
1

Event Matching in Content-based 
Publish/Subscribe Systems

Milenko Petrovic

Outline

Motivation
Problem Definition
Solutions
Evaluation
Conclusions



2

Motivation
Web is big, time is short (“expensive”)
How to get relevant information quickly? 
Content-based Publish/Subscribe Systems

Multiple event schemas
Can do “query” on event content
Can query future data

IBM P/S System @ Wimbledon 2002
Real-time stats to 230,000 Internet users
Does not scale to millions of users or events

Specifically…

Given an event e and a set of subscriptions S 
determine all subscriptions in S that are 
matched by e.
Solution classification:

Tree-based: Gryphon, Gough et. al.
Predicate-based: counting, Hanson et. al., 
propagation, Fabret et. al.

Best results so far – Fabret et. al.



3

Event Matching

Creating Clusters

When: offline (static), online (dynamic)
How: quantify the cost of matching

Time = retrieving the indexes +
hashing cost for relevant hash tables +
checking the relevant clusters

Space = hashing structures + 
subscription clusters



4

Offline Algorithm

Greedy algorithm
Initial set of clusters = subscriptions 
grouped by longest common 
conjunction of equality predicates
Select clusters from the initial set that 
minimize space + time cost
End when cannot select any more 
clusters

But, …
Event skew can make a cluster configuration 
suboptimal
Solution: dynamic clustering => need to 
quantify how insertions, deletions and event 
skew affect the performance

Need thresholds for creating a new cluster and deleting an 
exiting cluster
Insertion and event skew cost = how close to optimal is 
current configuration wrt events and new subscriptions + 
benefit of any new clusters
Deletions = is the benefit of the cluster below the threshold?



5

Online Algorithm

for each new event or subscription, 
redistribute subscriptions from clusters that 
have selectivity above some threshold
while redistributing consider creating new 
clusters that minimize space + time cost
delete any clusters with benefit below some 
threshold

Evaluation

There is an implementation
Comparative performance study of 
predicate matching algorithms
Scenarios

scalability and throughout
adaptability to event and subscription skew

Results confirm that the dynamic 
algorithm has the best performance



6

Conclusions

Fabret et. al. presents the most efficient 
solution to the problem so far.
Efficiency achieved using clusters, 
workload adaptive algorithm and 
prefetching.
Practical implementation exists.


