
1

Optimal aggregation
algorithms for middleware

CS856 Fall 2005 Presentation

Weihan Wang
w23wang@uwaterloo.ca

November 23, 2005

Optimal

About the paper

 Ronald Fagin, IBM Research
 Amnon Lotem, Maryland
 Moni Naor, Weizmann, Israel

 In ACM Symp. Principles of Database
Systems, 2001.

Agenda

Background
Fagin’s algorithm
Threshold algorithm
θ-approximation
NRA algorithm
Combined algorithm

2

Agenda

Background
Fagin’s algorithm
Threshold algorithm
θ-approximation
NRA algorithm
Combined algorithm

Motivation: top-k queries

Find a girl with
long hair, brown eyes,

and sweet voice

Top-1 query with 3 attributes

Motivation: top-k queries

Multimedia DB: “find 10 pictures that are
funny and large in size”

 Info. retrieval: “find 100 papers that are
most relevant to my research areas”

Data stream: “find 5 users with the largest
bandwidth usage”

Live examples:
 QBIC: wwwqbic.almaden.ibm.com
 Flickr: www.flickr.com
 WinFS for Windows Vista

3

WinFS for Windows Vista

Data model

.6.4.8E

.9.1.3D

…………

.4.9.1C

.3.3.5B

.7.2.1A
x3x2x1

.1A

.1C

.3D

.5B

.8E

.1D

.2A

.3B

.4E

.9C

.3B

.4C

.6E

.7A

.9D

L1 L2 L3

Data integration sys. (middleware)

......

......

......

......

Middleware

m data
Sources
(m=4)

Top-k results

4

Problem definition

Middleware

Top-k results

L1 L2 L3 L4

Sort by
attributes

Aggregation function:
t (x1, x2, x3, x4)

Sort by t()

Aggregation functions

 Can be max(), min(), avg(), …

x

t(x)

x

t(x)

monotone strictly monotone

Sorted and random access

Li

Middleware

1 2 3 4 N

.........

sorted

random

5

Agenda

Background
Fagin’s algorithm
Threshold algorithm
θ-approximation
NRA algorithm
Combined algorithm

Fagin’s algorithm (FA)
suppose m=3, k=2; objects are A, B, C, ..., Z

N E U C Q A Y K T L

J X BK SG IC W O

C H P Z D V M F R K

L1

L2

L3

sorted access

C

K

Stop when there are k objects, such that
each of them has been seen in each list.

Fagin’s algorithm (FA): step 2

For each object R has been seen:
Do random access to get all of its

attributes.
Calculate t(R).

Sort all these objects and output the
first k objects.

FA is correct, but not always optimal.

6

Agenda

Background
Fagin’s algorithm
Threshold algorithm
θ-approximation
NRA algorithm
Combined algorithm

Threshold algorithm (TA)
m=3, k=2

N

J

C

L1

L2

L3

Output set Y

t()

J C
t(J) > t(C) > t(N)

N

N

Threshold algorithm (TA)
m=3, k=2

N E

J X

C H

L1

L2

L3

Output set Y

t()

J CE J
t(E) > t(J)

7

Threshold algorithm (TA)
m=3, k=2

N E

J X

C H

U

K

P

C

G

Z

Q

S

D

A

B

V

Y

C

M

K

I

F

T

W

R

L1

L2

L3

Output set Y

t()

E JDI

!"t(D)

1
x

2
x

3
x

Threshold algorithm (TA)
m=3, k=2

N E

J X

C H

U

K

P

C

G

Z

Q

S

D

A

B

V

Y

C

M

K

I

F

T

W

R

L1

L2

L3

Stop when the grade of the last object in Y
is equal or larger than the threshold value.

Output set Y

Threshold value

),,t(321 xxx=!

t()

DI

Middleware cost

 In this paper, we use middleware cost
to measure optimality of an
algorithm.

 To answer a query on database D, an
algorithm A needs:
 s sorted accesses
 r random accesses

 The middleware cost of A on D is:

cost(A,D)=scS+rcR

8

Instance optimality

 A set of databases: D
 A set of (middleware) algorithms: A
 B A is instance optimality if:

cost(B,D) ≤ c·cost(A,D)+c’

for every A A and D D! !

!

c

c: optimality ratio

Instance optimality of TA

 Assumptions
 t(): monotone
 D: all
 A: no wild guess

 Optimality: TA is instance optimal,
with optimality ratio m+m(m-1)cR/cS

Instance optimality of TA (2)

 Assumptions
 t(): strictly monotone
 D: unique
 A: all

 Optimality: TA is instance optimal

9

Agenda

Background
Fagin’s algorithm
Threshold algorithm
θ-approximation
NRA algorithm
Combined algorithm

θ-approximation

Yk is the last object in Y,)/t(
k
Y!" #

1 time

θ

1
x

2
x

3
x

N E

J X

C H

U

K

P

C

G

Z

Q

S

D

A

B

V

Y

C

M

K

I

F

T

W

R
k
Y

),,t(321 xxx=!

)t()t(zy !"

Guarantee

Instance optimality of
θ-approximation

 Assumptions
 t(): monotone
 D: all
 A: no wild guess
 θ> 1

 Optimality: θ-approximation is
instance optimal

10

Agenda

Background
Fagin’s algorithm
Threshold algorithm
θ-approximation
No-Random-Access algorithm
Combined algorithm

Lower/upper bound of an object
 Define Lower bound LB() as the value of t() when

setting all unknown attributes to 0

 Define Upper bound UB() as the value of t() when
setting all unknown attributes to

i
x

A

0.5

0.2

0.3

0.8

L1

L2

L3

LB(A) =t(0, 0, 0.8)

UB(A)=t(0.5, 0.2, 0.8)

NRA algorithm

t()

Output set Y Other seen objects

......

UB

LB

11

NRA algorithm

t()

Output set Y Other seen objects

......

UB

LB

Instance optimality of NRA

 Assumptions
 t(): monotone
 D: all
 A: no random access

 Optimality: NRA is instance optimal

Agenda

Background
Fagin’s algorithm
Threshold algorithm
θ-approximation
NRA algorithm
Combined algorithm

12

Combined algorithm (CA)

......

For every step, obtain all unknown attr.
of the object with the largest UB.

! "SR
cc /

Instance optimality of CA

 Assumptions
 t(): strictly monotone in each argument
 D: unique
 A: all

 Optimality: CA is instance optimal

Agenda

Background
Fagin’s algorithm
Threshold algorithm
θ-approximation
NRA algorithm
Combined algorithm

13

Conclusion

 TA is instance optimal in most cases
 θ-approx: early stop
 NRA: random access is not allowed
 CA: random access is costly
 Future work

 Tightly instance optimal
 More efficient structure of NRA
 Compare CA vs. TA

Discussion

 Object caching of TA
 Grades output of NRA
 Other metrics for algorithm optimality
 Assumptions on databases

Backup slides

14

I.O. in other fields

 Competitive analysis
 Approximation algorithms
 The mean of Monte Carlo estimation

(Dagum et al.)
 Operations on sorted sets (Demaine

et al.)

Memory overhead

 FA: need to remember t() for all
objects that have been seen.

 TA: only need to remember t() for
objects in Y.

 NRA: similar to FA.

Wild guess example

15

Instance Optimality w/ wild guess

 Assumptions
 t(): min(x1,x2)
 D: all
 A: all

 Optimality: no algorithms is instance
optimal

Wild guess example w/ θ

Instance Optimality w/ wild guess

 Assumptions
 t(): min(x1,x2)
 D: unique
 A: all
 θ> 1

 Optimality: no algorithms is instance
optimal

16

Costs for top-1 & top-2 for NRA

Instance optimality of CA (2)

 Assumptions
 t(): min()
 D: unique
 A: all

 Optimality: CA is instance optimal

Instance optimality dependency

 Assumptions
 t(): min()
 D: all
 A: no wild guess

 Optimality: no algorithm has instance
optimality independent of CR/CS

