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Motivation: top-k queries

Find a girl with
long hair, brown eyes,
and sweet voice

op-1 query with 3 attributes
(/.(

Motivation: top-k queries

OMultimedia DB: “find 10 pictures that are
funny and large in size”

OInfo. retrieval: “find 100 papers that are
most relevant to my research areas”

OData stream: “find 5 users with the largest
bandwidth usage”

OLive examples:
m QBIC: wwwaqgbic.almaden.ibm.com
u Flickr: www.flickr.com
B WinFS for Windows Vista




WinFS for Windows Vista
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Data integration sys. (middleware)

Top-k results
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Problem definition
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Sort by
attributes
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Aggregation function:
t (X1, X2, X3, X4)

Aggregation functions

O Can be max(), min(), avg(), ...
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monotone strictly monotone

Sorted and random access

Middleware

sorted

random
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Fagin’s algorithm (FA)

suppose m=3, k=2; objects are A, B, C, ..., Z

Ly [nJeJulcfola]v]k]T]L

Ly [3[x][x][e]s]B]c]1]w]o

Ly [c]u]r]z[o]Vv]M]F[R]K

sorted access

Stop when there are k objects, such that
each of them has been seen in each list.

Fagin’s algorithm (FA): step 2

OFor each object R has been seen:
B Do random access to get all of its
attributes.
H Calculate t(R).
OSort all these objects and output the
first k objects.

FA is correct, but not always optimal.
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Threshold algorithm (TA)

m=3, k=2
L, [N]
L [ m{,
.
Ls [n]

€Y > ©(C) > &N Output set Y

Threshold algorithm (TA)

m=3, k=2

L
L to{ .
L

t(E) > t(3)

Output set Y




Threshold algorithm (TA)

m=3, k=2

L; [n[eJulcfofalv[k]T]

Ly [s]x[x]e[s]e]c[r]w]

t()

Ly [c[u]p[z[o]v]mM[F]R]

Output set Y

Threshold algorithm (TA)

m=3, k=2 Threshold value
T = (X}, %5, X3)

T=

Ly [nJeJufcfofA¥]K]T

=
°

Ly []x]k[e[s]e]c]1]w]}x,

t()

=

Ly [c[u]P]z[D]V]M[F]R

t(D)=1
Output set Y

Stop when the grade of the last object in Y
is equal or larger than the threshold value.

Middleware cost

O In this paper, we use middleware cost
to measure optimality of an
algorithm.

O To answer a query on database D, an
algorithm A needs:

B s sorted accesses
B r random accesses
O The middleware cost of A on D js:

cost(A,D)=scs+rc,




Instance optimality

O A set of databases: D
O A set of (middleware) algorithms: A
O BEA is instance optimality if:

cost(B,D) < c:cost(A,D)+c’

for every AGGA and DED

c: optimality ratio

Instance optimality of TA

O Assumptions
B t(): monotone
m D: all
B A: no wild guess
O Optimality: TA is instance optimal,
with optimality ratio m+m(m-1)c,/cs

Instance optimality of TA (2)

O Assumptions
m t(): strictly monotone
B D: unique
mA: al
O Optimality: TA is instance optimal
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B-approximation

Y, is the last objectin ¥, 6 =7 /4(Y,)

A
) Guarantee

0t(y)=t(z)
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Instance optimality of
B-approximation

O Assumptions
B t(): monotone

mD: all
® A: no wild guess
m0>1

O Optimality: 6-approximation is
instance optimal
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Lower/upper bound of an object

O Define Lower bound LB() as the value of t() when
setting all unknown attributes to 0

O Define Upper bound UB() as the value of t() when
setting all unknown attributes to X,

LB(A) =t(0, 0, 0.8)

UB(A)=t(0.5, 0.2, 0.8)

i LI Il T T]
0.8

NRA algorithm

€0 IIII} I T.LB

Output set Y Other seen objects
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NRA algorithm

OO o uB
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Output set Y Other seen objects

Instance optimality of NRA

O Assumptions
B t(): monotone
m D: all
m A: no random access
O Optimality: NRA is instance optimal
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Combined algorithm (CA)

[ 4
: NI

For every |c;/cs| step, obtain all unknown attr.
of the object with the largest UB.

Instance optimality of CA

O Assumptions
m t(): strictly monotone in each argument
® D: unique
mA: al

O Optimality: CA is instance optimal
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Conclusion

O TA is instance optimal in most cases
O 6-approx: early stop

O NRA: random access is not allowed
O CA: random access is costly

O Future work
B Tightly instance optimal
B More efficient structure of NRA
B Compare CA vs. TA

Discussion

O Object caching of TA

O Grades output of NRA

O Other metrics for algorithm optimality
O Assumptions on databases

Backup slides
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I.0. in other fields

O Competitive analysis

O Approximation algorithms

O The mean of Monte Carlo estimation
(Dagum et al.)

O Operations on sorted sets (Demaine
et al.)

Memory overhead

O FA: need to remember t() for all
objects that have been seen.

O TA: only need to remember t() for
objects in Y.

O NRA: similar to FA.

Wild guess example

L1 LZ

1,1) @ni11)
(2,1) (2n,1)
(3,1) (2n—1,1)
(n+1,1) (n+1,1)
(n+3,0) (n—1,0)
(2n+1,0) (1,0)
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Instance Optimality w/ wild guess

O Assumptions
B t(): min(x;x,)
mD: all
mA: al
O Optimality: no algorithms is instance
optimal

Wild guess example w/ 6

L1 L2

(1,) (2n+1,-)
(27 ) (an )
(n+1.3) (n+1,3)
(n+3,-) (n-1,")
@n+1,9 )

Instance Optimality w/ wild guess

O Assumptions
B t(): min(x;x;)
® D: unique
mA: al
m0>1
O Optimality: no algorithms is instance
optimal
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Costs for top-1 & top-2 for NRA

Instance optimality of CA (2)

O Assumptions

® t(): min()
® D: unique
mA: al

O Optimality: CA is instance optimal

Instance optimality dependency

O Assumptions
® t(): min()
m D: all
® A: no wild guess
O Optimality: no algorithm has instance
optimality independent of C,/Cq
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