# Adaptive ordering of pipelined stream Filters

S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom *SIGMOD 2004* 



Presented by: Shimin Guo

### **Outline**

- Introduction
- The Filter Ordering Problem
- The A-Greedy Algorithm
- The Sweep Algorithm
- The Independent Algorithm
- The LocalSwaps Algorithm
- Multiway Joins
- Experimental Evaluation
- Summary & Discussion

### 2

### Introduction



- Streams processed by a set of commutative filters
- Overall processing costs depends on how the filters are ordered
- The best orderings are dependent on current stream and filter characteristics, which may change over time
- The selectivity of a filter depends on the filters before it
- Three-way tradeoff: convergence (C), run-time overhead (O), and speed of adaptivity (S)

### **The Filter Ordering Problem**



- n commutative filters:  $F_1, F_2, ..., F_n$   $f(\cdot)$ : mapping from positions in the filters ordering to the indices of the filters at those positions
- O: an ordering  $F_{f(1)}, F_{f(2)}, \dots, F_{f(n)}$
- d(i|j): conditional probability that  $F_{f(i)}$  will drop a tuple e, given that e was not dropped by any of
- $F_{f(1)}, F_{f(2)}, \dots, F_{f(j)}$   $t_i$ : expected time for  $F_i$  to process one tuple
- $D_i$ : percentage of tuples that passed the first i-1 filters
- The goal: minimize  $\sum_{i=1}^{n} t_{f(i)} D_i$

The A-Greedy Algorithm



- A greedy algorithm based on stable statistics:
  - cmt Choose the filter  $F_i$  with the highest  $d(i|0)/t_i$  as the first filter.
  - ⊪atAnd so on.
- Greedy Invariant (GI):

$$\frac{d(i\,|\,i-1)}{t_{f(i)}} \geq \frac{d(j\,|\,i-1)}{t_{f(j)}},\ 1 \leq i \leq j \leq n$$

. Goal of A-Greedy: maintain an ordering that satisfies the GI in an online manner

### The A-Greedy Algorithm



- Two logical components of A-Greedy:
  - · profiler: continuouly collects and maintains statistics about filter selectivities and processing
  - reoptimizer: detects and corrects violations of the GI in the current filter ordering
- Challenge faced by the profiler: there are  $n2^{n-1}$ conditional selectivities for *n* filters
- It's impractical for the profiler to maintain online estimates of all these selectivities
- Solution: profile of recently dropped tuples

### The A-Greedy Profiler



- Profile: a sliding window of profile tuples
- A profile tuple contains n boolean attributes  $b_1, ..., b_n$  corresponding to the n filters
- Dropped tuples are sampled with some probability, called *drop-profiling probability*
- If a tuple e is chosen for profiling, it will be tested by all remaining filters
- A new profile tuple inserted into the profile window, where  $b_i$ =1 if  $F_i$  drops e and  $b_i$ =0 otherwise

7

### The A-Greedy Profiler





 $\begin{bmatrix} r_1 & r_2 & r_3 & r_4 \\ a_1 & a_2 & a_3 & a_4 \end{bmatrix}$  Processing averages



## The A-Greedy Reoptimizer



- The reoptimizer maintains an ordering O such that O satisfies the GI for statistics estimated from the profile window
- How does the reoptimizer make use of the profile to derive estimates of conditional selectivities?
- It incrementally maintains a *view* over the profile window

### The A-Greedy Reoptimizer



- *View* over the profile window:  $n \times n$  upper triangular matrix V
- V[i, j]: number of tuples in the profile window that were dropped by  $F_{f(j)}$  but not dropped by

$$F_{f(1)}, F_{f(2)}, \dots, F_{f(i-1)}$$







### The A-Greedy Reoptimizer



- V[i, j] is proportional to d(j|i-1)
- Greedy Invariant:

$$\frac{d(i \mid i-1)}{t_{f(i)}} \geq \frac{d(j \mid i-1)}{t_{f(j)}}, \ 1 \leq i \leq j \leq n$$

$$\frac{V[i,i]}{a_{f(i)}} \geq \frac{V[i,j]}{a_{f(j)}}, \ 1 \leq i \leq j \leq n$$

$$\frac{V[i,i]}{a_{f(i)}} \geq \alpha \frac{V[i,j]}{a_{f(j)}}, \ 1 \leq i \leq j \leq n$$



| . /** Input: O violates the Greedy Invariant at position i */                                                                                            |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| maxr = i;                                                                                                                                                |                          |
| for $(r = i; r \le maxr; r = r + 1)$ {                                                                                                                   |                          |
| . /** Greedy Invariant holds at positions 1, , r − 1 and at                                                                                              | `                        |
| <ul> <li>* maxr + 1,,n. Compute V entries for row r */</li> </ul>                                                                                        |                          |
| for $(c = r; c \le n; c = c + 1)$<br>V[r, c] = 0:                                                                                                        |                          |
| v [r, c] = 0; for each profi le tuple (b, b <sub>2</sub> ,, b <sub>n</sub> ) in the profi le window {                                                    |                          |
| /** Ignore tuples dropped by $F_{f(1)}$ , $F_{f(2)}$ ,, $F_{f(r-1)}$ */                                                                                  | > rebuilding matrix view |
| 0. if $(b_{f(1)} == 0 \text{ and } b_{f(2)} == 0 \text{ and } \cdots \text{ and } b_{f(r-1)} == 0)$                                                      | 1                        |
| 1. for $(c = r; c \le n; c = c + 1)$                                                                                                                     |                          |
| 2. $if(b_{f(c)} == 1) V[r, c] = V[r, c] + 1;$                                                                                                            |                          |
| 3. }                                                                                                                                                     | ,                        |
| <ol> <li>/** Find the column maxe with maximum V[r,maxe] */</li> </ol>                                                                                   |                          |
| 5. $maxc = r$ :                                                                                                                                          |                          |
| 6. for $(c = r + 1; c \le n; c = c + 1)$                                                                                                                 | )                        |
| 7. if $(V[r, c]/a_{f(c)} > V[r, maxe]/a_{f(maxe)})$ {                                                                                                    |                          |
| 8. $maxc = c$ ;                                                                                                                                          |                          |
| <ol> <li>if (maxe &gt; maxr) maxr = maxe;</li> </ol>                                                                                                     |                          |
| 0. }                                                                                                                                                     | swapping filters         |
| 1. if $(r \neq maxc)$ {                                                                                                                                  | 1                        |
| <ol> <li>/** Current fi Iter F<sub>f (maxe)</sub> becomes the new F<sub>f (r)</sub>.</li> <li>We swap the fi Iters at positions maxe and r */</li> </ol> |                          |
| <ol> <li>we swap the filters at positions maxe and r →</li> <li>for (k = 0; k ≤ r; k = k + 1)</li> </ol>                                                 |                          |
| <ol> <li>for (k = 0, k ≤ r, k = k + 1)</li> <li>Swap V[k, r] and V[k, maxel; }</li> </ol>                                                                | l .                      |

### **Convergence Properties**



THEOREM 4.1. When stream and filter characteristics are stable, the cost of a filter ordering satisfying the GI is at most four times the cost of the optimal filter ordering.

- Constant factor depends on number of filters, e.g., 2.35, 2.61, and 2.8 for 20, 100, and 200 filters, respectively
- Usually finds the optimal ordering in practice

13

### **Run-time Overhead**



- Profile-tuple creation: needs additional n-i evaluations for a tuple dropped by  $F_{f(i)}$ . Creation frequency determined by drop-profiling probability
- Profile-window maintenance: insertion and deletion of profile tuples. Also needs to maintain running averages of filter processing times
- Matrix-view update: every update would cause access to up to n<sup>2</sup>/4 entries
- Violation detection: access to up to *n* entries
- Violation correction: up to *n-i* full scans of the profile window to correct a GI violation at position *i*

14

### **Speed of Adaptivity**



- Any GI violation will be detected and corrected immediately
- Thus, A-Greedy is a very rapidly adapting algorithm

### The A-Greedy Algorithm



- A-Greedy has good convergence properties and extremely fast adaptivity, but it imposes significant run-time overhead
- Can we sacrifice some of A-Greedy's convergence properties or adaptivity speed to reduce its run-time overhead?

### The Sweep Algorithm



- Proceeds in stages
- During one stage, only checks for GI violations involving the filter at one specific position j
- Does not need to maintain the entire matrix view
- Only  $b_{f(1)},...,b_{f(j)}$  are required in the profile window
- For each profiled tuple, needs to additionally evaluate F<sub>f(j)</sub> only
  By rotating j over 2,...,n, eventually detects and corrects all GI violations

| Colt<br>to | uni<br>pro | ofile | rre<br>ed f | spo<br>ilte | nding<br>r |
|------------|------------|-------|-------------|-------------|------------|
|            | Х          |       | Х           |             |            |
|            |            | v     | v           |             |            |

### C, O, and S of Sweep



- Detects and corrects all GI violations
  - → same convergence properties as A-Greedy
- Reduced view and need for additional evaluations
  - → less overhead
- Only one filter is profiled in each stage
  - → slower adaptivity

### The Independent Algorithm

- Assumes filters are independent
- Only needs to maintain estimates of unconditional selectivities



19

### C, O, and S of Independent



- Convergence: dependent on whether assumption holds
  - if so, optimal
  - otherwise, can be O(n) times worse than GI orderings
- · Lower view maintenance overhead
- Fast adaptivity

20

### The LocalSwaps Algorithm



- Monitors "local" violations only, i.e., violations involving adjacent filters
- Intuitively, LocalSwaps detects situations where a swap between adjacent filters in the current ordering would improve performance
- Only needs to maintain two diagonals of the view
- For each profiled tuple dropped by  $F_{f(i)}$ , only needs to additionally evaluate  $F_{f(i+1)}$

| Х | Х    |    |     |
|---|------|----|-----|
|   | Х    | Х  |     |
|   |      | Х  | Х   |
|   |      |    | Х   |
| L | ocal | Sw | aps |

### C, O, and S of LocalSwaps



- Convergence: path-dependent
  - Best case: converges to GI orderings
  - Worse case: can be O(n) times worse than GI orderings
  - May get stuck in local maxima
- Lower profiling and view-maintenance overhead
- Restricted to local moves → takes longer to converge

22

# Comparison of the four algorithms



|   | A-Greedy | Sweep | Independent                                                       | LocalSwaps                                                          |
|---|----------|-------|-------------------------------------------------------------------|---------------------------------------------------------------------|
| С | Good     | Good  | Optimal if independence assumption holds, $O(n)$ worse in general | Path-dependent Best case: same as A-Greedy Worse case: $O(n)$ worse |
| 0 | High     | Low   | Low                                                               | Low                                                                 |
| S | Fast     | Slow  | Fast                                                              | Slow                                                                |

23

### **Multiway Joins**



- MJoins maintain an ordering of  $\{S_0, S_1, ..., S_{n-1}\}$  - $\{S_i\}$  for each stream  $S_i$
- New tuples arriving from  $S_i$  is joined with other stream windows in that order
- Two-phase join algorithm
  - Drop-probing phase: the new tuple is used to probe all other windows in the specified order. If any window drops it, no further processing will be needed for it.
  - output-generation phase: if no window drops the tuple, proceeds as conventional MJoins
- Drop probing resembles pipelined filters
- A-Greedy and its variants can be used to determine the orderings

# **Multiway Joins**



- Star Joins:
  - $\begin{tabular}{ll} {\bf Tuple arrives from $S_0$:} \\ {\bf straightforward} \end{tabular}$
  - Tuple arrives from  $S_i$ : join with  $S_0$  first, then apply the two-phase join algorithm for each tuple in  $s_i \bowtie S_0$
- Acyclic Joins
  - Join graph defines a partial order
  - Join orderings constrained by the partial order



25

# Experimental Evaluation Convergence and overhead (a) Optimal, A A-Greedy, S Sweep, L LocalSwaps, I Ind. (b) Profile-tuple credition (c) Display of the processing (c) Display of the pro





### **Summary**



- A-Greedy handles correlated filters
- A-Greedy has good convergence properties, fast adaptivity, but incurs significant run-time overhead
- Three variants of A-Greedy are proposed, each lying at a diffenrent points along the tradeoff spectrum among convergence, runtime overhead, and speed of adaptivity

29

### **Discussion**



- Given that each of the algorithms has different utility in different settings, can we add another level of adaptivity that adaptively choose the algorithm that best fits the current setting?
- How in reality can correlation among filters affect query optimizers that assume independent filters?
- Is online reordering feasible for join operators that maintain internal states?
- How to choose the size for the profile window?