CS856 Fall 2005 Presentation

Fault-Tolerance in the
Borealis Distributed Stream

Processing System

Weihan Wang
November 23, 2005

" JEE
About this paper

m Magdalena Balazinska, MIT
m Hari Balakrishnan, MIT

m Samuel Madden, MIT

m Michael Stonebraker, MIT

m In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 2005.

" JEET
Agenda

m Background

m System overview
m Upstream failure
m Stabilization

m Evaluation

" JEE
Agenda

m Background

m System overview
m Upstream failure
m Stabilization

m Evaluation

A piece of history

[Abadi03] [Cherniack03]
‘ Aurora ‘—»{ Aurora* ‘
= Monolithic SPE u Distributed SPE [Abadi05]

= Single adm. domain .
:
[Zdoniko3] / Distributed SPE
m Result revision

= Query revision

u Distributed SPE = Load optimization
= Multiple adm. domains = Fault tolerance
(aka Federation) [I

Result revision in Borealis

Today is rainy Today is rainy

Result revision in Borealis

Oops!
Withdraw

ops!
Withdraw
my words

my words
QA0
"L.:} "L.:} £J‘
Today is rainy Today is rainy

m Error fixing from data source

m Load shedding

m Time-travel into the past or future
= Fault tolerance

g
Common solution for replication-
based FT

g
Common solution for replication-
based FT

" JEET
Comparison with [Hwang05]

m They don’t distinguish between HA & FT.
m They are parallel to each other.
m Compared to [HwangO05]:

Approach of this paper is similar to [Hwang05]'s
active standby.

This paper uses result revision.
This paper addresses network failures.
This paper avoids inter-replica communications.

" JEET
Agenda

m Background

m System overview
m Upstream failure
m Stabilization

m Evaluation

" JEET
Design goal

m User’s preference:

During failure After failure User
No outputs Correct outputs ®

Approximation - ©

Approximation Error correction © O

" JEE
Design goal

m Goal: to minimize the number of
approximated outputs during failure,
subject to a delay constraint, and to revise
them after failure.

m For each nodes, the user-defined delay
constraint is X, and data processing time
is (1-a)X. So we can hold input tuples up
to aX sec.

Data model and node states

delay < aX corrections
A ﬁl ——
output [0]1]2] [3]4]5]6][7]8]9]

]]]

T T T >
upstream upstream stabilized time
failure healed

L]
. A
UP_FAILURE - - STABLE
STABILIZATION -»[_|-»[A]»

Data model
delay < aX corrections
A ﬁl ——
Output E
]]]
upstrleam upstrleam stab/!lized tim:
failure healed

m Tuple format: (type, id, time, a,, ..., a,,)

STABLE tuples
TENTATIVE tuples
[B] UNDO tuples
BOUNDARY tuples

" JEE
Node states
(Te{a [XE@>]

STABLE UP_FAILURE STABILIZATION

Missing heartbeats

or tentative tuples
—_—

Upstream
healed
Stabilized Another
upstream failure

STABILI-
ZATION

" JEE
Agenda

m Background

m System overview
m Upstream failure
m Stabilization

m Evaluation

Scenario 1

Every node monitors all upstream nodes
and does stream processing simultaneously.

Scenario 1
X
@—» ©

Scenario 2
|
X ./ \
(&)——+[a] O)

20

" JEE
Issues of upstream switching

m All replicas must have consistent outputs.
m No inter-replica communication.
m Solution

Use deterministic operators

Use SUnion & boundary tuples to sort inputs
from multiple streams deterministically.

21

Query
network

Query
network

22

S U n ion Bucket i Bucketi+l Bucket i+2
1

B s3

il

[t1.t1+d) [t1+d.t1+2d) [t1+2d.t1+3d)

time

m If all boundaries arrive in time, SUnion sorts & forwards
the whole bucket as STABLE tuples.

m |f boundaries don’t arrive in time, or there are
TENTATIVE tuples, SUnion stores & forwards the
bucket as TENTATIVE tuples

23

Scenario 3

24

Scenario 3
[Emmn]
B
Y XHA 8]
X
B

Scenario 3
B8]
& X
X

Scenario 3
8]
& X
X

Agenda

m Background

m System overview
m Upstream failure
= Stabilization []
m Evaluation

28

Stabilization

m State reconciliation
Checkpoint / redo
Undo / redo

How to satisfy delay constraint if stabilization
takes long?

m Output stabilization
m Failed node recovery

29

—
State reconciliation: Checkpoint /
Redo

—p>-
nput [T time

Query
net

Snapshot |

10

—
State reconciliation: Checkpoint /
Redo

—p-
oot (T TTTT] NI te
4CP
: |
H '
|

H Query | ! Query

: net |! net

! |

i : Snapshot

—
State reconciliation: Checkpoint /
Redo

mput [T T T EEEENETTTT]

: Query | ! Query
net |! net

| O E

[e t— ! Snapshot

State reconciliation: Undo / Redo

m The stream markers of tuple p identify the oldest tuples
on each input stream that still contribute to the operator's
state when the operator processes p.

» T
s2|||<1/r1|||||||||||—
s CPTITTTTIIITTLI

m To undo all tuples after p, reset the operator and restart
from the markers of p.

11

r—
Processing new tuples during
reconciliation

m A node suspends its outputs for state
reconciliation. But it may take longer than X.
m Solution:

The node requests another replica to postpone its
own reconciliation.

The downstream nodes turn to that replica for
TENTATIVE outputs.

They switch back to the original node when
reconciliation done.

Agenda

m Background
m System overview
m Upstream failure
m Stabilization
m Evaluation

Evaluation setup

m Single-node evaluation
m Multiple-node evaluation

12

Evaluation results

m The best approach is to process new tuples
without delay in both UP_FAILURE and
STABILIZATION states.

m Checkpoint/redo is better than undo/redo.

= Memory overhead is proportional to:
of SUion
SUion’s bucket sizes
SUion’s input rates

Conclusion

m The approach favors availability but guarantees
eventual consistency.

m |t uses result revision to achieve final
consistency.

m It uses SUion to synchronize replicas without
inter-replica communication.

m Checkpoint/redo and undo/redo are used for
state reconciliation.

Discussion

m Long failures may cause output/input buffers
overrun.

= No enough explanation on output buffer
truncation strategies.

= No enough explanation on relationship between
boundary tuples and SUnion bucket size.

m How to recover failed node with divergent
operators?

m No evaluations on failed node recovery and
replica switching during reconciliation.

13

"
References

= [Abadi03] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new model and
architecture for data stream management. The VLDB Journal, 12(2):120-
139, Aug 2003.

m [Cherniack03] Mitch Cherniack, Hari Balakrishnan, Magdalena
Balazinska,Don Carney, Ugur Cetintemel, Yin%xing, and Stan Zdonik.
Scalable Distributed Stream Processing, CIDR 2003

m [Zdonik03] Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur
Cetintemel, Magdalena Balazinska, and Hari Balakrishnan, The Aurora
and Medusa Projects, IEEE Computer Society. March 2003. p.3-10

= [Abadi05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Centintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,
Anurag S. Maskeg/, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing, and Stan Zdonik, The Design of the Borealis Stream Processing
Engine, CIDR 2005

= [Hwang05] J-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M.
Stonebraker, and S. Zdonik. High-availability algorithms for distributed
stream processing. In Proc. 21st Int. Conf. on Data Engineering, pages
779-790, 2005.

Backup slides

" JEE
Output stabilization

m Every node shall propagate UNDO tuples during
stabilization.

m Checkpoint/redo nodes use SOutput operators to
help produce UNDO tuples.

1T T s [TTTT]

\> Node

_\‘

a2

14

Query network trees

Stable tree Tentative tree
O—H16 OO
®— ®—

Blocking tree Not valid

® G—{]

® -0 O—{v—{1-®

T
Implementation

data stream

ricins data stream
Original L_w| s0utput
Query control
stream | Diagram stream

control

Figure 7: Modified query network.

Processing Node

Query Processor

Other Consistency
components Manager

T SPE

¥ Query
Distribution
¥

T

i i

JEET
Operator / wrapper interface

m For checkpoint / redo
packState()
unpackState()
m For undo / redo
clear()
findOldestTuple(int stream_id)
m For boundary tuple
findOldestTimestamp()

15

