Adaptive ordering of
pipelined stream Filters

S. Babu, R. Motwani, K. Munagala, :::
I. Nishizawa, and J. Widom o0
SIGMOD 2004 b

Presented by: Shimin Guo

Outline

o Introduction

e The Filter Ordering Problem
e The A-Greedy Algorithm

e The Sweep Algorithm

e The Independent Algorithm
e The LocalSwaps Algorithm

e Multiway Joins

e Experimental Evaluation

e Summary & Discussion

Introduction

e Streams processed by a set of commutative filters

e Overall processing costs depends on how the filters
are ordered

e The best orderings are dependent on current stream
and filter characteristics, which may change over
time

e The selectivity of a filter depends on the filters
before it

e Three-way tradeoff: convergence (C), run-time
overhead (O), and speed of adaptivity (S)

The Filter Ordering Problem

e n commutative filters: F,, F,,..., F,

e f(): mapping from positions in the filters ordering to
the indices of the filters at those positions

O: anordering Fp,), Fyy),..., Fpy

d(ilj): conditional probability that /7, will drop a tuple
e, given that e was not dropped by any of

Faup Fraps-os Fry

¢, expected time for F, to process one tuple

D, : percentage of tuples that passed the first i-1

filters .
e The goal: minimize Et/mD,

The A-Greedy Algorithm

e A greedy algorithm based on stable statistics:

rarChoose the filter F; with the highest d(i|0)/z; as
the first filter.

=anAmong the remaining filters, choose the filter
F; with the highest d(j|1)/z; as the second filter.
=anAnd so on.

o Greedy Invariant (GI):

d(i\i—l))d(j\i—l)

,=sisj=n
t t

f(iy el
e Goal of A-Greedy: maintain an ordering that

satisfies the Gl in an online manner

The A-Greedy Algorithm

e Two logical components of A-Greedy:

profiler: continuouly collects and maintains
statistics about filter selectivities and processing
costs

reoptimizer: detects and corrects violations of the
Gl in the current filter ordering

e Challenge faced by the profiler: there are n2-!
conditional selectivities for x filters

e It's impractical for the profiler to maintain
online estimates of all these selectivities

e Solution: profile of recently dropped tuples

The A-Greedy Profiler

Profile: a sliding window of profile tuples

A profile tuple contains n boolean attributes b,,...,b
corresponding to the x filters

Dropped tuples are sampled with some probability,
called drop-profiling probability

If a tuple e is chosen for profiling, it will be tested by
all remaining filters

A new profile tuple inserted into the profile window,
where b=1 if F, drops e and b=0 otherwise

o0
(3Xd
o0
L[]
The A-Greedy Profiler
1
2
o]
7
2
Input 4 Filters 7 o B, b b,
: 2 o o 1 0
4 o 1 1 1
7 1 4] 0 0
2 0 0 1 0
5 1 1 [*] 1
F E E E 4 [0]t 1 1
Pfjﬁi};’:ﬁf“”’e Profile window
.
o0
o0
o0
L[]

The A-Greedy Reoptimizer

e The reoptimizer maintains an ordering O
such that O satisfies the Gl for statistics
estimated from the profile window

e How does the reoptimizer make use of the
profile to derive estimates of conditional
selectivities?

e |t incrementally maintains a view over the
profile window

The A-Greedy Reoptimizer

e View over the profile window: nxn upper
triangular matrix V'

e 171i, j]: number of tuples in the profile window
that were dropped by £, but not dropped by

Ff(l)’ Ff(2)""’ Ff(i-l)

O

2 [0oJoJ1To 5 5 B &
4 o111 42137153
7 [T [0 oo |:“> 2 1 [1
2 [o]Jo 1o 010
s [1 [o1 0
4 [0 111 Matrix view V

Profile window

The A-Greedy Reoptimizer

e 11i, j] is proportional to d (j|i-1)
e Greedy Invariant:
d@li-1) _d(li=D
t t/(/)
s
V[Z’I]EM, lsisjsn
Aray 9
J_L (to avoid thrashing)

Vil V)

>

,I=sisj=n
1)

<isj=sn

Ar)

The A-Greedy Reoptimizer

i Greedy Invariant at position i ©

r— Landat
pute V eutics for row 7 %

rebuilding matrix view

swapping filters

for (k= 0.k < 12
swap V{k, 7] and
Figure 5: Correcting a violation of the Greedy Invariant

Convergence Properties

THEOREM 4.1. When stream and filter characteristics are sta-

Dble, the cost of a filter ordering satisfving the GI is at most four

times the cost of the optimal filter ordering. O

e Constant factor depends on number of filters,
e.g., 2.35, 2.61, and 2.8 for 20, 100, and 200
filters, respectively

e Usually finds the optimal ordering in practice

Run-time Overhead

Profile-tuple creation: needs additional 7-i
evaluations for a tuple dropped by 7. Creation
frequency determined by drop-profiling probability
Profile-window maintenance: insertion and deletion
of profile tuples. Also needs to maintain running
averages of filter processing times

Matrix-view update: every update would cause
access to up to #%/4 entries

e Violation detection: access to up to n entries

Violation correction: up to »-i full scans of the profile
window to correct a Gl violation at position i

Speed of Adaptivity

e Any Gl violation will be detected and
corrected immediately

e Thus, A-Greedy is a very rapidly adapting
algorithm

The A-Greedy Algorithm

e A-Greedy has good convergence properties
and extremely fast adaptivity, but it imposes
significant run-time overhead

e Can we sacrifice some of A-Greedy’s

convergence properties or adaptivity speed
to reduce its run-time overhead?

The Sweep Algorithm

e Proceeds in stages
e During one stage, only checks for Gl
violations involving the filter at one
specific position j
e Does not need to maintain the entire CohlmnCOﬂ‘fefondmg
L to profiled filter
matrix view

° Only b/.(l),...,b/»u) are required in the e
profile window X

e For each profiled tuple, needs to Sweep
additionally evaluate F, only @

e By rotating j over 2,...,n, eventually
detects and corrects all Gl violations

C, O, and S of Sweep

e Detects and corrects all Gl violations
— same convergence properties as A-Greedy
e Reduced view and need for additional
evaluations
— less overhead

e Only one filter is profiled in each stage
— slower adaptivity

The Independent Algorithm

e Assumes filters are

independent
e Only needs to maintain R
estimates of unconditional
selectivities Independent
()

C, O, and S of Independent

e Convergence: dependent on whether
assumption holds
if so, optimal
otherwise, can be O(n) times worse than Gl
orderings

e Lower view maintenance overhead
e Fast adaptivity

The LocalSwaps Algorithm

e Monitors “local” violations only, i.e.,
violations involving adjacent filters

o Intuitively, LocalSwaps detects
situations where a swap between
adjacent filters in the current
ordering would improve performance

e Only needs to maintain two HEHE

diagonals of the view =
e For each profiled tuple dropped by Lmlg\‘ﬂ;
Fy,, only needs to additionally ©

evaluate F,,

C, O, and S of LocalSwaps

e Convergence: path-dependent
Best case: converges to Gl orderings

Worse case: can be O(n) times worse than Gl
orderings

May get stuck in local maxima
e Lower profiling and view-maintenance
overhead
e Restricted to local moves — takes longer to
converge

Comparison of the four

algorithms
A-Greedy | Sweep |Independent |LocalSwaps

C |Good Good | Optimal if inde- Path-dependent
pendence as- Best case: same
sumption holds, as A-Greedy
O(n) worse in Worse case: O(n)
general worse

O [High Low Low Low

S |Fast Slow |Fast Slow

Multiway Joins

e MJoins maintain an ordering of
{Sp> Sy»---» S, 1-{S,} for each stream S,

o New tuples arriving from S; is joined with other
stream windows in that order

e Two-phase join algorithm

Drop-probing phase: the new tuple is used to probe all
other windows in the specified order. If any window drops
it, no further processing will be needed for it

output-generation phase: if no window drops the tuple,
proceeds as conventional MJoins
e Drop probing resembles pipelined filters
e A-Greedy and its variants can be used to determine
the orderings

2

o0
(3Xd
o0
L[]
Multiway Joins
e Star Joins:
Tuple arrives from S;;:
straightforward
Tuple arrives from §; : join with S,
first, then apply the two-phase join
algorithm for each tuple in s, = S, %

e Acyclic Joins 91/\5.}
Join graph defines a partial order S,\/\S,
Join orderings constrained by the S0
partial order S5

o0
(3Xd
o0
L[]
Experimental Evaluation
Convergence and overhead

. 0 Opfimal, A A=Greedy, S Sweep, L LocalSwaps, I Ind.

@ 40{B Profile—tuple creation

o 35 M Tuple processing

Ew

é-zn

%m

E 10

2

° OASLI OASLI AS LI
n=3 n=9 n=15
Number of filters

o0
o0
o0
L[]

Experimental Evaluation
Speed of Adaptivity

A
\
el e o]

E T 3

s 0
Rurmbor o1 p o00)

A-Greedy vs. LocalSwaps

A-Greedy vs. Independent

Experimental Evaluation
Varying the rate of change

1250

Independent —e—

1200 Axiw\;euy —a
1150
1100
1050
1000

950

- . a
900 \ E

850 Tt

Total running time (seconds)

800
0 05 1 15 2
Period of change (x 1 Million tuples)

Summary

e A-Greedy handles correlated filters

e A-Greedy has good convergence properties,
fast adaptivity, but incurs significant run-time
overhead

e Three variants of A-Greedy are proposed,
each lying at a diffenrent points along the
tradeoff spectrum among convergence, run-
time overhead, and speed of adaptivity

Discussion

e Given that each of the algorithms has different utility
in different settings, can we add another level of
adaptivity that adaptively choose the algorithm that
best fits the current setting?

e How in reality can correlation among filters affect
query optimizers that assume independent filters?

e Is online reordering feasible for join operators that
maintain internal states?

e How to choose the size for the profile window?

10

