
 

  1

Fault-Tolerance in the
Borealis Distributed Stream
Processing System

Weihan Wang
November 23, 2005

CS856 Fall 2005 Presentation

2

About this paper

 Magdalena Balazinska, MIT
 Hari Balakrishnan, MIT
 Samuel Madden, MIT
 Michael Stonebraker, MIT

 In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 2005.

3

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

 

  2

4

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

5

A piece of history

Aurora Aurora*

Borealis

Medusa

 Monolithic SPE  Distributed SPE
 Single adm. domain

 Distributed SPE
 Multiple adm. domains
 (aka Federation)

 Distributed SPE
 Result revision
 Query revision
 Load optimization
 Fault tolerance


[Abadi03] [Cherniack03]

[Zdonik03]

[Abadi05]

6

Result revision in Borealis

Today is sunny Today is sunny

It’s
raining

It’s
raining

Today is rainy Today is rainy

 

  3

7

Result revision in Borealis

Today is sunny Today is sunny

Oops!
Withdraw
my words

Oops!
Withdraw
my words

Today is rainy Today is rainy

 Error fixing from data source
 Load shedding
 Time-travel into the past or future
 Fault tolerance

8

Common solution for replication-
based FT

A

C

BS

S

U

U

C

C

9

Common solution for replication-
based FT

A

C

BS

S

U

U

C

C

B

B

A

A

 

  4

10

Comparison with [Hwang05]

 They don’t distinguish between HA & FT.
 They are parallel to each other.
 Compared to [Hwang05]:

 Approach of this paper is similar to [Hwang05]’s
active standby.

 This paper uses result revision.
 This paper addresses network failures.
 This paper avoids inter-replica communications.
 ……

11

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

12

Design goal

 User’s preference:

 Error correctionApproximation
-Approximation
Correct outputsNo outputs

UserAfter failureDuring failure

 

  5

13

Design goal

 Goal: to minimize the number of
approximated outputs during failure,
subject to a delay constraint, and to revise
them after failure.

 For each nodes, the user-defined delay
constraint is X, and data processing time
is (1-α)X. So we can hold input tuples up
to αX sec.

14

Data model and node states

0 1 2 3 4 5 6 U 3 4 5 6 7 8 9

 upstream
 failure

correctionsdelay < αX

A

AX
A

A

STABLE

UP_FAILURE
STABILIZATION

STABLE

Output

upstream
 healed

stabilized time

15

Data model

 Tuple format: (type, id, time, a1, …, am)

1 TENTATIVE tuples
U UNDO tuples
B BOUNDARY tuples

1 STABLE tuples

0 1 2 3 4 5 6 U 3 4 5 6 7 8 9

correctionsdelay < αX

Output

 upstream
 failure

upstream
 healed

stabilized time

 

  6

16

Node states

STABLE UP_FAILURE

STABILI-
ZATION

Missing heartbeats
or tentative tuples

Upstream
healed

Another
upstream failure

Stabilized

A AX A
STABLE UP_FAILURE STABILIZATION

17

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

18

Scenario 1

S UBA C

A B

BA

C

C

Every node monitors all upstream nodes
and does stream processing simultaneously.

 

  7

19

Scenario 1

A B

S UB

B

A

A

C

C

CX

20

Scenario 2

A B

S UB

B

A

A

C

C

C

X
A

21

Issues of upstream switching

 All replicas must have consistent outputs.
 No inter-replica communication.
 Solution

Use deterministic operators
Use SUnion & boundary tuples to sort inputs

from multiple streams deterministically.

 

  8

22

Replica

SUnion
Replica

SUnions1

s3

Query
network

SUnion Query
network

s2

23

SUnion

 If all boundaries arrive in time, SUnion sorts & forwards
the whole bucket as STABLE tuples.

 If boundaries don’t arrive in time, or there are
TENTATIVE tuples, SUnion stores & forwards the
bucket as TENTATIVE tuples

24

Scenario 3

A B

S UB

B

A

A

C

C

C

X
A

X
X

A

A B

B

B

C

C

C

 

  9

25

Scenario 3

A B

S UB

B

A

A

C

C

CA

X
X

A

A B

B

B

C

C

CAA

26

Scenario 3

A B

S UB

B

A

A

C

C

C

X
X

A

A B

B

B

C

C

C

B

B

B

27

Scenario 3

A B

S UB

B

A

A

C

C

C

X
X

A

A C

C

C

C

C

C

 

  10

28

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

29

Stabilization

 State reconciliation
Checkpoint / redo
Undo / redo
How to satisfy delay constraint if stabilization

takes long?
 Output stabilization
 Failed node recovery

30

State reconciliation: Checkpoint /
Redo

SUnion

Query
net

Input

Query
net

Snapshot

CP

time

 

  11

31

State reconciliation: Checkpoint /
Redo

SUnion

Query
net

Input

Query
net

Snapshot

CP

time

32

State reconciliation: Checkpoint /
Redo

SUnion

Query
net

Input

Query
net

Snapshot

Query
net

CP

time

33

State reconciliation: Undo / Redo

p

 The stream markers of tuple p identify the oldest tuples
on each input stream that still contribute to the operator’s
state when the operator processes p.

s1

s2

s3

 To undo all tuples after p, reset the operator and restart
from the markers of p.

Join

 

  12

34

Processing new tuples during
reconciliation
 A node suspends its outputs for state

reconciliation. But it may take longer than X.
 Solution:

 The node requests another replica to postpone its
own reconciliation.

 The downstream nodes turn to that replica for
TENTATIVE outputs.

 They switch back to the original node when
reconciliation done.

35

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

36

Evaluation setup
 Single-node evaluation
 Multiple-node evaluation

s2 UJoinSUion

s3

s2

SUion Join

JoinSUion

 

  13

37

Evaluation results

 The best approach is to process new tuples
without delay in both UP_FAILURE and
STABILIZATION states.

 Checkpoint/redo is better than undo/redo.
 Memory overhead is proportional to:

 # of SUion
 SUion’s bucket sizes
 SUion’s input rates

38

Conclusion

 The approach favors availability but guarantees
eventual consistency.

 It uses result revision to achieve final
consistency.

 It uses SUion to synchronize replicas without
inter-replica communication.

 Checkpoint/redo and undo/redo are used for
state reconciliation.

39

Discussion

 Long failures may cause output/input buffers
overrun.

 No enough explanation on output buffer
truncation strategies.

 No enough explanation on relationship between
boundary tuples and SUnion bucket size.

 How to recover failed node with divergent
operators?

 No evaluations on failed node recovery and
replica switching during reconciliation.

 

  14

40

References
 [Abadi03] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.

Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new model and
architecture for data stream management. The VLDB Journal, 12(2):120-
139, Aug 2003.

 [Cherniack03] Mitch Cherniack, Hari Balakrishnan, Magdalena
Balazinska,Don Carney, Ugur Cetintemel, Ying Xing, and Stan Zdonik.
Scalable Distributed Stream Processing, CIDR 2003

 [Zdonik03] Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur
Cetintemel, Magdalena Balazinska, and Hari Balakrishnan, The Aurora
and Medusa Projects, IEEE Computer Society. March 2003. p.3-10

 [Abadi05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Centintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,
Anurag S. Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing, and Stan Zdonik, The Design of the Borealis Stream Processing
Engine, CIDR 2005

 [Hwang05] J-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M.
Stonebraker, and S. Zdonik. High-availability algorithms for distributed
stream processing. In Proc. 21st Int. Conf. on Data Engineering, pages
779-790, 2005.

Backup slides

42

Output stabilization
 Every node shall propagate UNDO tuples during

stabilization.
 Checkpoint/redo nodes use SOutput operators to

help produce UNDO tuples.

Node

 

  15

43

Query network trees

44

Implementation

45

Operator / wrapper interface

 For checkpoint / redo
 packState()
 unpackState()

 For undo / redo
 clear()
 findOldestTuple(int stream_id)

 For boundary tuple
 findOldestTimestamp()

