
1

Adaptive ordering of
pipelined stream Filters
S. Babu, R. Motwani, K. Munagala,
I. Nishizawa, and J. Widom
SIGMOD 2004

Presented by: Shimin Guo

2

Outline
 Introduction
 The Filter Ordering Problem
 The A-Greedy Algorithm
 The Sweep Algorithm
 The Independent Algorithm
 The LocalSwaps Algorithm
 Multiway Joins
 Experimental Evaluation
 Summary & Discussion

3

Introduction
 Streams processed by a set of commutative filters
 Overall processing costs depends on how the filters

are ordered
 The best orderings are dependent on current stream

and filter characteristics, which may change over
time

 The selectivity of a filter depends on the filters
before it

 Three-way tradeoff: convergence (C), run-time
overhead (O), and speed of adaptivity (S)

2

4

The Filter Ordering Problem
 n commutative filters: F1, F2,…, Fn
 f(·): mapping from positions in the filters ordering to

the indices of the filters at those positions
 O: an ordering Ff(1), Ff(2),…, Ff(n)
 d(i|j): conditional probability that Ff(i) will drop a tuple

e, given that e was not dropped by any of
Ff(1), Ff(2),…, Ff(j)

 ti: expected time for Fi to process one tuple
 Di : percentage of tuples that passed the first i-1

filters
 The goal: minimize ()

1

n

f i i

i

t D
=

!

5

The A-Greedy Algorithm
 A greedy algorithm based on stable statistics:

Choose the filter Fi with the highest d(i|0)/ti as
the first filter.

Among the remaining filters, choose the filter
Fj with the highest d(j|1)/tj as the second filter.

And so on.

 Greedy Invariant (GI):

() ()

(| 1) (| 1)
, 1

f i f j

d i i d j i
i j n

t t

! !
" # # #

 Goal of A-Greedy: maintain an ordering that
satisfies the GI in an online manner

6

The A-Greedy Algorithm
 Two logical components of A-Greedy:

 profiler: continuouly collects and maintains
statistics about filter selectivities and processing
costs

 reoptimizer: detects and corrects violations of the
GI in the current filter ordering

 Challenge faced by the profiler: there are n2n-1

conditional selectivities for n filters
 It’s impractical for the profiler to maintain

online estimates of all these selectivities
 Solution: profile of recently dropped tuples

3

7

The A-Greedy Profiler
 Profile: a sliding window of profile tuples
 A profile tuple contains n boolean attributes b1,…,bn

corresponding to the n filters
 Dropped tuples are sampled with some probability,

called drop-profiling probability
 If a tuple e is chosen for profiling, it will be tested by

all remaining filters
 A new profile tuple inserted into the profile window,

where bi=1 if Fi drops e and bi=0 otherwise

8

The A-Greedy Profiler

9

The A-Greedy Reoptimizer

 The reoptimizer maintains an ordering O
such that O satisfies the GI for statistics
estimated from the profile window

 How does the reoptimizer make use of the
profile to derive estimates of conditional
selectivities?

 It incrementally maintains a view over the
profile window

4

10

The A-Greedy Reoptimizer

 View over the profile window: n×n upper
triangular matrix V

 V[i, j]: number of tuples in the profile window
that were dropped by Ff (j) but not dropped by
Ff (1), Ff (2),…, Ff (i-1)

11

The A-Greedy Reoptimizer
 V[i, j] is proportional to d (j|i-1)
 Greedy Invariant:

() ()

(| 1) (| 1)
, 1

f i f j

d i i d j i
i j n

t t

! !
" # # #

() ()

[,] [,]
, 1

f i f j

V i i V i j
i j n

a a
! " " "

() ()

[,] [,]
, 1

f i f j

V i i V i j
i j n

a a
!" # # #

(to avoid thrashing)

12

The A-Greedy Reoptimizer

rebuilding matrix view

swapping filters

5

13

Convergence Properties

 Constant factor depends on number of filters,
e.g., 2.35, 2.61, and 2.8 for 20, 100, and 200
filters, respectively

 Usually finds the optimal ordering in practice

14

Run-time Overhead
 Profile-tuple creation: needs additional n-i

evaluations for a tuple dropped by Ff(i). Creation
frequency determined by drop-profiling probability

 Profile-window maintenance: insertion and deletion
of profile tuples. Also needs to maintain running
averages of filter processing times

 Matrix-view update: every update would cause
access to up to n2/4 entries

 Violation detection: access to up to n entries
 Violation correction: up to n-i full scans of the profile

window to correct a GI violation at position i

15

Speed of Adaptivity

 Any GI violation will be detected and
corrected immediately

 Thus, A-Greedy is a very rapidly adapting
algorithm

6

16

The A-Greedy Algorithm

 A-Greedy has good convergence properties
and extremely fast adaptivity, but it imposes
significant run-time overhead

 Can we sacrifice some of A-Greedy’s
convergence properties or adaptivity speed
to reduce its run-time overhead?

17

The Sweep Algorithm
 Proceeds in stages
 During one stage, only checks for GI

violations involving the filter at one
specific position j

 Does not need to maintain the entire
matrix view

 Only bf (1),…,bf (j) are required in the
profile window

 For each profiled tuple, needs to
additionally evaluate Ff (j) only

 By rotating j over 2,…,n, eventually
detects and corrects all GI violations

18

C, O, and S of Sweep
 Detects and corrects all GI violations

 → same convergence properties as A-Greedy
 Reduced view and need for additional

evaluations
 → less overhead

 Only one filter is profiled in each stage
 → slower adaptivity

7

19

The Independent Algorithm

 Assumes filters are
independent

 Only needs to maintain
estimates of unconditional
selectivities

20

C, O, and S of Independent

 Convergence: dependent on whether
assumption holds
 if so, optimal
 otherwise, can be O(n) times worse than GI

orderings
 Lower view maintenance overhead
 Fast adaptivity

21

The LocalSwaps Algorithm
 Monitors “local” violations only, i.e.,

violations involving adjacent filters
 Intuitively, LocalSwaps detects

situations where a swap between
adjacent filters in the current
ordering would improve performance

 Only needs to maintain two
diagonals of the view

 For each profiled tuple dropped by
Ff(i), only needs to additionally
evaluate Ff(i+1)

8

22

C, O, and S of LocalSwaps

 Convergence: path-dependent
 Best case: converges to GI orderings
 Worse case: can be O(n) times worse than GI

orderings
 May get stuck in local maxima

 Lower profiling and view-maintenance
overhead

 Restricted to local moves → takes longer to
converge

23

Comparison of the four
algorithms

SlowFastSlowFastS

LowLowLowHighO

Path-dependent
Best case: same
as A-Greedy
Worse case: O(n)
worse

Optimal if inde-
pendence as-
sumption holds,
O(n) worse in
general

GoodGoodC

LocalSwapsIndependentSweepA-Greedy

24

Multiway Joins
 MJoins maintain an ordering of

{S0, S1,…, Sn-1}-{Si} for each stream Si
 New tuples arriving from Si is joined with other

stream windows in that order
 Two-phase join algorithm

 Drop-probing phase: the new tuple is used to probe all
other windows in the specified order. If any window drops
it, no further processing will be needed for it

 output-generation phase: if no window drops the tuple,
proceeds as conventional MJoins

 Drop probing resembles pipelined filters
 A-Greedy and its variants can be used to determine

the orderings

9

25

Multiway Joins
 Star Joins:

 Tuple arrives from S0:
straightforward

 Tuple arrives from Si : join with S0
first, then apply the two-phase join
algorithm for each tuple in si S0

 Acyclic Joins
 Join graph defines a partial order
 Join orderings constrained by the

partial order

26

Experimental Evaluation
Convergence and overhead

27

Experimental Evaluation
Speed of Adaptivity

A-Greedy vs. Sweep A-Greedy vs. LocalSwaps

A-Greedy vs. Independent

10

28

Experimental Evaluation
Varying the rate of change

29

Summary

 A-Greedy handles correlated filters
 A-Greedy has good convergence properties,

fast adaptivity, but incurs significant run-time
overhead

 Three variants of A-Greedy are proposed,
each lying at a diffenrent points along the
tradeoff spectrum among convergence, run-
time overhead, and speed of adaptivity

30

Discussion
 Given that each of the algorithms has different utility

in different settings, can we add another level of
adaptivity that adaptively choose the algorithm that
best fits the current setting?

 How in reality can correlation among filters affect
query optimizers that assume independent filters?

 Is online reordering feasible for join operators that
maintain internal states?

 How to choose the size for the profile window?

