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A piece of history

Aurora Aurora*

Borealis

Medusa

 Monolithic SPE  Distributed SPE
 Single adm. domain

 Distributed SPE
 Multiple adm. domains
   (aka Federation)

 Distributed SPE
 Result revision
 Query revision
 Load optimization
 Fault tolerance
 ... ...

[Abadi03] [Cherniack03]

[Zdonik03]

[Abadi05]
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Result revision in Borealis
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Result revision in Borealis

Today is sunny Today is sunny

Oops!
Withdraw
my words

Oops!
Withdraw
my words

Today is rainy Today is rainy

 Error fixing from data source
 Load shedding
 Time-travel into the past or future
 Fault tolerance
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Common solution for replication-
based FT
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Comparison with [Hwang05]

 They don’t distinguish between HA & FT.
 They are parallel to each other.
 Compared to [Hwang05]:

 Approach of this paper is similar to [Hwang05]’s
active standby.

 This paper uses result revision.
 This paper addresses network failures.
 This paper avoids inter-replica communications.
 ……
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Design goal

 User’s preference:

 Error correctionApproximation
-Approximation
Correct outputsNo outputs

UserAfter failureDuring failure
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Design goal

 Goal: to minimize the number of
approximated outputs during failure,
subject to a delay constraint, and to revise
them after failure.

 For each nodes, the user-defined delay
constraint is X, and data processing time
is (1-α)X. So we can hold input tuples up
to αX sec.
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Data model and node states
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 upstream
   failure

correctionsdelay < αX
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Data model

 Tuple format:  (type, id, time, a1, …, am)

1 TENTATIVE tuples
U UNDO tuples
B BOUNDARY tuples

1 STABLE tuples

0 1 2 3 4 5 6 U 3 4 5 6 7 8 9

correctionsdelay < αX

Output

 upstream
   failure

upstream
  healed

stabilized time
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Node states

STABLE UP_FAILURE

STABILI-
ZATION

Missing heartbeats
or tentative tuples

Upstream
healed

Another
upstream failure

Stabilized

A AX A
STABLE UP_FAILURE STABILIZATION
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Scenario 1

S UBA C
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Every node monitors all upstream nodes
and does stream processing simultaneously.
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Scenario 1
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Scenario 2
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Issues of upstream switching

 All replicas must have consistent outputs.
 No inter-replica communication.
 Solution

Use deterministic operators
Use SUnion & boundary tuples to sort inputs

from multiple streams deterministically.
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Replica

SUnion
Replica

SUnions1

s3

Query
network

SUnion Query
network

s2
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SUnion

 If all boundaries arrive in time, SUnion sorts & forwards
the whole bucket as STABLE tuples.

 If boundaries don’t arrive in time, or there are
TENTATIVE tuples, SUnion stores & forwards the
bucket as TENTATIVE tuples
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Scenario 3
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Scenario 3
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Scenario 3
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Stabilization

 State reconciliation
Checkpoint / redo
Undo / redo
How to satisfy delay constraint if stabilization

takes long?
 Output stabilization
 Failed node recovery
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State reconciliation: Checkpoint /
Redo

SUnion

Query
net

Input

Query
net

Snapshot

CP

time
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State reconciliation: Checkpoint /
Redo
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State reconciliation: Checkpoint /
Redo

SUnion

Query
net

Input
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State reconciliation: Undo / Redo

p

 The stream markers of tuple p identify the oldest tuples
on each input stream that still contribute to the operator’s
state when the operator processes p.

s1

s2

s3

 To undo all tuples after p, reset the operator and restart
from the markers of p.

Join
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Processing new tuples during
reconciliation
 A node suspends its outputs for state

reconciliation. But it may take longer than X.
 Solution:

 The node requests another replica to postpone its
own reconciliation.

 The downstream nodes turn to that replica for
TENTATIVE outputs.

 They switch back to the original node when
reconciliation done.
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Evaluation setup
 Single-node evaluation
 Multiple-node evaluation

s2 UJoinSUion

s3

s2

SUion Join

JoinSUion
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Evaluation results

 The best approach is to process new tuples
without delay in both UP_FAILURE and
STABILIZATION states.

 Checkpoint/redo is better than undo/redo.
 Memory overhead is proportional to:

 # of SUion
 SUion’s bucket sizes
 SUion’s input rates
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Conclusion

 The approach favors availability but guarantees
eventual consistency.

 It uses result revision to achieve final
consistency.

 It uses SUion to synchronize replicas without
inter-replica communication.

 Checkpoint/redo and undo/redo are used for
state reconciliation.
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Discussion

 Long failures may cause output/input buffers
overrun.

 No enough explanation on output buffer
truncation strategies.

 No enough explanation on relationship between
boundary tuples and SUnion bucket size.

 How to recover failed node with divergent
operators?

 No evaluations on failed node recovery and
replica switching during reconciliation.
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Output stabilization
 Every node shall propagate UNDO tuples during

stabilization.
 Checkpoint/redo nodes use SOutput operators to

help produce UNDO tuples.

Node
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Query network trees
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Implementation
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Operator / wrapper interface

 For checkpoint / redo
 packState()
 unpackState()

 For undo / redo
 clear()
 findOldestTuple(int stream_id)

 For boundary tuple
 findOldestTimestamp()


