Web Data Management -Some Issues

Properties of Web Data

- Lack of a schema
 - Data is at best "semi-structured"
 - Missing data, additional attributes, "similar" data but not identical
- Volatility
 - Changes frequently
 - May conform to one schema now, but not later
- Scale
 - Does it make sense to talk about a schema for Web?
 - How do you capture "everything"?
- Querying difficulty
 - What is the user language?
 - What are the primitives?
 - Aren't search engines or metasearch engines sufficient?

Web Data Management

Outline

- Distribution Models
- Modeling Issues
- Web Data Integration
- Web Querying
- Web Caching

Web Data Management

Data Delivery on the Internet

- Properties of information supply
 - It is very large in volume
 - It is highly heterogeneous
 - May not have a properly defined schema
 - Data available from too many devices and in streaming fashion
 - Data stream systems
- Properties of information consumption
 - It is data intensive
 - Use of large data sets is common
 - It requires access to diverse data sources
 - Existing databases and/or repositories must somehow be "glued" together
 - Application integration

Web Data Management

Data Delivery Alternatives

Web Data Modeling

- Can't depend on a strict schema to structure the data
- Data are self-descriptive {name: {first:"Tamer", last: "Ozsu"}, institution: "University of Waterloo", salary: 300000}
- Usually represented as an edge-labeled graph
 XML can also be modeled this way

Web Data Management

Web Data Integration

- What is being integrated?
- Integration or interoperation?
- More flexible architectures
 - Barriers to joining and leaving federations should be minimum
 - Participants should be able to maintain their own environments as much as possible
 - Application as well as data integration
- Role of XML
 - "Data model"
 - Exchange format
- Flexible operation
 - Ability to deal with data inconsistencies as well as schema inconsistencies
 - Systems should be able to deal with failures and incomplete federations

Web Data Management

Approaches to Web Querying

- Search engines and metasearchers
 - Keyword-based
 - Category-based
- Information integration
- Semistructured data querying
- Special Web query languages
- Learning-based systems
- Question-Answering

Web Data Management

Information Integration

- Basic principle: Integrate part of the Web data into a database as either virtual or materialized views and query over these views
- Example systems:
 - Information Manifold [Levy et al., 1996]
 - ➡ Araneus [Atzeni et al., 1997]
 - WSQ/DSQ [Goldman & Widom, 2000]

Web Data Management

9

Evaluation

- Advantages
 - Well-understood
 - > Well-known database techniques can be brought to bear
- Disadvantages
 - Not querying the *entire* Web; more querying some data on the Web
 - Does not scale well; integration methodology should be low overhead

Semistructured Data Querying

- Basic principle: Consider Web as a collection of semistructured data and use those techniques
- Uses an edge-labeled graph model of data
- Example systems & languages:
 - ➡ Lore/Lorel [Abiteboul et al., 1997]
 - → UnQL [Buneman et al., 1996]
 - StruQL [Fernandez et al., 1997]

11

Lorel Example

Evaluation

Advantages

- Simple and flexible
- Fits the natural link structure of Web pages

Disadvantages

- Data model too simple (no record construct or ordered lists)
- Graph can become very complicated
 - Aggregation and typing combined
 - DataGuides
- No differentiation between connection between documents and subpart relationships

Web Data Management

13

Web Query Languages

- Basic principle: Take into account the documents' content and internal structure as well as external links
- The graph structures are more complex
- Examples
 - WebSQL [Mendelzon et al., 1996]
 - W3QS [Kanopnicki & Shmueli, 1995]
 - WebLog [Lakshmanan et al., 1993]
 - WebOQL [Arocena & Mendelzon, 1999]
 - StruQL [Fernandez et al., 1997]

WebOQL Example

Find, in the csPapers database, all the papers authored by "Smith" and extract their title and URL of the full version of the papers.

```
select [y.Title, y'.Url]
from x in csPapers, y in x'
where y.Authors ~ `Smith''
Web Data Management 15
```

Evaluation

- Advantages
 - More powerful data model Hypertree
 - Ordered edge-labeled tree
 - Internal and external arcs
 - Language can exploit different arc types (structure of the Web pages can be accessed)
 - ➡ Languages can construct new complex structures.

Disadvantages

- You still need to know the graph structure
- Complexity issue

Web Data Management

Learning-Based Approaches

- Basic principle: Learn what the user's intent is from the query and find the data
- Some based on NLP, others metasearch systems; agent technology and mining-based
- Examples:
 - InfoSpider [Menczer & Below, 1998]
 - WebWatcher [Joachims & Freitag, 1997]
 - 🗯 Fab [Balabanovic, 1997]
 - Syskill & Webert [Pazzani et al., 1996]
 - WebSifter II [Kerschberg et al., 2001]

Web Data Management

17

Question-Answer Approach

- Basic principle: Web pages that could contain the answer to the user query are retrieved and the answer *extracted* from them.
- NLP and information extraction techniques
- Used within IR in a closed corpus; extensions to Web
- Examples
 - QASM [Radev et al., 2001]
 - Ask Jeeves
 - Mulder [Kwok et al, 2001]
 - 🗯 WebQA [Lam & Özsu, 2002]

Web Data Management

WebQA Objectives

- Query the entire Web
- Return actual answers, not URLs
- Scale with additional data sources
- Accept fuzziness (precision/recall)
- Do not depend on existence of a schema

Web Data Management

Interaction with Web Server

Web Data Management

Query Parser

21

Web Data Management

Summary Retriever

Answer Extraction

Web Data Management

Evaluation

- Using TREC-9
 - List of 693 questions and a list of documents
 - Answers should be 50-byte or 250-byte passage, not exact answers
 - Ranked score between 0 (worst) and 1 (best)
 - Score = 1/n where n is the rank of the correct answer

Two measures

- Accuracy
- Efficiency

Web Data Management

Experiment 1

Run TREC-9 queries directly against the search engines

Web Data Management

Experiment 2

 Run TREC-9 queries through WebQA; use CIA Fact Book 2001 as secondary

Web Data Management

Experiment 3

Run TREC-9 queries using best combination

Web Data Management

WebQA Performance

Web Data Management

Web Caching

- Storing objects at places through which a users request passes.
 - browser cache, proxy cache, server cache
- Merits of Web caching:
 - reduces network traffic
 - reduces client latency
 - reduces server load
- Caching architectures
 - With respect to location
 - Hierarchical, distributed
- Cache consistency issues
 - Heak cache consistency algorithms
 - Strong cache consistency algorithms

Web Data Management

29

Classification

	Client- Validation	Server Invalidation	C/S Interaction
Strong	Polling- every-time	Invalidation	Lease
Weak	TTL,PCV	PSI	N/A

Why Strong Consistency ? Motivating Examples

- Online Shopping Store
- Travel Tickets Reservation
- Stock Quotes
- Online Auction

Web Data Management