
 

  1

Fault-Tolerance in the
Borealis Distributed Stream
Processing System

Weihan Wang
November 23, 2005

CS856 Fall 2005 Presentation

2

About this paper

 Magdalena Balazinska, MIT
 Hari Balakrishnan, MIT
 Samuel Madden, MIT
 Michael Stonebraker, MIT

 In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 2005.

3

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation



 

  2

4

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

5

A piece of history

Aurora Aurora*

Borealis

Medusa

 Monolithic SPE  Distributed SPE
 Single adm. domain

 Distributed SPE
 Multiple adm. domains
   (aka Federation)

 Distributed SPE
 Result revision
 Query revision
 Load optimization
 Fault tolerance
 ... ...

[Abadi03] [Cherniack03]

[Zdonik03]

[Abadi05]

6

Result revision in Borealis

Today is sunny Today is sunny

It’s
raining

It’s
raining

Today is rainy Today is rainy



 

  3

7

Result revision in Borealis

Today is sunny Today is sunny

Oops!
Withdraw
my words

Oops!
Withdraw
my words

Today is rainy Today is rainy

 Error fixing from data source
 Load shedding
 Time-travel into the past or future
 Fault tolerance

8

Common solution for replication-
based FT

A

C

BS

S

U

U

C

C

9

Common solution for replication-
based FT

A

C

BS

S

U

U

C

C

B

B

A

A



 

  4

10

Comparison with [Hwang05]

 They don’t distinguish between HA & FT.
 They are parallel to each other.
 Compared to [Hwang05]:

 Approach of this paper is similar to [Hwang05]’s
active standby.

 This paper uses result revision.
 This paper addresses network failures.
 This paper avoids inter-replica communications.
 ……

11

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

12

Design goal

 User’s preference:

 Error correctionApproximation
-Approximation
Correct outputsNo outputs

UserAfter failureDuring failure



 

  5

13

Design goal

 Goal: to minimize the number of
approximated outputs during failure,
subject to a delay constraint, and to revise
them after failure.

 For each nodes, the user-defined delay
constraint is X, and data processing time
is (1-α)X. So we can hold input tuples up
to αX sec.

14

Data model and node states

0 1 2 3 4 5 6 U 3 4 5 6 7 8 9

 upstream
   failure

correctionsdelay < αX

A

AX
A

A

STABLE

UP_FAILURE
STABILIZATION

STABLE

Output

upstream
  healed

stabilized time

15

Data model

 Tuple format:  (type, id, time, a1, …, am)

1 TENTATIVE tuples
U UNDO tuples
B BOUNDARY tuples

1 STABLE tuples

0 1 2 3 4 5 6 U 3 4 5 6 7 8 9

correctionsdelay < αX

Output

 upstream
   failure

upstream
  healed

stabilized time



 

  6

16

Node states

STABLE UP_FAILURE

STABILI-
ZATION

Missing heartbeats
or tentative tuples

Upstream
healed

Another
upstream failure

Stabilized

A AX A
STABLE UP_FAILURE STABILIZATION

17

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

18

Scenario 1

S UBA C

A B

BA

C

C

Every node monitors all upstream nodes
and does stream processing simultaneously.



 

  7

19

Scenario 1

A B

S UB

B

A

A

C

C

CX

20

Scenario 2

A B

S UB

B

A

A

C

C

C

X
A

21

Issues of upstream switching

 All replicas must have consistent outputs.
 No inter-replica communication.
 Solution

Use deterministic operators
Use SUnion & boundary tuples to sort inputs

from multiple streams deterministically.



 

  8

22

Replica

SUnion
Replica

SUnions1

s3

Query
network

SUnion Query
network

s2

23

SUnion

 If all boundaries arrive in time, SUnion sorts & forwards
the whole bucket as STABLE tuples.

 If boundaries don’t arrive in time, or there are
TENTATIVE tuples, SUnion stores & forwards the
bucket as TENTATIVE tuples

24

Scenario 3

A B

S UB

B

A

A

C

C

C

X
A

X
X

A

A B

B

B

C

C

C



 

  9

25

Scenario 3

A B

S UB

B

A

A

C

C

CA

X
X

A

A B

B

B

C

C

CAA

26

Scenario 3

A B

S UB

B

A

A

C

C

C

X
X

A

A B

B

B

C

C

C

B

B

B

27

Scenario 3

A B

S UB

B

A

A

C

C

C

X
X

A

A C

C

C

C

C

C



 

  10

28

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

29

Stabilization

 State reconciliation
Checkpoint / redo
Undo / redo
How to satisfy delay constraint if stabilization

takes long?
 Output stabilization
 Failed node recovery

30

State reconciliation: Checkpoint /
Redo

SUnion

Query
net

Input

Query
net

Snapshot

CP

time



 

  11

31

State reconciliation: Checkpoint /
Redo

SUnion

Query
net

Input

Query
net

Snapshot

CP

time

32

State reconciliation: Checkpoint /
Redo

SUnion

Query
net

Input

Query
net

Snapshot

Query
net

CP

time

33

State reconciliation: Undo / Redo

p

 The stream markers of tuple p identify the oldest tuples
on each input stream that still contribute to the operator’s
state when the operator processes p.

s1

s2

s3

 To undo all tuples after p, reset the operator and restart
from the markers of p.

Join



 

  12

34

Processing new tuples during
reconciliation
 A node suspends its outputs for state

reconciliation. But it may take longer than X.
 Solution:

 The node requests another replica to postpone its
own reconciliation.

 The downstream nodes turn to that replica for
TENTATIVE outputs.

 They switch back to the original node when
reconciliation done.

35

Agenda

 Background
 System overview
 Upstream failure
 Stabilization
 Evaluation

36

Evaluation setup
 Single-node evaluation
 Multiple-node evaluation

s2 UJoinSUion

s3

s2

SUion Join

JoinSUion



 

  13

37

Evaluation results

 The best approach is to process new tuples
without delay in both UP_FAILURE and
STABILIZATION states.

 Checkpoint/redo is better than undo/redo.
 Memory overhead is proportional to:

 # of SUion
 SUion’s bucket sizes
 SUion’s input rates

38

Conclusion

 The approach favors availability but guarantees
eventual consistency.

 It uses result revision to achieve final
consistency.

 It uses SUion to synchronize replicas without
inter-replica communication.

 Checkpoint/redo and undo/redo are used for
state reconciliation.

39

Discussion

 Long failures may cause output/input buffers
overrun.

 No enough explanation on output buffer
truncation strategies.

 No enough explanation on relationship between
boundary tuples and SUnion bucket size.

 How to recover failed node with divergent
operators?

 No evaluations on failed node recovery and
replica switching during reconciliation.



 

  14

40

References
 [Abadi03] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.

Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new model and
architecture for data stream management. The VLDB Journal, 12(2):120-
139, Aug 2003.

 [Cherniack03] Mitch Cherniack, Hari Balakrishnan, Magdalena
Balazinska,Don Carney, Ugur Cetintemel, Ying Xing, and Stan Zdonik.
Scalable Distributed Stream Processing, CIDR 2003

 [Zdonik03] Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur
Cetintemel, Magdalena Balazinska, and Hari Balakrishnan, The Aurora
and Medusa Projects, IEEE Computer Society. March 2003. p.3-10

 [Abadi05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Centintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,
Anurag S. Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing, and Stan Zdonik, The Design of the Borealis Stream Processing
Engine, CIDR 2005

 [Hwang05] J-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M.
Stonebraker, and S. Zdonik. High-availability algorithms for distributed
stream processing. In Proc. 21st Int. Conf. on Data Engineering, pages
779-790, 2005.

Backup slides

42

Output stabilization
 Every node shall propagate UNDO tuples during

stabilization.
 Checkpoint/redo nodes use SOutput operators to

help produce UNDO tuples.

Node



 

  15

43

Query network trees

44

Implementation

45

Operator / wrapper interface

 For checkpoint / redo
 packState()
 unpackState()

 For undo / redo
 clear()
 findOldestTuple(int stream_id)

 For boundary tuple
 findOldestTimestamp()


