
Paper presentation

"Middle-tier Database Caching for
e-Business"

Presenter: Yiwen Huang

Outline

Introduction & background
Design and implementation
Evaluation methodology
Experimental Results
Conclusion
Q & A

Introduction

Problem description:
increase performance of multi-tier web-based
applications

What is multi-tier configuration?
the web server, web application server and the databse
server resides on different machines

Why using multi-tier configuration?
scalability:

workload balancing
availability:

fail over support

Introduction (cont'd)

Problems in multi-tier configuration:
Back end database becomes the performance
bottleneck
Back end databse is also a single point of failure

Solution:
middle-tier database cache

Introduction (cont'd)

Introduction (cont'd)

Different types of solutions
special purpose solutions

eg. eBay
general-purpose industrial strength DBMS
solutions

used in this paper
the Database Cache of Oracle's 9i IAS
TimesTen's Front-tier

Background

e-Commerce application requirements
reliability
scalability
manageability

e-Commerce application characteristics
mostly OLTP-type queries
table accesses are highly skewed on a few
read-dominant tables
exist a clear separation between write-dominant tables
and read-dominant tables

Background (cont'd)

Rationale behind choosing a
general-purpose industrial strength DBMS

provide transactional support, multiple consistency
levels, and efficient recovery services
provide a variety of tools for application development
is transparent to the application, no change required in
the application code

Background (cont'd)

Rationale behind choosing DB2
leveraging existing DB2 federated (DataJoiner), and
DataPropagator features

to provide query routing and data replication functions
needed in the cache

be able to effectively process distribute queries
the query optimizer to decide what portion of the query
should be processed in the front end and what portion is
in the back end

reuse of existing technology

Background (cont'd)

DB2 federated feature:
allow access to remote data through a single federated DB2
database
federator identifies the local database, which accepts user
queries
node identifies a remote host
server identifies a remote database
nickname identifies a table or view in the remote database
the federator translates a user query over a local "alias" for
remote data into a distributed query to remote data sources

Background (cont'd)

DB2 DataPropagator feature
tools for asynchronous data replication for relational databases
used in conjunction with DataJoiner, can support
non-relational data replication
consists of three independent programs:

a data change capture program
an update apply program
an administration program (contains control tables)

Uses setup replication requests through subscriptions:
specify which tables to replicate
specify frequency of update propagation
specify min. size of each data transfer

Design of DBCache

Design Requirements
there should be no change in the application code, and the
underlying database schema

DBCache is transparent to the application
DBCache is able to understand any SQL statements the
back end database can handle

DBCache should support reasonable update semantics
relaxed condition due to e-Commerce application
characteristics

high tolerance for slightly out-of-date data

Design of DBCache (cont'd)

Caching Scheme
full table level caching

only need schema information
supports arbitrary queries on cached tables
OLTP-type queries does not need complex intermediate
result caching

Update Scheme
all update actions (UDI queries) are processed at back end
database
change are propagated back to the DBCache by the DPropR
program

DBCache Implementation

Cache Initialization: DBCacheInit tool
purpose: automatically create the database schema for a
cache database and initialize it
Steps:

gather back end database information
choose cacheable table (provided a-priori)
create cache database
load initial data and set up replication subscription

DBCache Implementation (cont'd)

DBCache Mode
use DBMS instance level for easy implementation
support only one remote server per DBCache instance

Auto-passthru
decides where to route the query, to the DBCache,
to the back end database, or to both places
built on top of DB2's existing "set passthru"
mechanism

DBCache Implementation (cont'd)

Auto-passthru (cont'd)
query executed at the back end database if:

it is a UDI-type query
application need to access most up-to-date data

indicated by a special register: REFRESH-AGE
any nicknames in the query

handled by DB2 federated feature
DDL (Data Definition Language) statements

query executed at the DBCache if
it is a read-only query involves only cached tables

handled by DB2 federated feature
it is a query targeted to tables in DBCache

e.g. DPropR's apply program
achieved by "set passthru local" statement

Evaluation Methodology

Middle-of-the-road approach
real e-commerce applications (both sofewere
andhardware) to build the test environment
use an e-commerce benchmark to simulate
workload

WCS: an integrated e-commerce solution
SilkPerformer: load and performance testing tool
ECDW benchmark: measures web applications
and web transactions

Evaluation Methodology (cont'd)

Experimental results
Workload characteristics study

short query execution time
highly skewed table access
clear separation of read-dominant and write-dominant
tables

Most experiments are done on browsing-only
scenario

browsing represent the majority of the total workload
browsing follow the same pattern as the regular
shopping scenario

Experimental results (cont'd)

Overhead of adding a
front end cache

insignificant when the
server is fully loaded

Server workload sharing
DBCache outperforms when
server is fully loaded

Experimental results (cont'd)

Update propagation cost
insignificant at front end
when the server is fully
loaded
20% overhead cost at back
end when the server is fully
loaded

Web application server
clustering

scale up throughput with
the help of DBCache

Conclusion

Solve the performance problem in
e-Business

scale up back end database
Present the prototype implementation of a
middle-tier database cache

re-use of existing technology
is able to handle distributed query

Conclusion (cont'd)

How does this paper fit into the big picture of
web caching?

there are two groups of latency in web-based
application

network latency
server latency

Middle-tier database caching improves on
cross-tier communication and interaction
bottleneck in server latency

A slightly different version of the paper can be found here:

http://www.almaden.ibm.com
/u/mohan/Middle-tier%20Database%20Caching%20for%20e-Business.pdf

This version contains more details about the "auto-passthru" mechanism in
the DBCache prototype

