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A piece of history

Aurora Aurora*

Borealis

Medusa

 Monolithic SPE  Distributed SPE
 Single adm. domain

 Distributed SPE
 Multiple adm. domains
   (aka Federation)

 Distributed SPE
 Result revision
 Query revision
 Load optimization
 Fault tolerance
 ... ...

[Abadi03] [Cherniack03]

[Zdonik03]

[Abadi05]
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Result revision in Borealis

Today is sunny Today is sunny

It’s
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Result revision in Borealis

Today is sunny Today is sunny

Oops!
Withdraw
my words

Oops!
Withdraw
my words

Today is rainy Today is rainy

 Error fixing from data source
 Load shedding
 Time-travel into the past or future
 Fault tolerance
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Common solution for replication-
based FT
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Comparison with [Hwang05]

 They don’t distinguish between HA & FT.
 They are parallel to each other.
 Compared to [Hwang05]:

 Approach of this paper is similar to [Hwang05]’s
active standby.

 This paper uses result revision.
 This paper addresses network failures.
 This paper avoids inter-replica communications.
 ……
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Design goal

 User’s preference:

 Error correctionApproximation
-Approximation
Correct outputsNo outputs

UserAfter failureDuring failure
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Design goal

 Goal: to minimize the number of
approximated outputs during failure,
subject to a delay constraint, and to revise
them after failure.

 For each nodes, the user-defined delay
constraint is X, and data processing time
is (1-α)X. So we can hold input tuples up
to αX sec.
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Data model and node states
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Data model

 Tuple format:  (type, id, time, a1, …, am)

1 TENTATIVE tuples
U UNDO tuples
B BOUNDARY tuples

1 STABLE tuples

0 1 2 3 4 5 6 U 3 4 5 6 7 8 9

correctionsdelay < αX
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   failure
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Node states

STABLE UP_FAILURE

STABILI-
ZATION

Missing heartbeats
or tentative tuples

Upstream
healed

Another
upstream failure

Stabilized

A AX A
STABLE UP_FAILURE STABILIZATION
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Scenario 1
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Every node monitors all upstream nodes
and does stream processing simultaneously.
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Scenario 1
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Scenario 2

A B

S UB

B

A

A

C

C

C

X
A

21

Issues of upstream switching

 All replicas must have consistent outputs.
 No inter-replica communication.
 Solution

Use deterministic operators
Use SUnion & boundary tuples to sort inputs

from multiple streams deterministically.
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Replica

SUnion
Replica

SUnions1

s3

Query
network

SUnion Query
network

s2
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SUnion

 If all boundaries arrive in time, SUnion sorts & forwards
the whole bucket as STABLE tuples.

 If boundaries don’t arrive in time, or there are
TENTATIVE tuples, SUnion stores & forwards the
bucket as TENTATIVE tuples
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Scenario 3
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Scenario 3
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Stabilization

 State reconciliation
Checkpoint / redo
Undo / redo
How to satisfy delay constraint if stabilization

takes long?
 Output stabilization
 Failed node recovery
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State reconciliation: Checkpoint /
Redo
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State reconciliation: Checkpoint /
Redo
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State reconciliation: Checkpoint /
Redo
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State reconciliation: Undo / Redo

p

 The stream markers of tuple p identify the oldest tuples
on each input stream that still contribute to the operator’s
state when the operator processes p.

s1

s2

s3

 To undo all tuples after p, reset the operator and restart
from the markers of p.

Join
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Processing new tuples during
reconciliation
 A node suspends its outputs for state

reconciliation. But it may take longer than X.
 Solution:

 The node requests another replica to postpone its
own reconciliation.

 The downstream nodes turn to that replica for
TENTATIVE outputs.

 They switch back to the original node when
reconciliation done.
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Evaluation setup
 Single-node evaluation
 Multiple-node evaluation

s2 UJoinSUion

s3

s2

SUion Join

JoinSUion
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Evaluation results

 The best approach is to process new tuples
without delay in both UP_FAILURE and
STABILIZATION states.

 Checkpoint/redo is better than undo/redo.
 Memory overhead is proportional to:

 # of SUion
 SUion’s bucket sizes
 SUion’s input rates
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Conclusion

 The approach favors availability but guarantees
eventual consistency.

 It uses result revision to achieve final
consistency.

 It uses SUion to synchronize replicas without
inter-replica communication.

 Checkpoint/redo and undo/redo are used for
state reconciliation.
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Discussion

 Long failures may cause output/input buffers
overrun.

 No enough explanation on output buffer
truncation strategies.

 No enough explanation on relationship between
boundary tuples and SUnion bucket size.

 How to recover failed node with divergent
operators?

 No evaluations on failed node recovery and
replica switching during reconciliation.
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Output stabilization
 Every node shall propagate UNDO tuples during

stabilization.
 Checkpoint/redo nodes use SOutput operators to

help produce UNDO tuples.

Node
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Query network trees
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Implementation
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Operator / wrapper interface

 For checkpoint / redo
 packState()
 unpackState()

 For undo / redo
 clear()
 findOldestTuple(int stream_id)

 For boundary tuple
 findOldestTimestamp()


