Adaptive ordering of pipelined stream Filters

S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom *SIGMOD 2004*

Presented by: Shimin Guo

Outline

- Introduction
- The Filter Ordering Problem
- The A-Greedy Algorithm
- The Sweep Algorithm
- The Independent Algorithm
- The LocalSwaps Algorithm
- Multiway Joins
- Experimental Evaluation
- Summary & Discussion

2

Introduction

- Streams processed by a set of commutative filters
- Overall processing costs depends on how the filters are ordered
- The best orderings are dependent on current stream and filter characteristics, which may change over time
- The selectivity of a filter depends on the filters before it
- Three-way tradeoff: convergence (C), run-time overhead (O), and speed of adaptivity (S)

The Filter Ordering Problem

- n commutative filters: $F_1, F_2, ..., F_n$ $f(\cdot)$: mapping from positions in the filters ordering to the indices of the filters at those positions
- O: an ordering $F_{f(1)}, F_{f(2)}, \dots, F_{f(n)}$
- d(i|j): conditional probability that $F_{f(i)}$ will drop a tuple e, given that e was not dropped by any of
- $F_{f(1)}, F_{f(2)}, \dots, F_{f(j)}$ t_i : expected time for F_i to process one tuple
- D_i : percentage of tuples that passed the first i-1 filters
- The goal: minimize $\sum_{i=1}^{n} t_{f(i)} D_i$

The A-Greedy Algorithm

- A greedy algorithm based on stable statistics:
 - cmt Choose the filter F_i with the highest $d(i|0)/t_i$ as the first filter.
 - ⊪atAnd so on.
- Greedy Invariant (GI):

$$\frac{d(i\,|\,i-1)}{t_{f(i)}} \geq \frac{d(j\,|\,i-1)}{t_{f(j)}},\ 1 \leq i \leq j \leq n$$

. Goal of A-Greedy: maintain an ordering that satisfies the GI in an online manner

The A-Greedy Algorithm

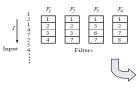
- Two logical components of A-Greedy:
 - · profiler: continuouly collects and maintains statistics about filter selectivities and processing
 - reoptimizer: detects and corrects violations of the GI in the current filter ordering
- Challenge faced by the profiler: there are $n2^{n-1}$ conditional selectivities for *n* filters
- It's impractical for the profiler to maintain online estimates of all these selectivities
- Solution: profile of recently dropped tuples

The A-Greedy Profiler

- Profile: a sliding window of profile tuples
- A profile tuple contains n boolean attributes $b_1, ..., b_n$ corresponding to the n filters
- Dropped tuples are sampled with some probability, called *drop-profiling probability*
- If a tuple e is chosen for profiling, it will be tested by all remaining filters
- A new profile tuple inserted into the profile window, where b_i =1 if F_i drops e and b_i =0 otherwise

7

The A-Greedy Profiler



 $\begin{bmatrix} r_1 & r_2 & r_3 & r_4 \\ a_1 & a_2 & a_3 & a_4 \end{bmatrix}$ Processing averages

The A-Greedy Reoptimizer

- The reoptimizer maintains an ordering O such that O satisfies the GI for statistics estimated from the profile window
- How does the reoptimizer make use of the profile to derive estimates of conditional selectivities?
- It incrementally maintains a *view* over the profile window

The A-Greedy Reoptimizer

- *View* over the profile window: $n \times n$ upper triangular matrix V
- V[i, j]: number of tuples in the profile window that were dropped by $F_{f(j)}$ but not dropped by

$$F_{f(1)}, F_{f(2)}, \dots, F_{f(i-1)}$$

The A-Greedy Reoptimizer

- V[i, j] is proportional to d(j|i-1)
- Greedy Invariant:

$$\frac{d(i \mid i-1)}{t_{f(i)}} \geq \frac{d(j \mid i-1)}{t_{f(j)}}, \ 1 \leq i \leq j \leq n$$

$$\frac{V[i,i]}{a_{f(i)}} \geq \frac{V[i,j]}{a_{f(j)}}, \ 1 \leq i \leq j \leq n$$

$$\frac{V[i,i]}{a_{f(i)}} \geq \alpha \frac{V[i,j]}{a_{f(j)}}, \ 1 \leq i \leq j \leq n$$

. /** Input: O violates the Greedy Invariant at position i */	
maxr = i;	
for $(r = i; r \le maxr; r = r + 1)$ {	
. /** Greedy Invariant holds at positions 1, , r − 1 and at	`
 * maxr + 1,,n. Compute V entries for row r */ 	
for $(c = r; c \le n; c = c + 1)$ V[r, c] = 0:	
v [r, c] = 0; for each profi le tuple (b, b ₂ ,, b _n) in the profi le window {	
/** Ignore tuples dropped by $F_{f(1)}$, $F_{f(2)}$,, $F_{f(r-1)}$ */	> rebuilding matrix view
0. if $(b_{f(1)} == 0 \text{ and } b_{f(2)} == 0 \text{ and } \cdots \text{ and } b_{f(r-1)} == 0)$	1
1. for $(c = r; c \le n; c = c + 1)$	
2. $if(b_{f(c)} == 1) V[r, c] = V[r, c] + 1;$	
3. }	,
 /** Find the column maxe with maximum V[r,maxe] */ 	
5. $maxc = r$:	
6. for $(c = r + 1; c \le n; c = c + 1)$)
7. if $(V[r, c]/a_{f(c)} > V[r, maxe]/a_{f(maxe)})$ {	
8. $maxc = c$;	
 if (maxe > maxr) maxr = maxe; 	
0. }	swapping filters
1. if $(r \neq maxc)$ {	1
 /** Current fi Iter F_{f (maxe)} becomes the new F_{f (r)}. We swap the fi Iters at positions maxe and r */ 	
 we swap the filters at positions maxe and r → for (k = 0; k ≤ r; k = k + 1) 	
 for (k = 0, k ≤ r, k = k + 1) Swap V[k, r] and V[k, maxel; } 	l .

Convergence Properties

THEOREM 4.1. When stream and filter characteristics are stable, the cost of a filter ordering satisfying the GI is at most four times the cost of the optimal filter ordering.

- Constant factor depends on number of filters, e.g., 2.35, 2.61, and 2.8 for 20, 100, and 200 filters, respectively
- Usually finds the optimal ordering in practice

13

Run-time Overhead

- Profile-tuple creation: needs additional n-i evaluations for a tuple dropped by $F_{f(i)}$. Creation frequency determined by drop-profiling probability
- Profile-window maintenance: insertion and deletion of profile tuples. Also needs to maintain running averages of filter processing times
- Matrix-view update: every update would cause access to up to n²/4 entries
- Violation detection: access to up to *n* entries
- Violation correction: up to *n-i* full scans of the profile window to correct a GI violation at position *i*

14

Speed of Adaptivity

- Any GI violation will be detected and corrected immediately
- Thus, A-Greedy is a very rapidly adapting algorithm

The A-Greedy Algorithm

- A-Greedy has good convergence properties and extremely fast adaptivity, but it imposes significant run-time overhead
- Can we sacrifice some of A-Greedy's convergence properties or adaptivity speed to reduce its run-time overhead?

The Sweep Algorithm

- Proceeds in stages
- During one stage, only checks for GI violations involving the filter at one specific position j
- Does not need to maintain the entire matrix view
- Only $b_{f(1)},...,b_{f(j)}$ are required in the profile window
- For each profiled tuple, needs to additionally evaluate F_{f(j)} only
 By rotating j over 2,...,n, eventually detects and corrects all GI violations

Colt to	uni pro	ofile	rre ed f	spo ilte	nding r
	Х		Х		
		v	v		

C, O, and S of Sweep

- Detects and corrects all GI violations
 - → same convergence properties as A-Greedy
- Reduced view and need for additional evaluations
 - → less overhead
- Only one filter is profiled in each stage
 - → slower adaptivity

The Independent Algorithm

- Assumes filters are independent
- Only needs to maintain estimates of unconditional selectivities

19

C, O, and S of Independent

- Convergence: dependent on whether assumption holds
 - if so, optimal
 - otherwise, can be O(n) times worse than GI orderings
- · Lower view maintenance overhead
- Fast adaptivity

20

The LocalSwaps Algorithm

- Monitors "local" violations only, i.e., violations involving adjacent filters
- Intuitively, LocalSwaps detects situations where a swap between adjacent filters in the current ordering would improve performance
- Only needs to maintain two diagonals of the view
- For each profiled tuple dropped by $F_{f(i)}$, only needs to additionally evaluate $F_{f(i+1)}$

Х	Х		
	Х	Х	
		Х	Х
			Х
L	ocal	Sw	aps

C, O, and S of LocalSwaps

- Convergence: path-dependent
 - Best case: converges to GI orderings
 - Worse case: can be O(n) times worse than GI orderings
 - May get stuck in local maxima
- Lower profiling and view-maintenance overhead
- Restricted to local moves → takes longer to converge

22

Comparison of the four algorithms

	A-Greedy	Sweep	Independent	LocalSwaps
С	Good	Good	Optimal if independence assumption holds, $O(n)$ worse in general	Path-dependent Best case: same as A-Greedy Worse case: $O(n)$ worse
0	High	Low	Low	Low
S	Fast	Slow	Fast	Slow

23

Multiway Joins

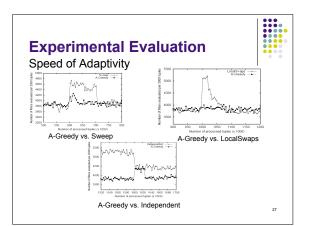
- MJoins maintain an ordering of $\{S_0, S_1, ..., S_{n-1}\}$ - $\{S_i\}$ for each stream S_i
- New tuples arriving from S_i is joined with other stream windows in that order
- Two-phase join algorithm
 - Drop-probing phase: the new tuple is used to probe all other windows in the specified order. If any window drops it, no further processing will be needed for it.
 - output-generation phase: if no window drops the tuple, proceeds as conventional MJoins
- Drop probing resembles pipelined filters
- A-Greedy and its variants can be used to determine the orderings

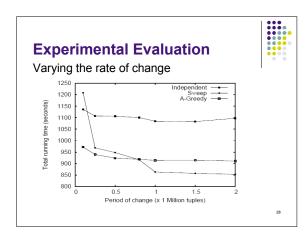
Multiway Joins

- Star Joins:
 - $\begin{tabular}{ll} {\bf Tuple arrives from S_0:} \\ {\bf straightforward} \end{tabular}$
 - Tuple arrives from S_i : join with S_0 first, then apply the two-phase join algorithm for each tuple in $s_i \bowtie S_0$
- Acyclic Joins
 - Join graph defines a partial order
 - Join orderings constrained by the partial order

25

Experimental Evaluation Convergence and overhead (a) Optimal, A A-Greedy, S Sweep, L LocalSwaps, I Ind. (b) Profile-tuple credition (c) Display of the processing (c) Display of the pro





Summary

- A-Greedy handles correlated filters
- A-Greedy has good convergence properties, fast adaptivity, but incurs significant run-time overhead
- Three variants of A-Greedy are proposed, each lying at a diffenrent points along the tradeoff spectrum among convergence, runtime overhead, and speed of adaptivity

29

Discussion

- Given that each of the algorithms has different utility in different settings, can we add another level of adaptivity that adaptively choose the algorithm that best fits the current setting?
- How in reality can correlation among filters affect query optimizers that assume independent filters?
- Is online reordering feasible for join operators that maintain internal states?
- How to choose the size for the profile window?