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A piece of history

[Abadi03] [Cherniack03]
‘ Aurora ‘—»{ Aurora* ‘
= Monolithic SPE u Distributed SPE [Abadi05]

= Single adm. domain .
:
[Zdoniko3] / Distributed SPE
m Result revision

= Query revision

u Distributed SPE = Load optimization
= Multiple adm. domains = Fault tolerance
(aka Federation) [ I

Result revision in Borealis

Today is rainy Today is rainy




Result revision in Borealis

Oops!
Withdraw

ops!
Withdraw
my words

my words
QA0
"L.:} "L.:} £J‘
Today is rainy Today is rainy

m Error fixing from data source

m Load shedding

m Time-travel into the past or future
= Fault tolerance

g
Common solution for replication-
based FT

g
Common solution for replication-
based FT
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Comparison with [Hwang05]

m They don’t distinguish between HA & FT.
m They are parallel to each other.
m Compared to [HwangO05]:

Approach of this paper is similar to [Hwang05]'s
active standby.

This paper uses result revision.
This paper addresses network failures.
This paper avoids inter-replica communications.
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Design goal

m User’s preference:

During failure After failure User
No outputs Correct outputs ®

Approximation - ©

Approximation Error correction © O
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Design goal

m Goal: to minimize the number of
approximated outputs during failure,
subject to a delay constraint, and to revise
them after failure.

m For each nodes, the user-defined delay
constraint is X, and data processing time
is (1-a)X. So we can hold input tuples up
to aX sec.

Data model and node states
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m Tuple format: (type, id, time, a,, ..., a,,)

STABLE tuples
TENTATIVE tuples
[B] UNDO tuples
BOUNDARY tuples
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Node states
(Te{a [ XE@> ]

STABLE UP_FAILURE STABILIZATION

Missing heartbeats

or tentative tuples
—_—

Upstream
healed
Stabilized Another
upstream failure

STABILI-
ZATION
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Scenario 1

Every node monitors all upstream nodes
and does stream processing simultaneously.
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Issues of upstream switching

m All replicas must have consistent outputs.
m No inter-replica communication.
m Solution

Use deterministic operators

Use SUnion & boundary tuples to sort inputs
from multiple streams deterministically.
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Query
network

Query
network
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S U n ion Bucket i Bucketi+l  Bucket i+2
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time

m If all boundaries arrive in time, SUnion sorts & forwards
the whole bucket as STABLE tuples.

m |f boundaries don’t arrive in time, or there are
TENTATIVE tuples, SUnion stores & forwards the
bucket as TENTATIVE tuples

23

Scenario 3
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Scenario 3
[Emmn]
B
Y XHA 8]
X
B

Scenario 3
B8]
& X
X

Scenario 3
8]
& X
X




Agenda

m Background

m System overview
m Upstream failure
= Stabilization []
m Evaluation

28

Stabilization

m State reconciliation
Checkpoint / redo
Undo / redo

How to satisfy delay constraint if stabilization
takes long?

m Output stabilization
m Failed node recovery
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State reconciliation: Checkpoint /
Redo
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State reconciliation: Checkpoint /
Redo
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State reconciliation: Undo / Redo

m The stream markers of tuple p identify the oldest tuples
on each input stream that still contribute to the operator's
state when the operator processes p.
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m To undo all tuples after p, reset the operator and restart
from the markers of p.
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Processing new tuples during
reconciliation

m A node suspends its outputs for state
reconciliation. But it may take longer than X.
m Solution:

The node requests another replica to postpone its
own reconciliation.

The downstream nodes turn to that replica for
TENTATIVE outputs.

They switch back to the original node when
reconciliation done.
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Evaluation setup

m Single-node evaluation
m Multiple-node evaluation
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Evaluation results

m The best approach is to process new tuples
without delay in both UP_FAILURE and
STABILIZATION states.

m Checkpoint/redo is better than undo/redo.

= Memory overhead is proportional to:
# of SUion
SUion’s bucket sizes
SUion’s input rates

Conclusion

m The approach favors availability but guarantees
eventual consistency.

m |t uses result revision to achieve final
consistency.

m It uses SUion to synchronize replicas without
inter-replica communication.

m Checkpoint/redo and undo/redo are used for
state reconciliation.

Discussion

m Long failures may cause output/input buffers
overrun.

= No enough explanation on output buffer
truncation strategies.

= No enough explanation on relationship between
boundary tuples and SUnion bucket size.

m How to recover failed node with divergent
operators?

m No evaluations on failed node recovery and
replica switching during reconciliation.
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Backup slides
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Output stabilization

m Every node shall propagate UNDO tuples during
stabilization.

m Checkpoint/redo nodes use SOutput operators to
help produce UNDO tuples.
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Query network trees
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Figure 7: Modified query network.
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Operator / wrapper interface

m For checkpoint / redo
packState()
unpackState()
m For undo / redo
clear()
findOldestTuple(int stream_id)
m For boundary tuple
findOldestTimestamp()
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