Optimal aggregation
algorithms for middleware

CS856 Fall 2005 Presentation

Weihan Wang
w23wang@uwaterloo.ca

November 23, 2005

About the paper

O Ronald Fagin, IBM Research
O Amnon Lotem, Maryland
O Moni Naor, Weizmann, Israel

O In ACM Symp. Principles of Database
Systems, 2001.

Agenda

r=zBackground
B«PFagin’s algorithm
El@Threshold algorithm
E@B-approximation
B<@NRA algorithm
Z£«@Combined algorithm

Agenda

r<aBackground
B«PFagin’s algorithm
El@Threshold algorithm
E@B-approximation
B<@NRA algorithm
Z£«@Combined algorithm

Motivation: top-k queries

Find a girl with
long hair, brown eyes,
and sweet voice

op-1 query with 3 attributes
(/.(

Motivation: top-k queries

OMultimedia DB: “find 10 pictures that are
funny and large in size”

OInfo. retrieval: “find 100 papers that are
most relevant to my research areas”

OData stream: “find 5 users with the largest
bandwidth usage”

OLive examples:
m QBIC: wwwaqgbic.almaden.ibm.com
u Flickr: www.flickr.com
B WinFS for Windows Vista

WinFS for Windows Vista

[<o~ et - woeows -
| e
| assently
o ¥ Comd
= =
mmmmm s
Data model
X, | %, | X5 L, L, Ls
Al.1]|.2].7 E|.8] |C|.9] |[D]|.9
B|.5/.3].3 B|.5| |E|.4 Al.7
c|.11.9]|.4 - D|.3 B|.3 E | .6
D|.3].1].9 cl.i| |A].2] |C|.4
E|.8].4].6 Al.1| |D|.1 B|.3

Data integration sys. (middleware)

Top-k results

1

m data
Sources
(m=4)

Problem definition

Sort by () —

Sort by
attributes
L

1 Ly Ls Ly

Aggregation function:
t (X1, X2, X3, X4)

Aggregation functions

O Can be max(), min(), avg(), ...

t(x) t(x)

X X
> >
Ll Ll
monotone strictly monotone

Sorted and random access

Middleware

sorted

random

Agenda

r=zBackground
B«wPagin’s algorithm
El@Threshold algorithm
E@B-approximation

B

N

<NRA algorithm
ombined algorithm

Fagin’s algorithm (FA)

suppose m=3, k=2; objects are A, B, C, ..., Z

Ly [nJeJulcfola]v]k]T]L

Ly [3[x][x][e]s]B]c]1]w]o

Ly [c]u]r]z[o]Vv]M]F[R]K

sorted access

Stop when there are k objects, such that
each of them has been seen in each list.

Fagin’s algorithm (FA): step 2

OFor each object R has been seen:
B Do random access to get all of its
attributes.
H Calculate t(R).
OSort all these objects and output the
first k objects.

FA is correct, but not always optimal.

Agenda

r=zBackground

B«PFagin’s algorithm
E<Threshold algorithm
E@B-approximation
B<@NRA algorithm
Combined algorithm

Threshold algorithm (TA)

m=3, k=2
L, [N]
L [m{,
.
Ls [n]

€Y > ©(C) > &N Output set Y

Threshold algorithm (TA)

m=3, k=2

L
L to{ .
L

t(E) > t(3)

Output set Y

Threshold algorithm (TA)

m=3, k=2

L; [n[eJulcfofalv[k]T]

Ly [s]x[x]e[s]e]c[r]w]

t()

Ly [c[u]p[z[o]v]mM[F]R]

Output set Y

Threshold algorithm (TA)

m=3, k=2 Threshold value
T = (X}, %5, X3)

T=

Ly [nJeJufcfofA¥]K]T

=
°

Ly []x]k[e[s]e]c]1]w]}x,

t()

=

Ly [c[u]P]z[D]V]M[F]R

t(D)=1
Output set Y

Stop when the grade of the last object in Y
is equal or larger than the threshold value.

Middleware cost

O In this paper, we use middleware cost
to measure optimality of an
algorithm.

O To answer a query on database D, an
algorithm A needs:

B s sorted accesses
B r random accesses
O The middleware cost of A on D js:

cost(A,D)=scs+rc,

Instance optimality

O A set of databases: D
O A set of (middleware) algorithms: A
O BEA is instance optimality if:

cost(B,D) < c:cost(A,D)+c’

for every AGGA and DED

c: optimality ratio

Instance optimality of TA

O Assumptions
B t(): monotone
m D: all
B A: no wild guess
O Optimality: TA is instance optimal,
with optimality ratio m+m(m-1)c,/cs

Instance optimality of TA (2)

O Assumptions
m t(): strictly monotone
B D: unique
mA: al
O Optimality: TA is instance optimal

Agenda

r=zBackground
B«PFagin’s algorithm
El@Threshold algorithm
Eka®-approximation
B<@NRA algorithm
Z£«@Combined algorithm

B-approximation

Y, is the last objectin ¥, 6 =7 /4(Y,)

A
) Guarantee

0t(y)=t(z)

: N

T »
I O

LT T T IPT T T T = Y,

Instance optimality of
B-approximation

O Assumptions
B t(): monotone

mD: all
® A: no wild guess
m0>1

O Optimality: 6-approximation is
instance optimal

Agenda

r=zBackground

B«PFagin’s algorithm

El@Threshold algorithm
E@B-approximation

@No-Random-Access algorithm
Z£«@Combined algorithm

Lower/upper bound of an object

O Define Lower bound LB() as the value of t() when
setting all unknown attributes to 0

O Define Upper bound UB() as the value of t() when
setting all unknown attributes to X,

LB(A) =t(0, 0, 0.8)

UB(A)=t(0.5, 0.2, 0.8)

i LI Il T T]
0.8

NRA algorithm

€0 IIII} I T.LB

Output set Y Other seen objects

10

NRA algorithm

OO o uB
COIIITO 11 o LB
(IO I11
t0) IIIIII[I
LITTTT] LTI g
Output set Y Other seen objects

Instance optimality of NRA

O Assumptions
B t(): monotone
m D: all
m A: no random access
O Optimality: NRA is instance optimal

Agenda

r=zBackground

B«PFagin’s algorithm
El@Threshold algorithm
E@B-approximation
B<@NRA algorithm

g @Combined algorithm

Combined algorithm (CA)

[4
: NI

For every |c;/cs| step, obtain all unknown attr.
of the object with the largest UB.

Instance optimality of CA

O Assumptions
m t(): strictly monotone in each argument
® D: unique
mA: al

O Optimality: CA is instance optimal

Agenda

r=zBackground
B«PFagin’s algorithm
El@Threshold algorithm
E@B-approximation
B<@NRA algorithm
Z£«@Combined algorithm

12

Conclusion

O TA is instance optimal in most cases
O 6-approx: early stop

O NRA: random access is not allowed
O CA: random access is costly

O Future work
B Tightly instance optimal
B More efficient structure of NRA
B Compare CA vs. TA

Discussion

O Object caching of TA

O Grades output of NRA

O Other metrics for algorithm optimality
O Assumptions on databases

Backup slides

13

I.0. in other fields

O Competitive analysis

O Approximation algorithms

O The mean of Monte Carlo estimation
(Dagum et al.)

O Operations on sorted sets (Demaine
et al.)

Memory overhead

O FA: need to remember t() for all
objects that have been seen.

O TA: only need to remember t() for
objects in Y.

O NRA: similar to FA.

Wild guess example

L1 LZ

1,1) @ni11)
(2,1) (2n,1)
(3,1) (2n—1,1)
(n+1,1) (n+1,1)
(n+3,0) (n—1,0)
(2n+1,0) (1,0)

14

Instance Optimality w/ wild guess

O Assumptions
B t(): min(x;x,)
mD: all
mA: al
O Optimality: no algorithms is instance
optimal

Wild guess example w/ 6

L1 L2

(1,) (2n+1,-)
(27) (an)
(n+1.3) (n+1,3)
(n+3,-) (n-1,")
@n+1,9)

Instance Optimality w/ wild guess

O Assumptions
B t(): min(x;x;)
® D: unique
mA: al
m0>1
O Optimality: no algorithms is instance
optimal

15

Costs for top-1 & top-2 for NRA

Instance optimality of CA (2)

O Assumptions

® t(): min()
® D: unique
mA: al

O Optimality: CA is instance optimal

Instance optimality dependency

O Assumptions
® t(): min()
m D: all
® A: no wild guess
O Optimality: no algorithm has instance
optimality independent of C,/Cq

16

