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Motivation: top-k queries

Find a girl with
long hair, brown eyes,

and sweet voice

Top-1 query with 3 attributes

Motivation: top-k queries

Multimedia DB: “find 10 pictures that are
funny and large in size”

 Info. retrieval: “find 100 papers that are
most relevant to my research areas”

Data stream: “find 5 users with the largest
bandwidth usage”

Live examples:
 QBIC: wwwqbic.almaden.ibm.com
 Flickr: www.flickr.com
 WinFS for Windows Vista
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WinFS for Windows Vista

Data model
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Problem definition

Middleware

Top-k results

L1 L2 L3 L4

Sort by
attributes

Aggregation function:
t (x1, x2, x3, x4)

Sort by t()

Aggregation functions

 Can be max(), min(), avg(), …
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Fagin’s algorithm (FA)
suppose m=3, k=2; objects are A, B, C, ..., Z

N E U C Q A Y K T L

J X BK SG IC W O

C H P Z D V M F R K

L1

L2

L3

sorted access

C

K

Stop when there are k objects, such that
each of them has been seen in each list.

Fagin’s algorithm (FA): step 2

For each object R has been seen:
Do random access to get all of its

attributes.
Calculate t(R).

Sort all these objects and output the
first k objects.

FA is correct, but not always optimal.
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Threshold algorithm (TA)
m=3, k=2
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m=3, k=2
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Threshold algorithm (TA)
m=3, k=2
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Threshold algorithm (TA)
m=3, k=2
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Stop when the grade of the last object in Y
is equal or larger than the threshold value.

Output set Y

Threshold value
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Middleware cost

 In this paper, we use middleware cost
to measure optimality of an
algorithm.

 To answer a query on database D, an
algorithm A needs:
 s sorted accesses
 r random accesses

 The middleware cost of A on D is:

cost(A,D)=scS+rcR
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Instance optimality

 A set of databases: D
 A set of (middleware) algorithms: A
 B   A is instance optimality if:

cost(B,D) ≤ c·cost(A,D)+c’

for every A    A  and  D    D! !

!

c

c: optimality ratio

Instance optimality of TA

 Assumptions
 t(): monotone
 D: all
 A: no wild guess

 Optimality: TA is instance optimal,
with optimality ratio m+m(m-1)cR/cS

Instance optimality of TA (2)

 Assumptions
 t(): strictly monotone
 D: unique
 A: all

 Optimality: TA is instance optimal
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θ-approximation
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Guarantee

Instance optimality of
θ-approximation

 Assumptions
 t(): monotone
 D: all
 A: no wild guess
 θ> 1

 Optimality: θ-approximation is
instance optimal
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Lower/upper bound of an object
 Define Lower bound LB() as the value of t() when

setting all unknown attributes to 0

 Define Upper bound UB() as the value of t() when
setting all unknown attributes to

i
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LB(A) =t(0, 0, 0.8)

UB(A)=t(0.5, 0.2, 0.8)

NRA algorithm
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NRA algorithm

t()

Output set Y Other seen objects

......

UB
 

LB

Instance optimality of NRA

 Assumptions
 t(): monotone
 D: all
 A: no random access

 Optimality: NRA is instance optimal
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Combined algorithm (CA)

......

For every              step, obtain all unknown attr.
of the object with the largest UB.

! "SR
cc /

Instance optimality of CA

 Assumptions
 t(): strictly monotone in each argument
 D: unique
 A: all

 Optimality: CA is instance optimal
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Conclusion

 TA is instance optimal in most cases
 θ-approx: early stop
 NRA: random access is not allowed
 CA: random access is costly
 Future work

 Tightly instance optimal
 More efficient structure of NRA
 Compare CA vs. TA

Discussion

 Object caching of TA
 Grades output of NRA
 Other metrics for algorithm optimality
 Assumptions on databases

Backup slides
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I.O. in other fields

 Competitive analysis
 Approximation algorithms
 The mean of Monte Carlo estimation

(Dagum et al.)
 Operations on sorted sets (Demaine

et al.)

Memory overhead

 FA: need to remember t() for all
objects that have been seen.

 TA: only need to remember t() for
objects in Y.

 NRA: similar to FA.

Wild guess example
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Instance Optimality w/ wild guess

 Assumptions
 t(): min(x1,x2)
 D: all
 A: all

 Optimality: no algorithms is instance
optimal

Wild guess example w/ θ

Instance Optimality w/ wild guess

 Assumptions
 t(): min(x1,x2)
 D: unique
 A: all
 θ> 1

 Optimality: no algorithms is instance
optimal
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Costs for top-1 & top-2 for NRA

Instance optimality of CA (2)

 Assumptions
 t(): min()
 D: unique
 A: all

 Optimality: CA is instance optimal

Instance optimality dependency

 Assumptions
 t(): min()
 D: all
 A: no wild guess

 Optimality: no algorithm has instance
optimality independent of CR/CS


