

• Network Structure

• Query Processing

• Data Integration Issues

→ Data Consistency Issues

- P2P Specific Challenges

- Solutions
Local Data

Wrapper

Peer

Data Management Layer

D
at

a
M

an
ag

em
en

t A
P

I /
U

se
r

In
te

rf
ac

e

Network
P2P

local query

global query

answer P
2P

 N
et

w
or

k
S

ub
la

ye
r

Update Manager

Cache Manager

Query Manager

Source Mappings Cache
Remote DataSemantic

– p.58/70

Data Consistency Issues
• Arise in any scenario involving data duplication

• Caching

- Commonly done for performance

- There is a single authoritative source for the
document

• Replication

- Done for availability, performance, ...

- All replicas regarded as equal

– p.59/70

P2P Specific Challenges

Challenge Implications

High churn rate: nodes frequently

joining, leaving, and failing

Must have ways of maintaining the network struc-

ture, e.g. using a DHT

Lack of global knowledge Must act on partial knowledge, such as probabilistic

measures

Low online probability Peers are offline most of the time and cannot be relied

on to keep data intact

Unknown and varying node capacity Can’t assume well connected and powerful infrastruc-

ture; must be sensitive to individual capacity

Overlay topology is independent of

physical topology

One hop in the overlay may be a large physical dis-

tance; must be aware of underlying topology

– p.60/70

Solutions
Challenge Solutions in Replication Solutions in Caching

High churn rate and low on-

line probability (how to guar-

antee data is not lost; data

consistency and availability)

Must maintain k online replicas: (1)

Using estimated global information and

probabilistic methods, (2) Store k repli-

cas at k successors in a Chord ring, (3)

Maintain replicas at nodes with k closest

numeric Ids in the DHT

No need to maintain avail-

ability of cached data, use

DHT to maintain lookup;

peers cache whatever is

available

Lack of global knowledge

(data location)

(1) Use estimated global information

based on rumor spreading, (2) Not an

issue if using a DHT

Global knowledge would help

optimize cache placement,

but not necessary

Unknown and varying node

capacity

(1) Often ignored, (2) Nodes adver-

tise their capacity, replica placement is

based on these capacities

Cache and share only what

you choose

– p.61/70

Solutions (cont’d)
Challenge Solutions in Replication Solutions in Caching

Overlay topology is indepen-

dent of physical topology

(1) Often ignored, (2) Use a DHT with

locality properties

(1) Often ignored, (2) Use a

DHT with locality properties

Updating replicas / Reduc-

ing staleness

(1) Push updates to all active replias,

(2) Pull updates from most recent

replica when required (3) Store updates

as node-specific log entries

(1) Assume data doesn’t

go stale, (2) Web: Expiry

(TTL), Conditional GETs

(If-modified-since)

– p.62/70

Example: Support for Range Queries
http://www.csg/~rblanco/w05/cs856/report.pdf

Assumptions:

• High semantic similarity between data sources in

the system

• Very large number of peers

• Location of the data cannot be altered

• A high percentage of queries are range queries

• Range conditions are specified for a small subset

of attributes

– p.63/70

Example: Support for Range Queries
Assumptions (cont’d)

• Attribute updates happen no more than a few times a
week

• Peers providing data have an incentive to participate in
the system

• Best effort, good enough answers are acceptable

Common approach:

• Use of structural information (attribute occurrence)

SELECT product_dim, prod_cost

FROM products

WHERE product_class = ’TV’

AND product_unit = ’INCHES’

AND product_dim BETWEEN 17 AND 21

AND product_cost BETWEEN 100 AND 200

– p.64/70

Example: Support for Range Queries
Proposal:

• Peers register:

- Schema descriptions with synonyms/alternate names
(schemas assumes to be semantically very close)

- Range information including relevant functional
dependencies

• System maintains:

- SP-to-P and SP-to-SP catalogues with schema and
range information

– p.65/70

Example: Support for Range Queries
Proposal (cont’d):

val_func_deps_zk

Ra Rb Rc

R1 R2 R3 R4 R5 R6 R7 R8 R9

Ra Rb Rc

R1 R2 R3 R4 R5 R6 R7 R8 R9

Ra Rb Rc Rd

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

. . .

. . .

. . .

. . .

. . .

range_attr_1

range_attr_k

val_func_deps_11

val_func_deps_21

val_func_deps_m1

val_func_deps_1k

– p.66/70

Example: Support for Range Queries
Results:

– p.67/70

References
• CS856 - Data Management in P2P Systems Survey

http://www.csg/~rblanco/w05/cs856/p2p_survey.pdf

• [HCW05] D. Hughes, G. Coulson, and J. Walkerdine. Free riding on gnutella revisited: the

bell tolls? Draft at

http://www.comp.lancs.ac.uk/computing/users/hughesdr/papers/freeriding.pdf, February

2005

• [BDK+03] Ingo Brunkhorst, Hadhami Dhraief, Alfons Kemper, Wolfgang Nejdl, and

Christian Wiesner. Distributed Queries and Query Optimization in Schema-Based

P2P-Systems. In Proceedings of the 1st International Workshop on Databases, Information

Systems, and Peer-to-Peer Computing (DBISP2P 2003), pages 184–199, 2003

• [CF03] M. Cai and M. Frank. MAAN: a Multi-Attribute Addressable Network for Grid

Information Services. In Proceedings of the International Workshop on Grid Computing, 2003

• [DMD+03] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon

Halevy. Learning to match ontologies on the semantic web. The VLDB Journal,

12(4):303–319, 2003

• [GWJD03] L. Galanis, Y. Wang, R. Jeffery, and DeWitt D. Processing Queries in a Large Peer-

to-Peer System. In Proceedings of Conference on Advanced Information Systems Engineering

(CAiSE), 2003

– p.68/70

References (cont’d)
• [HIST04] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarivov. Schema mediation

for large-scale semantic data sharing. VLDB Journal, 2004

• [HHL+03] R. Huebsch, J. Hellerstein, B. Lanham, Loo S., and I. Stoica. Querying the

Internet with PIER . In Proceedings of the 29th Int. Conf. on Very Large Data Bases

(VLDB), 2003

• [KAM03] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Mapping

data in peer-to-peer systems: Semantics and algorithmic issues. In SIGMOD ’03: Proceedings

of the 2003 ACM SIGMOD international conference on Management of data, pages

325–336. ACM Press, 2003

• [NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek,

Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch. Edutella: a p2p

networking infrastructure based on rdf. In WWW ’02: Proceedings of the eleventh

international conference on World Wide Web, pages 604–615, New York, NY, USA, 2002.

ACM Press

• [NOTZ03] Wee Siong Ng, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. Peerdb: A p2p-

based system for distributed data sharing. In Intl. Conf. on Data Engineering (ICDE), 2003

– p.69/70

References (cont’d)
• [RFHK01] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A scalable

content-addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on

Applications, technologies, architectures, and protocols for computer communications. ACM

Press, 2001

• [SMLN+01] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet applications. In

SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies,

architectures, and protocols for computer communications. ACM Press, 2001

• [Ull97] Jeffrey D. Ullman. Information integration using logical views. In Proceedings of the

6th Int. Conf. on Database Theory (ICDT-97), 1997. Lecture Notes in Computer Science,

pages 19–40. Springer-Verlag, 1997

– p.70/70

